![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > srgcom4lem | Structured version Visualization version GIF version |
Description: Lemma for srgcom4 20232. This (formerly) part of the proof for ringcom 20294 is applicable for semirings (without using the commutativity of the addition given per definition of a semiring). (Contributed by Gérard Lang, 4-Dec-2014.) (Revised by AV, 1-Feb-2025.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
srgcom4.b | ⊢ 𝐵 = (Base‘𝑅) |
srgcom4.p | ⊢ + = (+g‘𝑅) |
Ref | Expression |
---|---|
srgcom4lem | ⊢ ((𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 + 𝑋) + (𝑌 + 𝑌)) = ((𝑋 + 𝑌) + (𝑋 + 𝑌))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | srgcom4.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑅) | |
2 | srgcom4.p | . . . . 5 ⊢ + = (+g‘𝑅) | |
3 | eqid 2735 | . . . . 5 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
4 | 1, 2, 3 | srgdir 20216 | . . . 4 ⊢ ((𝑅 ∈ SRing ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((𝑥 + 𝑦)(.r‘𝑅)𝑧) = ((𝑥(.r‘𝑅)𝑧) + (𝑦(.r‘𝑅)𝑧))) |
5 | 4 | ralrimivvva 3203 | . . 3 ⊢ (𝑅 ∈ SRing → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ((𝑥 + 𝑦)(.r‘𝑅)𝑧) = ((𝑥(.r‘𝑅)𝑧) + (𝑦(.r‘𝑅)𝑧))) |
6 | 5 | 3ad2ant1 1132 | . 2 ⊢ ((𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ((𝑥 + 𝑦)(.r‘𝑅)𝑧) = ((𝑥(.r‘𝑅)𝑧) + (𝑦(.r‘𝑅)𝑧))) |
7 | eqid 2735 | . . . 4 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
8 | 1, 7 | srgidcl 20217 | . . 3 ⊢ (𝑅 ∈ SRing → (1r‘𝑅) ∈ 𝐵) |
9 | 8 | 3ad2ant1 1132 | . 2 ⊢ ((𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (1r‘𝑅) ∈ 𝐵) |
10 | 1, 3, 7 | srglidm 20220 | . . . 4 ⊢ ((𝑅 ∈ SRing ∧ 𝑥 ∈ 𝐵) → ((1r‘𝑅)(.r‘𝑅)𝑥) = 𝑥) |
11 | 10 | ralrimiva 3144 | . . 3 ⊢ (𝑅 ∈ SRing → ∀𝑥 ∈ 𝐵 ((1r‘𝑅)(.r‘𝑅)𝑥) = 𝑥) |
12 | 11 | 3ad2ant1 1132 | . 2 ⊢ ((𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ∀𝑥 ∈ 𝐵 ((1r‘𝑅)(.r‘𝑅)𝑥) = 𝑥) |
13 | simp2 1136 | . 2 ⊢ ((𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑋 ∈ 𝐵) | |
14 | 1, 2 | srgacl 20223 | . . . . 5 ⊢ ((𝑅 ∈ SRing ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥 + 𝑦) ∈ 𝐵) |
15 | 14 | 3expb 1119 | . . . 4 ⊢ ((𝑅 ∈ SRing ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥 + 𝑦) ∈ 𝐵) |
16 | 15 | ralrimivva 3200 | . . 3 ⊢ (𝑅 ∈ SRing → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 + 𝑦) ∈ 𝐵) |
17 | 16 | 3ad2ant1 1132 | . 2 ⊢ ((𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 + 𝑦) ∈ 𝐵) |
18 | 1, 2, 3 | srgdi 20215 | . . . 4 ⊢ ((𝑅 ∈ SRing ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝑥(.r‘𝑅)(𝑦 + 𝑧)) = ((𝑥(.r‘𝑅)𝑦) + (𝑥(.r‘𝑅)𝑧))) |
19 | 18 | ralrimivvva 3203 | . . 3 ⊢ (𝑅 ∈ SRing → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 (𝑥(.r‘𝑅)(𝑦 + 𝑧)) = ((𝑥(.r‘𝑅)𝑦) + (𝑥(.r‘𝑅)𝑧))) |
20 | 19 | 3ad2ant1 1132 | . 2 ⊢ ((𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 (𝑥(.r‘𝑅)(𝑦 + 𝑧)) = ((𝑥(.r‘𝑅)𝑦) + (𝑥(.r‘𝑅)𝑧))) |
21 | simp3 1137 | . 2 ⊢ ((𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑌 ∈ 𝐵) | |
22 | 6, 9, 12, 13, 17, 20, 21 | rglcom4d 20229 | 1 ⊢ ((𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 + 𝑋) + (𝑌 + 𝑌)) = ((𝑋 + 𝑌) + (𝑋 + 𝑌))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1537 ∈ wcel 2106 ∀wral 3059 ‘cfv 6563 (class class class)co 7431 Basecbs 17245 +gcplusg 17298 .rcmulr 17299 1rcur 20199 SRingcsrg 20204 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-nn 12265 df-2 12327 df-sets 17198 df-slot 17216 df-ndx 17228 df-base 17246 df-plusg 17311 df-0g 17488 df-mgm 18666 df-sgrp 18745 df-mnd 18761 df-cmn 19815 df-mgp 20153 df-ur 20200 df-srg 20205 |
This theorem is referenced by: srgcom4 20232 |
Copyright terms: Public domain | W3C validator |