| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssab | Structured version Visualization version GIF version | ||
| Description: Subclass of a class abstraction. (Contributed by NM, 16-Aug-2006.) |
| Ref | Expression |
|---|---|
| ssab | ⊢ (𝐴 ⊆ {𝑥 ∣ 𝜑} ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abid2 2872 | . . 3 ⊢ {𝑥 ∣ 𝑥 ∈ 𝐴} = 𝐴 | |
| 2 | 1 | sseq1i 3987 | . 2 ⊢ ({𝑥 ∣ 𝑥 ∈ 𝐴} ⊆ {𝑥 ∣ 𝜑} ↔ 𝐴 ⊆ {𝑥 ∣ 𝜑}) |
| 3 | ss2ab 4037 | . 2 ⊢ ({𝑥 ∣ 𝑥 ∈ 𝐴} ⊆ {𝑥 ∣ 𝜑} ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝜑)) | |
| 4 | 2, 3 | bitr3i 277 | 1 ⊢ (𝐴 ⊆ {𝑥 ∣ 𝜑} ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1538 ∈ wcel 2108 {cab 2713 ⊆ wss 3926 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ss 3943 |
| This theorem is referenced by: ssabral 4040 ssrab 4048 wdomd 9595 ixpiunwdom 9604 lidldvgen 21295 prdsxmslem2 24468 ballotlem2 34521 |
| Copyright terms: Public domain | W3C validator |