| Step | Hyp | Ref
| Expression |
| 1 | | simp1 1137 |
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝐺 ∈ 𝐵) → 𝑅 ∈ Ring) |
| 2 | | simp3 1139 |
. . . . . . 7
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝐺 ∈ 𝐵) → 𝐺 ∈ 𝐵) |
| 3 | 2 | snssd 4809 |
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝐺 ∈ 𝐵) → {𝐺} ⊆ 𝐵) |
| 4 | | lidldvgen.k |
. . . . . . 7
⊢ 𝐾 = (RSpan‘𝑅) |
| 5 | | lidldvgen.b |
. . . . . . 7
⊢ 𝐵 = (Base‘𝑅) |
| 6 | 4, 5 | rspssid 21246 |
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧ {𝐺} ⊆ 𝐵) → {𝐺} ⊆ (𝐾‘{𝐺})) |
| 7 | 1, 3, 6 | syl2anc 584 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝐺 ∈ 𝐵) → {𝐺} ⊆ (𝐾‘{𝐺})) |
| 8 | | snssg 4783 |
. . . . . 6
⊢ (𝐺 ∈ 𝐵 → (𝐺 ∈ (𝐾‘{𝐺}) ↔ {𝐺} ⊆ (𝐾‘{𝐺}))) |
| 9 | 8 | 3ad2ant3 1136 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝐺 ∈ 𝐵) → (𝐺 ∈ (𝐾‘{𝐺}) ↔ {𝐺} ⊆ (𝐾‘{𝐺}))) |
| 10 | 7, 9 | mpbird 257 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝐺 ∈ 𝐵) → 𝐺 ∈ (𝐾‘{𝐺})) |
| 11 | | lidldvgen.d |
. . . . . . . . . 10
⊢ ∥ =
(∥r‘𝑅) |
| 12 | 5, 4, 11 | rspsn 21343 |
. . . . . . . . 9
⊢ ((𝑅 ∈ Ring ∧ 𝐺 ∈ 𝐵) → (𝐾‘{𝐺}) = {𝑦 ∣ 𝐺 ∥ 𝑦}) |
| 13 | 12 | 3adant2 1132 |
. . . . . . . 8
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝐺 ∈ 𝐵) → (𝐾‘{𝐺}) = {𝑦 ∣ 𝐺 ∥ 𝑦}) |
| 14 | 13 | eleq2d 2827 |
. . . . . . 7
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝐺 ∈ 𝐵) → (𝑥 ∈ (𝐾‘{𝐺}) ↔ 𝑥 ∈ {𝑦 ∣ 𝐺 ∥ 𝑦})) |
| 15 | | vex 3484 |
. . . . . . . 8
⊢ 𝑥 ∈ V |
| 16 | | breq2 5147 |
. . . . . . . 8
⊢ (𝑦 = 𝑥 → (𝐺 ∥ 𝑦 ↔ 𝐺 ∥ 𝑥)) |
| 17 | 15, 16 | elab 3679 |
. . . . . . 7
⊢ (𝑥 ∈ {𝑦 ∣ 𝐺 ∥ 𝑦} ↔ 𝐺 ∥ 𝑥) |
| 18 | 14, 17 | bitrdi 287 |
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝐺 ∈ 𝐵) → (𝑥 ∈ (𝐾‘{𝐺}) ↔ 𝐺 ∥ 𝑥)) |
| 19 | 18 | biimpd 229 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝐺 ∈ 𝐵) → (𝑥 ∈ (𝐾‘{𝐺}) → 𝐺 ∥ 𝑥)) |
| 20 | 19 | ralrimiv 3145 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝐺 ∈ 𝐵) → ∀𝑥 ∈ (𝐾‘{𝐺})𝐺 ∥ 𝑥) |
| 21 | 10, 20 | jca 511 |
. . 3
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝐺 ∈ 𝐵) → (𝐺 ∈ (𝐾‘{𝐺}) ∧ ∀𝑥 ∈ (𝐾‘{𝐺})𝐺 ∥ 𝑥)) |
| 22 | | eleq2 2830 |
. . . 4
⊢ (𝐼 = (𝐾‘{𝐺}) → (𝐺 ∈ 𝐼 ↔ 𝐺 ∈ (𝐾‘{𝐺}))) |
| 23 | | raleq 3323 |
. . . 4
⊢ (𝐼 = (𝐾‘{𝐺}) → (∀𝑥 ∈ 𝐼 𝐺 ∥ 𝑥 ↔ ∀𝑥 ∈ (𝐾‘{𝐺})𝐺 ∥ 𝑥)) |
| 24 | 22, 23 | anbi12d 632 |
. . 3
⊢ (𝐼 = (𝐾‘{𝐺}) → ((𝐺 ∈ 𝐼 ∧ ∀𝑥 ∈ 𝐼 𝐺 ∥ 𝑥) ↔ (𝐺 ∈ (𝐾‘{𝐺}) ∧ ∀𝑥 ∈ (𝐾‘{𝐺})𝐺 ∥ 𝑥))) |
| 25 | 21, 24 | syl5ibrcom 247 |
. 2
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝐺 ∈ 𝐵) → (𝐼 = (𝐾‘{𝐺}) → (𝐺 ∈ 𝐼 ∧ ∀𝑥 ∈ 𝐼 𝐺 ∥ 𝑥))) |
| 26 | | df-ral 3062 |
. . . . . . 7
⊢
(∀𝑥 ∈
𝐼 𝐺 ∥ 𝑥 ↔ ∀𝑥(𝑥 ∈ 𝐼 → 𝐺 ∥ 𝑥)) |
| 27 | | ssab 4064 |
. . . . . . 7
⊢ (𝐼 ⊆ {𝑥 ∣ 𝐺 ∥ 𝑥} ↔ ∀𝑥(𝑥 ∈ 𝐼 → 𝐺 ∥ 𝑥)) |
| 28 | 26, 27 | sylbb2 238 |
. . . . . 6
⊢
(∀𝑥 ∈
𝐼 𝐺 ∥ 𝑥 → 𝐼 ⊆ {𝑥 ∣ 𝐺 ∥ 𝑥}) |
| 29 | 28 | ad2antll 729 |
. . . . 5
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝐺 ∈ 𝐵) ∧ (𝐺 ∈ 𝐼 ∧ ∀𝑥 ∈ 𝐼 𝐺 ∥ 𝑥)) → 𝐼 ⊆ {𝑥 ∣ 𝐺 ∥ 𝑥}) |
| 30 | 5, 4, 11 | rspsn 21343 |
. . . . . . 7
⊢ ((𝑅 ∈ Ring ∧ 𝐺 ∈ 𝐵) → (𝐾‘{𝐺}) = {𝑥 ∣ 𝐺 ∥ 𝑥}) |
| 31 | 30 | 3adant2 1132 |
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝐺 ∈ 𝐵) → (𝐾‘{𝐺}) = {𝑥 ∣ 𝐺 ∥ 𝑥}) |
| 32 | 31 | adantr 480 |
. . . . 5
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝐺 ∈ 𝐵) ∧ (𝐺 ∈ 𝐼 ∧ ∀𝑥 ∈ 𝐼 𝐺 ∥ 𝑥)) → (𝐾‘{𝐺}) = {𝑥 ∣ 𝐺 ∥ 𝑥}) |
| 33 | 29, 32 | sseqtrrd 4021 |
. . . 4
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝐺 ∈ 𝐵) ∧ (𝐺 ∈ 𝐼 ∧ ∀𝑥 ∈ 𝐼 𝐺 ∥ 𝑥)) → 𝐼 ⊆ (𝐾‘{𝐺})) |
| 34 | | simpl1 1192 |
. . . . . 6
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝐺 ∈ 𝐵) ∧ 𝐺 ∈ 𝐼) → 𝑅 ∈ Ring) |
| 35 | | simpl2 1193 |
. . . . . 6
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝐺 ∈ 𝐵) ∧ 𝐺 ∈ 𝐼) → 𝐼 ∈ 𝑈) |
| 36 | | snssi 4808 |
. . . . . . 7
⊢ (𝐺 ∈ 𝐼 → {𝐺} ⊆ 𝐼) |
| 37 | 36 | adantl 481 |
. . . . . 6
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝐺 ∈ 𝐵) ∧ 𝐺 ∈ 𝐼) → {𝐺} ⊆ 𝐼) |
| 38 | | lidldvgen.u |
. . . . . . 7
⊢ 𝑈 = (LIdeal‘𝑅) |
| 39 | 4, 38 | rspssp 21249 |
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ {𝐺} ⊆ 𝐼) → (𝐾‘{𝐺}) ⊆ 𝐼) |
| 40 | 34, 35, 37, 39 | syl3anc 1373 |
. . . . 5
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝐺 ∈ 𝐵) ∧ 𝐺 ∈ 𝐼) → (𝐾‘{𝐺}) ⊆ 𝐼) |
| 41 | 40 | adantrr 717 |
. . . 4
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝐺 ∈ 𝐵) ∧ (𝐺 ∈ 𝐼 ∧ ∀𝑥 ∈ 𝐼 𝐺 ∥ 𝑥)) → (𝐾‘{𝐺}) ⊆ 𝐼) |
| 42 | 33, 41 | eqssd 4001 |
. . 3
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝐺 ∈ 𝐵) ∧ (𝐺 ∈ 𝐼 ∧ ∀𝑥 ∈ 𝐼 𝐺 ∥ 𝑥)) → 𝐼 = (𝐾‘{𝐺})) |
| 43 | 42 | ex 412 |
. 2
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝐺 ∈ 𝐵) → ((𝐺 ∈ 𝐼 ∧ ∀𝑥 ∈ 𝐼 𝐺 ∥ 𝑥) → 𝐼 = (𝐾‘{𝐺}))) |
| 44 | 25, 43 | impbid 212 |
1
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝐺 ∈ 𝐵) → (𝐼 = (𝐾‘{𝐺}) ↔ (𝐺 ∈ 𝐼 ∧ ∀𝑥 ∈ 𝐼 𝐺 ∥ 𝑥))) |