| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > srgcom4lem | Structured version Visualization version GIF version | ||
| Description: Lemma for srgcom4 20130. This (formerly) part of the proof for ringcom 20196 is applicable for semirings (without using the commutativity of the addition given per definition of a semiring). (Contributed by Gérard Lang, 4-Dec-2014.) (Revised by AV, 1-Feb-2025.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| srgcom4.b | ⊢ 𝐵 = (Base‘𝑅) |
| srgcom4.p | ⊢ + = (+g‘𝑅) |
| Ref | Expression |
|---|---|
| srgcom4lem | ⊢ ((𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 + 𝑋) + (𝑌 + 𝑌)) = ((𝑋 + 𝑌) + (𝑋 + 𝑌))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | srgcom4.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑅) | |
| 2 | srgcom4.p | . . . . 5 ⊢ + = (+g‘𝑅) | |
| 3 | eqid 2731 | . . . . 5 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
| 4 | 1, 2, 3 | srgdir 20114 | . . . 4 ⊢ ((𝑅 ∈ SRing ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((𝑥 + 𝑦)(.r‘𝑅)𝑧) = ((𝑥(.r‘𝑅)𝑧) + (𝑦(.r‘𝑅)𝑧))) |
| 5 | 4 | ralrimivvva 3178 | . . 3 ⊢ (𝑅 ∈ SRing → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ((𝑥 + 𝑦)(.r‘𝑅)𝑧) = ((𝑥(.r‘𝑅)𝑧) + (𝑦(.r‘𝑅)𝑧))) |
| 6 | 5 | 3ad2ant1 1133 | . 2 ⊢ ((𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ((𝑥 + 𝑦)(.r‘𝑅)𝑧) = ((𝑥(.r‘𝑅)𝑧) + (𝑦(.r‘𝑅)𝑧))) |
| 7 | eqid 2731 | . . . 4 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
| 8 | 1, 7 | srgidcl 20115 | . . 3 ⊢ (𝑅 ∈ SRing → (1r‘𝑅) ∈ 𝐵) |
| 9 | 8 | 3ad2ant1 1133 | . 2 ⊢ ((𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (1r‘𝑅) ∈ 𝐵) |
| 10 | 1, 3, 7 | srglidm 20118 | . . . 4 ⊢ ((𝑅 ∈ SRing ∧ 𝑥 ∈ 𝐵) → ((1r‘𝑅)(.r‘𝑅)𝑥) = 𝑥) |
| 11 | 10 | ralrimiva 3124 | . . 3 ⊢ (𝑅 ∈ SRing → ∀𝑥 ∈ 𝐵 ((1r‘𝑅)(.r‘𝑅)𝑥) = 𝑥) |
| 12 | 11 | 3ad2ant1 1133 | . 2 ⊢ ((𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ∀𝑥 ∈ 𝐵 ((1r‘𝑅)(.r‘𝑅)𝑥) = 𝑥) |
| 13 | simp2 1137 | . 2 ⊢ ((𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑋 ∈ 𝐵) | |
| 14 | 1, 2 | srgacl 20121 | . . . . 5 ⊢ ((𝑅 ∈ SRing ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥 + 𝑦) ∈ 𝐵) |
| 15 | 14 | 3expb 1120 | . . . 4 ⊢ ((𝑅 ∈ SRing ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥 + 𝑦) ∈ 𝐵) |
| 16 | 15 | ralrimivva 3175 | . . 3 ⊢ (𝑅 ∈ SRing → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 + 𝑦) ∈ 𝐵) |
| 17 | 16 | 3ad2ant1 1133 | . 2 ⊢ ((𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 + 𝑦) ∈ 𝐵) |
| 18 | 1, 2, 3 | srgdi 20113 | . . . 4 ⊢ ((𝑅 ∈ SRing ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝑥(.r‘𝑅)(𝑦 + 𝑧)) = ((𝑥(.r‘𝑅)𝑦) + (𝑥(.r‘𝑅)𝑧))) |
| 19 | 18 | ralrimivvva 3178 | . . 3 ⊢ (𝑅 ∈ SRing → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 (𝑥(.r‘𝑅)(𝑦 + 𝑧)) = ((𝑥(.r‘𝑅)𝑦) + (𝑥(.r‘𝑅)𝑧))) |
| 20 | 19 | 3ad2ant1 1133 | . 2 ⊢ ((𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 (𝑥(.r‘𝑅)(𝑦 + 𝑧)) = ((𝑥(.r‘𝑅)𝑦) + (𝑥(.r‘𝑅)𝑧))) |
| 21 | simp3 1138 | . 2 ⊢ ((𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑌 ∈ 𝐵) | |
| 22 | 6, 9, 12, 13, 17, 20, 21 | rglcom4d 20127 | 1 ⊢ ((𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 + 𝑋) + (𝑌 + 𝑌)) = ((𝑋 + 𝑌) + (𝑋 + 𝑌))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ∀wral 3047 ‘cfv 6481 (class class class)co 7346 Basecbs 17117 +gcplusg 17158 .rcmulr 17159 1rcur 20097 SRingcsrg 20102 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11059 ax-resscn 11060 ax-1cn 11061 ax-icn 11062 ax-addcl 11063 ax-addrcl 11064 ax-mulcl 11065 ax-mulrcl 11066 ax-mulcom 11067 ax-addass 11068 ax-mulass 11069 ax-distr 11070 ax-i2m1 11071 ax-1ne0 11072 ax-1rid 11073 ax-rnegex 11074 ax-rrecex 11075 ax-cnre 11076 ax-pre-lttri 11077 ax-pre-lttrn 11078 ax-pre-ltadd 11079 ax-pre-mulgt0 11080 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11145 df-mnf 11146 df-xr 11147 df-ltxr 11148 df-le 11149 df-sub 11343 df-neg 11344 df-nn 12123 df-2 12185 df-sets 17072 df-slot 17090 df-ndx 17102 df-base 17118 df-plusg 17171 df-0g 17342 df-mgm 18545 df-sgrp 18624 df-mnd 18640 df-cmn 19692 df-mgp 20057 df-ur 20098 df-srg 20103 |
| This theorem is referenced by: srgcom4 20130 |
| Copyright terms: Public domain | W3C validator |