MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssab Structured version   Visualization version   GIF version

Theorem ssab 4087
Description: Subclass of a class abstraction. (Contributed by NM, 16-Aug-2006.)
Assertion
Ref Expression
ssab (𝐴 ⊆ {𝑥𝜑} ↔ ∀𝑥(𝑥𝐴𝜑))
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem ssab
StepHypRef Expression
1 abid2 2882 . . 3 {𝑥𝑥𝐴} = 𝐴
21sseq1i 4037 . 2 ({𝑥𝑥𝐴} ⊆ {𝑥𝜑} ↔ 𝐴 ⊆ {𝑥𝜑})
3 ss2ab 4085 . 2 ({𝑥𝑥𝐴} ⊆ {𝑥𝜑} ↔ ∀𝑥(𝑥𝐴𝜑))
42, 3bitr3i 277 1 (𝐴 ⊆ {𝑥𝜑} ↔ ∀𝑥(𝑥𝐴𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wal 1535  wcel 2108  {cab 2717  wss 3976
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-tru 1540  df-ex 1778  df-nf 1782  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ss 3993
This theorem is referenced by:  ssabral  4088  ssrab  4096  wdomd  9650  ixpiunwdom  9659  lidldvgen  21367  prdsxmslem2  24563  ballotlem2  34453
  Copyright terms: Public domain W3C validator