| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > srgcom4lem | Structured version Visualization version GIF version | ||
| Description: Lemma for srgcom4 20179. This (formerly) part of the proof for ringcom 20245 is applicable for semirings (without using the commutativity of the addition given per definition of a semiring). (Contributed by Gérard Lang, 4-Dec-2014.) (Revised by AV, 1-Feb-2025.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| srgcom4.b | ⊢ 𝐵 = (Base‘𝑅) |
| srgcom4.p | ⊢ + = (+g‘𝑅) |
| Ref | Expression |
|---|---|
| srgcom4lem | ⊢ ((𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 + 𝑋) + (𝑌 + 𝑌)) = ((𝑋 + 𝑌) + (𝑋 + 𝑌))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | srgcom4.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑅) | |
| 2 | srgcom4.p | . . . . 5 ⊢ + = (+g‘𝑅) | |
| 3 | eqid 2736 | . . . . 5 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
| 4 | 1, 2, 3 | srgdir 20163 | . . . 4 ⊢ ((𝑅 ∈ SRing ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((𝑥 + 𝑦)(.r‘𝑅)𝑧) = ((𝑥(.r‘𝑅)𝑧) + (𝑦(.r‘𝑅)𝑧))) |
| 5 | 4 | ralrimivvva 3191 | . . 3 ⊢ (𝑅 ∈ SRing → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ((𝑥 + 𝑦)(.r‘𝑅)𝑧) = ((𝑥(.r‘𝑅)𝑧) + (𝑦(.r‘𝑅)𝑧))) |
| 6 | 5 | 3ad2ant1 1133 | . 2 ⊢ ((𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ((𝑥 + 𝑦)(.r‘𝑅)𝑧) = ((𝑥(.r‘𝑅)𝑧) + (𝑦(.r‘𝑅)𝑧))) |
| 7 | eqid 2736 | . . . 4 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
| 8 | 1, 7 | srgidcl 20164 | . . 3 ⊢ (𝑅 ∈ SRing → (1r‘𝑅) ∈ 𝐵) |
| 9 | 8 | 3ad2ant1 1133 | . 2 ⊢ ((𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (1r‘𝑅) ∈ 𝐵) |
| 10 | 1, 3, 7 | srglidm 20167 | . . . 4 ⊢ ((𝑅 ∈ SRing ∧ 𝑥 ∈ 𝐵) → ((1r‘𝑅)(.r‘𝑅)𝑥) = 𝑥) |
| 11 | 10 | ralrimiva 3133 | . . 3 ⊢ (𝑅 ∈ SRing → ∀𝑥 ∈ 𝐵 ((1r‘𝑅)(.r‘𝑅)𝑥) = 𝑥) |
| 12 | 11 | 3ad2ant1 1133 | . 2 ⊢ ((𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ∀𝑥 ∈ 𝐵 ((1r‘𝑅)(.r‘𝑅)𝑥) = 𝑥) |
| 13 | simp2 1137 | . 2 ⊢ ((𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑋 ∈ 𝐵) | |
| 14 | 1, 2 | srgacl 20170 | . . . . 5 ⊢ ((𝑅 ∈ SRing ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥 + 𝑦) ∈ 𝐵) |
| 15 | 14 | 3expb 1120 | . . . 4 ⊢ ((𝑅 ∈ SRing ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥 + 𝑦) ∈ 𝐵) |
| 16 | 15 | ralrimivva 3188 | . . 3 ⊢ (𝑅 ∈ SRing → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 + 𝑦) ∈ 𝐵) |
| 17 | 16 | 3ad2ant1 1133 | . 2 ⊢ ((𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 + 𝑦) ∈ 𝐵) |
| 18 | 1, 2, 3 | srgdi 20162 | . . . 4 ⊢ ((𝑅 ∈ SRing ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝑥(.r‘𝑅)(𝑦 + 𝑧)) = ((𝑥(.r‘𝑅)𝑦) + (𝑥(.r‘𝑅)𝑧))) |
| 19 | 18 | ralrimivvva 3191 | . . 3 ⊢ (𝑅 ∈ SRing → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 (𝑥(.r‘𝑅)(𝑦 + 𝑧)) = ((𝑥(.r‘𝑅)𝑦) + (𝑥(.r‘𝑅)𝑧))) |
| 20 | 19 | 3ad2ant1 1133 | . 2 ⊢ ((𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 (𝑥(.r‘𝑅)(𝑦 + 𝑧)) = ((𝑥(.r‘𝑅)𝑦) + (𝑥(.r‘𝑅)𝑧))) |
| 21 | simp3 1138 | . 2 ⊢ ((𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑌 ∈ 𝐵) | |
| 22 | 6, 9, 12, 13, 17, 20, 21 | rglcom4d 20176 | 1 ⊢ ((𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 + 𝑋) + (𝑌 + 𝑌)) = ((𝑋 + 𝑌) + (𝑋 + 𝑌))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3052 ‘cfv 6536 (class class class)co 7410 Basecbs 17233 +gcplusg 17276 .rcmulr 17277 1rcur 20146 SRingcsrg 20151 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-nn 12246 df-2 12308 df-sets 17188 df-slot 17206 df-ndx 17218 df-base 17234 df-plusg 17289 df-0g 17460 df-mgm 18623 df-sgrp 18702 df-mnd 18718 df-cmn 19768 df-mgp 20106 df-ur 20147 df-srg 20152 |
| This theorem is referenced by: srgcom4 20179 |
| Copyright terms: Public domain | W3C validator |