MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lidldvgen Structured version   Visualization version   GIF version

Theorem lidldvgen 20022
Description: An element generates an ideal iff it is contained in the ideal and all elements are right-divided by it. (Contributed by Stefan O'Rear, 3-Jan-2015.)
Hypotheses
Ref Expression
lidldvgen.b 𝐵 = (Base‘𝑅)
lidldvgen.u 𝑈 = (LIdeal‘𝑅)
lidldvgen.k 𝐾 = (RSpan‘𝑅)
lidldvgen.d = (∥r𝑅)
Assertion
Ref Expression
lidldvgen ((𝑅 ∈ Ring ∧ 𝐼𝑈𝐺𝐵) → (𝐼 = (𝐾‘{𝐺}) ↔ (𝐺𝐼 ∧ ∀𝑥𝐼 𝐺 𝑥)))
Distinct variable groups:   𝑥,𝑈   𝑥,𝐵   𝑥,   𝑥,𝑅   𝑥,𝐼   𝑥,𝐾   𝑥,𝐺

Proof of Theorem lidldvgen
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 simp1 1132 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐼𝑈𝐺𝐵) → 𝑅 ∈ Ring)
2 simp3 1134 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐼𝑈𝐺𝐵) → 𝐺𝐵)
32snssd 4735 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐼𝑈𝐺𝐵) → {𝐺} ⊆ 𝐵)
4 lidldvgen.k . . . . . . 7 𝐾 = (RSpan‘𝑅)
5 lidldvgen.b . . . . . . 7 𝐵 = (Base‘𝑅)
64, 5rspssid 19990 . . . . . 6 ((𝑅 ∈ Ring ∧ {𝐺} ⊆ 𝐵) → {𝐺} ⊆ (𝐾‘{𝐺}))
71, 3, 6syl2anc 586 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐼𝑈𝐺𝐵) → {𝐺} ⊆ (𝐾‘{𝐺}))
8 snssg 4710 . . . . . 6 (𝐺𝐵 → (𝐺 ∈ (𝐾‘{𝐺}) ↔ {𝐺} ⊆ (𝐾‘{𝐺})))
983ad2ant3 1131 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐼𝑈𝐺𝐵) → (𝐺 ∈ (𝐾‘{𝐺}) ↔ {𝐺} ⊆ (𝐾‘{𝐺})))
107, 9mpbird 259 . . . 4 ((𝑅 ∈ Ring ∧ 𝐼𝑈𝐺𝐵) → 𝐺 ∈ (𝐾‘{𝐺}))
11 lidldvgen.d . . . . . . . . . 10 = (∥r𝑅)
125, 4, 11rspsn 20021 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝐺𝐵) → (𝐾‘{𝐺}) = {𝑦𝐺 𝑦})
13123adant2 1127 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝐼𝑈𝐺𝐵) → (𝐾‘{𝐺}) = {𝑦𝐺 𝑦})
1413eleq2d 2898 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐼𝑈𝐺𝐵) → (𝑥 ∈ (𝐾‘{𝐺}) ↔ 𝑥 ∈ {𝑦𝐺 𝑦}))
15 vex 3497 . . . . . . . 8 𝑥 ∈ V
16 breq2 5062 . . . . . . . 8 (𝑦 = 𝑥 → (𝐺 𝑦𝐺 𝑥))
1715, 16elab 3666 . . . . . . 7 (𝑥 ∈ {𝑦𝐺 𝑦} ↔ 𝐺 𝑥)
1814, 17syl6bb 289 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐼𝑈𝐺𝐵) → (𝑥 ∈ (𝐾‘{𝐺}) ↔ 𝐺 𝑥))
1918biimpd 231 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐼𝑈𝐺𝐵) → (𝑥 ∈ (𝐾‘{𝐺}) → 𝐺 𝑥))
2019ralrimiv 3181 . . . 4 ((𝑅 ∈ Ring ∧ 𝐼𝑈𝐺𝐵) → ∀𝑥 ∈ (𝐾‘{𝐺})𝐺 𝑥)
2110, 20jca 514 . . 3 ((𝑅 ∈ Ring ∧ 𝐼𝑈𝐺𝐵) → (𝐺 ∈ (𝐾‘{𝐺}) ∧ ∀𝑥 ∈ (𝐾‘{𝐺})𝐺 𝑥))
22 eleq2 2901 . . . 4 (𝐼 = (𝐾‘{𝐺}) → (𝐺𝐼𝐺 ∈ (𝐾‘{𝐺})))
23 raleq 3405 . . . 4 (𝐼 = (𝐾‘{𝐺}) → (∀𝑥𝐼 𝐺 𝑥 ↔ ∀𝑥 ∈ (𝐾‘{𝐺})𝐺 𝑥))
2422, 23anbi12d 632 . . 3 (𝐼 = (𝐾‘{𝐺}) → ((𝐺𝐼 ∧ ∀𝑥𝐼 𝐺 𝑥) ↔ (𝐺 ∈ (𝐾‘{𝐺}) ∧ ∀𝑥 ∈ (𝐾‘{𝐺})𝐺 𝑥)))
2521, 24syl5ibrcom 249 . 2 ((𝑅 ∈ Ring ∧ 𝐼𝑈𝐺𝐵) → (𝐼 = (𝐾‘{𝐺}) → (𝐺𝐼 ∧ ∀𝑥𝐼 𝐺 𝑥)))
26 df-ral 3143 . . . . . . 7 (∀𝑥𝐼 𝐺 𝑥 ↔ ∀𝑥(𝑥𝐼𝐺 𝑥))
27 ssab 4040 . . . . . . 7 (𝐼 ⊆ {𝑥𝐺 𝑥} ↔ ∀𝑥(𝑥𝐼𝐺 𝑥))
2826, 27sylbb2 240 . . . . . 6 (∀𝑥𝐼 𝐺 𝑥𝐼 ⊆ {𝑥𝐺 𝑥})
2928ad2antll 727 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐼𝑈𝐺𝐵) ∧ (𝐺𝐼 ∧ ∀𝑥𝐼 𝐺 𝑥)) → 𝐼 ⊆ {𝑥𝐺 𝑥})
305, 4, 11rspsn 20021 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐺𝐵) → (𝐾‘{𝐺}) = {𝑥𝐺 𝑥})
31303adant2 1127 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐼𝑈𝐺𝐵) → (𝐾‘{𝐺}) = {𝑥𝐺 𝑥})
3231adantr 483 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐼𝑈𝐺𝐵) ∧ (𝐺𝐼 ∧ ∀𝑥𝐼 𝐺 𝑥)) → (𝐾‘{𝐺}) = {𝑥𝐺 𝑥})
3329, 32sseqtrrd 4007 . . . 4 (((𝑅 ∈ Ring ∧ 𝐼𝑈𝐺𝐵) ∧ (𝐺𝐼 ∧ ∀𝑥𝐼 𝐺 𝑥)) → 𝐼 ⊆ (𝐾‘{𝐺}))
34 simpl1 1187 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐼𝑈𝐺𝐵) ∧ 𝐺𝐼) → 𝑅 ∈ Ring)
35 simpl2 1188 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐼𝑈𝐺𝐵) ∧ 𝐺𝐼) → 𝐼𝑈)
36 snssi 4734 . . . . . . 7 (𝐺𝐼 → {𝐺} ⊆ 𝐼)
3736adantl 484 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐼𝑈𝐺𝐵) ∧ 𝐺𝐼) → {𝐺} ⊆ 𝐼)
38 lidldvgen.u . . . . . . 7 𝑈 = (LIdeal‘𝑅)
394, 38rspssp 19993 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐼𝑈 ∧ {𝐺} ⊆ 𝐼) → (𝐾‘{𝐺}) ⊆ 𝐼)
4034, 35, 37, 39syl3anc 1367 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐼𝑈𝐺𝐵) ∧ 𝐺𝐼) → (𝐾‘{𝐺}) ⊆ 𝐼)
4140adantrr 715 . . . 4 (((𝑅 ∈ Ring ∧ 𝐼𝑈𝐺𝐵) ∧ (𝐺𝐼 ∧ ∀𝑥𝐼 𝐺 𝑥)) → (𝐾‘{𝐺}) ⊆ 𝐼)
4233, 41eqssd 3983 . . 3 (((𝑅 ∈ Ring ∧ 𝐼𝑈𝐺𝐵) ∧ (𝐺𝐼 ∧ ∀𝑥𝐼 𝐺 𝑥)) → 𝐼 = (𝐾‘{𝐺}))
4342ex 415 . 2 ((𝑅 ∈ Ring ∧ 𝐼𝑈𝐺𝐵) → ((𝐺𝐼 ∧ ∀𝑥𝐼 𝐺 𝑥) → 𝐼 = (𝐾‘{𝐺})))
4425, 43impbid 214 1 ((𝑅 ∈ Ring ∧ 𝐼𝑈𝐺𝐵) → (𝐼 = (𝐾‘{𝐺}) ↔ (𝐺𝐼 ∧ ∀𝑥𝐼 𝐺 𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083  wal 1531   = wceq 1533  wcel 2110  {cab 2799  wral 3138  wss 3935  {csn 4560   class class class wbr 5058  cfv 6349  Basecbs 16477  Ringcrg 19291  rcdsr 19382  LIdealclidl 19936  RSpancrsp 19937
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-int 4869  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-er 8283  df-en 8504  df-dom 8505  df-sdom 8506  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-nn 11633  df-2 11694  df-3 11695  df-4 11696  df-5 11697  df-6 11698  df-7 11699  df-8 11700  df-ndx 16480  df-slot 16481  df-base 16483  df-sets 16484  df-ress 16485  df-plusg 16572  df-mulr 16573  df-sca 16575  df-vsca 16576  df-ip 16577  df-0g 16709  df-mgm 17846  df-sgrp 17895  df-mnd 17906  df-grp 18100  df-minusg 18101  df-sbg 18102  df-subg 18270  df-mgp 19234  df-ur 19246  df-ring 19293  df-dvdsr 19385  df-subrg 19527  df-lmod 19630  df-lss 19698  df-lsp 19738  df-sra 19938  df-rgmod 19939  df-lidl 19940  df-rsp 19941
This theorem is referenced by:  lpigen  20023  ig1prsp  24765
  Copyright terms: Public domain W3C validator