MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  srgdilem Structured version   Visualization version   GIF version

Theorem srgdilem 20157
Description: Lemma for srgdi 20162 and srgdir 20163. (Contributed by NM, 26-Aug-2011.) (Revised by Mario Carneiro, 6-Jan-2015.) (Revised by Thierry Arnoux, 1-Apr-2018.)
Hypotheses
Ref Expression
srgdilem.b 𝐵 = (Base‘𝑅)
srgdilem.p + = (+g𝑅)
srgdilem.t · = (.r𝑅)
Assertion
Ref Expression
srgdilem ((𝑅 ∈ SRing ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 · (𝑌 + 𝑍)) = ((𝑋 · 𝑌) + (𝑋 · 𝑍)) ∧ ((𝑋 + 𝑌) · 𝑍) = ((𝑋 · 𝑍) + (𝑌 · 𝑍))))

Proof of Theorem srgdilem
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 srgdilem.b . . . . . . . . . . 11 𝐵 = (Base‘𝑅)
2 eqid 2736 . . . . . . . . . . 11 (mulGrp‘𝑅) = (mulGrp‘𝑅)
3 srgdilem.p . . . . . . . . . . 11 + = (+g𝑅)
4 srgdilem.t . . . . . . . . . . 11 · = (.r𝑅)
5 eqid 2736 . . . . . . . . . . 11 (0g𝑅) = (0g𝑅)
61, 2, 3, 4, 5issrg 20153 . . . . . . . . . 10 (𝑅 ∈ SRing ↔ (𝑅 ∈ CMnd ∧ (mulGrp‘𝑅) ∈ Mnd ∧ ∀𝑥𝐵 (∀𝑦𝐵𝑧𝐵 ((𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) ∧ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))) ∧ (((0g𝑅) · 𝑥) = (0g𝑅) ∧ (𝑥 · (0g𝑅)) = (0g𝑅)))))
76simp3bi 1147 . . . . . . . . 9 (𝑅 ∈ SRing → ∀𝑥𝐵 (∀𝑦𝐵𝑧𝐵 ((𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) ∧ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))) ∧ (((0g𝑅) · 𝑥) = (0g𝑅) ∧ (𝑥 · (0g𝑅)) = (0g𝑅))))
87r19.21bi 3238 . . . . . . . 8 ((𝑅 ∈ SRing ∧ 𝑥𝐵) → (∀𝑦𝐵𝑧𝐵 ((𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) ∧ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))) ∧ (((0g𝑅) · 𝑥) = (0g𝑅) ∧ (𝑥 · (0g𝑅)) = (0g𝑅))))
98simpld 494 . . . . . . 7 ((𝑅 ∈ SRing ∧ 𝑥𝐵) → ∀𝑦𝐵𝑧𝐵 ((𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) ∧ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))))
1093ad2antr1 1189 . . . . . 6 ((𝑅 ∈ SRing ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → ∀𝑦𝐵𝑧𝐵 ((𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) ∧ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))))
11 simpr2 1196 . . . . . 6 ((𝑅 ∈ SRing ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → 𝑦𝐵)
12 rsp 3234 . . . . . 6 (∀𝑦𝐵𝑧𝐵 ((𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) ∧ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))) → (𝑦𝐵 → ∀𝑧𝐵 ((𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) ∧ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧)))))
1310, 11, 12sylc 65 . . . . 5 ((𝑅 ∈ SRing ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → ∀𝑧𝐵 ((𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) ∧ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))))
14 simpr3 1197 . . . . 5 ((𝑅 ∈ SRing ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → 𝑧𝐵)
15 rsp 3234 . . . . 5 (∀𝑧𝐵 ((𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) ∧ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))) → (𝑧𝐵 → ((𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) ∧ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧)))))
1613, 14, 15sylc 65 . . . 4 ((𝑅 ∈ SRing ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → ((𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) ∧ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))))
1716simpld 494 . . 3 ((𝑅 ∈ SRing ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → (𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)))
1817caovdig 7626 . 2 ((𝑅 ∈ SRing ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 · (𝑌 + 𝑍)) = ((𝑋 · 𝑌) + (𝑋 · 𝑍)))
1916simprd 495 . . 3 ((𝑅 ∈ SRing ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧)))
2019caovdirg 7629 . 2 ((𝑅 ∈ SRing ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 + 𝑌) · 𝑍) = ((𝑋 · 𝑍) + (𝑌 · 𝑍)))
2118, 20jca 511 1 ((𝑅 ∈ SRing ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 · (𝑌 + 𝑍)) = ((𝑋 · 𝑌) + (𝑋 · 𝑍)) ∧ ((𝑋 + 𝑌) · 𝑍) = ((𝑋 · 𝑍) + (𝑌 · 𝑍))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3052  cfv 6536  (class class class)co 7410  Basecbs 17233  +gcplusg 17276  .rcmulr 17277  0gc0g 17458  Mndcmnd 18717  CMndccmn 19766  mulGrpcmgp 20105  SRingcsrg 20151
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-12 2178  ax-ext 2708  ax-nul 5281
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-ne 2934  df-ral 3053  df-rab 3421  df-v 3466  df-sbc 3771  df-dif 3934  df-un 3936  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-iota 6489  df-fv 6544  df-ov 7413  df-srg 20152
This theorem is referenced by:  srgdi  20162  srgdir  20163
  Copyright terms: Public domain W3C validator