![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > srgcom4lem | Structured version Visualization version GIF version |
Description: Lemma for srgcom4 20166. This (formerly) part of the proof for ringcom 20228 is applicable for semirings (without using the commutativity of the addition given per definition of a semiring). (Contributed by Gérard Lang, 4-Dec-2014.) (Revised by AV, 1-Feb-2025.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
srgcom4.b | ⊢ 𝐵 = (Base‘𝑅) |
srgcom4.p | ⊢ + = (+g‘𝑅) |
Ref | Expression |
---|---|
srgcom4lem | ⊢ ((𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 + 𝑋) + (𝑌 + 𝑌)) = ((𝑋 + 𝑌) + (𝑋 + 𝑌))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | srgcom4.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑅) | |
2 | srgcom4.p | . . . . 5 ⊢ + = (+g‘𝑅) | |
3 | eqid 2725 | . . . . 5 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
4 | 1, 2, 3 | srgdir 20150 | . . . 4 ⊢ ((𝑅 ∈ SRing ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((𝑥 + 𝑦)(.r‘𝑅)𝑧) = ((𝑥(.r‘𝑅)𝑧) + (𝑦(.r‘𝑅)𝑧))) |
5 | 4 | ralrimivvva 3193 | . . 3 ⊢ (𝑅 ∈ SRing → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ((𝑥 + 𝑦)(.r‘𝑅)𝑧) = ((𝑥(.r‘𝑅)𝑧) + (𝑦(.r‘𝑅)𝑧))) |
6 | 5 | 3ad2ant1 1130 | . 2 ⊢ ((𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ((𝑥 + 𝑦)(.r‘𝑅)𝑧) = ((𝑥(.r‘𝑅)𝑧) + (𝑦(.r‘𝑅)𝑧))) |
7 | eqid 2725 | . . . 4 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
8 | 1, 7 | srgidcl 20151 | . . 3 ⊢ (𝑅 ∈ SRing → (1r‘𝑅) ∈ 𝐵) |
9 | 8 | 3ad2ant1 1130 | . 2 ⊢ ((𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (1r‘𝑅) ∈ 𝐵) |
10 | 1, 3, 7 | srglidm 20154 | . . . 4 ⊢ ((𝑅 ∈ SRing ∧ 𝑥 ∈ 𝐵) → ((1r‘𝑅)(.r‘𝑅)𝑥) = 𝑥) |
11 | 10 | ralrimiva 3135 | . . 3 ⊢ (𝑅 ∈ SRing → ∀𝑥 ∈ 𝐵 ((1r‘𝑅)(.r‘𝑅)𝑥) = 𝑥) |
12 | 11 | 3ad2ant1 1130 | . 2 ⊢ ((𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ∀𝑥 ∈ 𝐵 ((1r‘𝑅)(.r‘𝑅)𝑥) = 𝑥) |
13 | simp2 1134 | . 2 ⊢ ((𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑋 ∈ 𝐵) | |
14 | 1, 2 | srgacl 20157 | . . . . 5 ⊢ ((𝑅 ∈ SRing ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥 + 𝑦) ∈ 𝐵) |
15 | 14 | 3expb 1117 | . . . 4 ⊢ ((𝑅 ∈ SRing ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥 + 𝑦) ∈ 𝐵) |
16 | 15 | ralrimivva 3190 | . . 3 ⊢ (𝑅 ∈ SRing → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 + 𝑦) ∈ 𝐵) |
17 | 16 | 3ad2ant1 1130 | . 2 ⊢ ((𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 + 𝑦) ∈ 𝐵) |
18 | 1, 2, 3 | srgdi 20149 | . . . 4 ⊢ ((𝑅 ∈ SRing ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝑥(.r‘𝑅)(𝑦 + 𝑧)) = ((𝑥(.r‘𝑅)𝑦) + (𝑥(.r‘𝑅)𝑧))) |
19 | 18 | ralrimivvva 3193 | . . 3 ⊢ (𝑅 ∈ SRing → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 (𝑥(.r‘𝑅)(𝑦 + 𝑧)) = ((𝑥(.r‘𝑅)𝑦) + (𝑥(.r‘𝑅)𝑧))) |
20 | 19 | 3ad2ant1 1130 | . 2 ⊢ ((𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 (𝑥(.r‘𝑅)(𝑦 + 𝑧)) = ((𝑥(.r‘𝑅)𝑦) + (𝑥(.r‘𝑅)𝑧))) |
21 | simp3 1135 | . 2 ⊢ ((𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑌 ∈ 𝐵) | |
22 | 6, 9, 12, 13, 17, 20, 21 | rglcom4d 20163 | 1 ⊢ ((𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 + 𝑋) + (𝑌 + 𝑌)) = ((𝑋 + 𝑌) + (𝑋 + 𝑌))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 ∀wral 3050 ‘cfv 6549 (class class class)co 7419 Basecbs 17183 +gcplusg 17236 .rcmulr 17237 1rcur 20133 SRingcsrg 20138 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 ax-cnex 11196 ax-resscn 11197 ax-1cn 11198 ax-icn 11199 ax-addcl 11200 ax-addrcl 11201 ax-mulcl 11202 ax-mulrcl 11203 ax-mulcom 11204 ax-addass 11205 ax-mulass 11206 ax-distr 11207 ax-i2m1 11208 ax-1ne0 11209 ax-1rid 11210 ax-rnegex 11211 ax-rrecex 11212 ax-cnre 11213 ax-pre-lttri 11214 ax-pre-lttrn 11215 ax-pre-ltadd 11216 ax-pre-mulgt0 11217 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3964 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-iun 4999 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6307 df-ord 6374 df-on 6375 df-lim 6376 df-suc 6377 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-riota 7375 df-ov 7422 df-oprab 7423 df-mpo 7424 df-om 7872 df-2nd 7995 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-er 8725 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11282 df-mnf 11283 df-xr 11284 df-ltxr 11285 df-le 11286 df-sub 11478 df-neg 11479 df-nn 12246 df-2 12308 df-sets 17136 df-slot 17154 df-ndx 17166 df-base 17184 df-plusg 17249 df-0g 17426 df-mgm 18603 df-sgrp 18682 df-mnd 18698 df-cmn 19749 df-mgp 20087 df-ur 20134 df-srg 20139 |
This theorem is referenced by: srgcom4 20166 |
Copyright terms: Public domain | W3C validator |