MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssab Structured version   Visualization version   GIF version

Theorem ssab 4030
Description: Subclass of a class abstraction. (Contributed by NM, 16-Aug-2006.)
Assertion
Ref Expression
ssab (𝐴 ⊆ {𝑥𝜑} ↔ ∀𝑥(𝑥𝐴𝜑))
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem ssab
StepHypRef Expression
1 abid2 2866 . . 3 {𝑥𝑥𝐴} = 𝐴
21sseq1i 3978 . 2 ({𝑥𝑥𝐴} ⊆ {𝑥𝜑} ↔ 𝐴 ⊆ {𝑥𝜑})
3 ss2ab 4028 . 2 ({𝑥𝑥𝐴} ⊆ {𝑥𝜑} ↔ ∀𝑥(𝑥𝐴𝜑))
42, 3bitr3i 277 1 (𝐴 ⊆ {𝑥𝜑} ↔ ∀𝑥(𝑥𝐴𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wal 1538  wcel 2109  {cab 2708  wss 3917
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ss 3934
This theorem is referenced by:  ssabral  4031  ssrab  4039  wdomd  9541  ixpiunwdom  9550  lidldvgen  21251  prdsxmslem2  24424  ballotlem2  34487
  Copyright terms: Public domain W3C validator