MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lidldvgen Structured version   Visualization version   GIF version

Theorem lidldvgen 20293
Description: An element generates an ideal iff it is contained in the ideal and all elements are right-divided by it. (Contributed by Stefan O'Rear, 3-Jan-2015.)
Hypotheses
Ref Expression
lidldvgen.b 𝐵 = (Base‘𝑅)
lidldvgen.u 𝑈 = (LIdeal‘𝑅)
lidldvgen.k 𝐾 = (RSpan‘𝑅)
lidldvgen.d = (∥r𝑅)
Assertion
Ref Expression
lidldvgen ((𝑅 ∈ Ring ∧ 𝐼𝑈𝐺𝐵) → (𝐼 = (𝐾‘{𝐺}) ↔ (𝐺𝐼 ∧ ∀𝑥𝐼 𝐺 𝑥)))
Distinct variable groups:   𝑥,𝑈   𝑥,𝐵   𝑥,   𝑥,𝑅   𝑥,𝐼   𝑥,𝐾   𝑥,𝐺

Proof of Theorem lidldvgen
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 simp1 1138 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐼𝑈𝐺𝐵) → 𝑅 ∈ Ring)
2 simp3 1140 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐼𝑈𝐺𝐵) → 𝐺𝐵)
32snssd 4722 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐼𝑈𝐺𝐵) → {𝐺} ⊆ 𝐵)
4 lidldvgen.k . . . . . . 7 𝐾 = (RSpan‘𝑅)
5 lidldvgen.b . . . . . . 7 𝐵 = (Base‘𝑅)
64, 5rspssid 20261 . . . . . 6 ((𝑅 ∈ Ring ∧ {𝐺} ⊆ 𝐵) → {𝐺} ⊆ (𝐾‘{𝐺}))
71, 3, 6syl2anc 587 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐼𝑈𝐺𝐵) → {𝐺} ⊆ (𝐾‘{𝐺}))
8 snssg 4698 . . . . . 6 (𝐺𝐵 → (𝐺 ∈ (𝐾‘{𝐺}) ↔ {𝐺} ⊆ (𝐾‘{𝐺})))
983ad2ant3 1137 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐼𝑈𝐺𝐵) → (𝐺 ∈ (𝐾‘{𝐺}) ↔ {𝐺} ⊆ (𝐾‘{𝐺})))
107, 9mpbird 260 . . . 4 ((𝑅 ∈ Ring ∧ 𝐼𝑈𝐺𝐵) → 𝐺 ∈ (𝐾‘{𝐺}))
11 lidldvgen.d . . . . . . . . . 10 = (∥r𝑅)
125, 4, 11rspsn 20292 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝐺𝐵) → (𝐾‘{𝐺}) = {𝑦𝐺 𝑦})
13123adant2 1133 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝐼𝑈𝐺𝐵) → (𝐾‘{𝐺}) = {𝑦𝐺 𝑦})
1413eleq2d 2823 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐼𝑈𝐺𝐵) → (𝑥 ∈ (𝐾‘{𝐺}) ↔ 𝑥 ∈ {𝑦𝐺 𝑦}))
15 vex 3412 . . . . . . . 8 𝑥 ∈ V
16 breq2 5057 . . . . . . . 8 (𝑦 = 𝑥 → (𝐺 𝑦𝐺 𝑥))
1715, 16elab 3587 . . . . . . 7 (𝑥 ∈ {𝑦𝐺 𝑦} ↔ 𝐺 𝑥)
1814, 17bitrdi 290 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐼𝑈𝐺𝐵) → (𝑥 ∈ (𝐾‘{𝐺}) ↔ 𝐺 𝑥))
1918biimpd 232 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐼𝑈𝐺𝐵) → (𝑥 ∈ (𝐾‘{𝐺}) → 𝐺 𝑥))
2019ralrimiv 3104 . . . 4 ((𝑅 ∈ Ring ∧ 𝐼𝑈𝐺𝐵) → ∀𝑥 ∈ (𝐾‘{𝐺})𝐺 𝑥)
2110, 20jca 515 . . 3 ((𝑅 ∈ Ring ∧ 𝐼𝑈𝐺𝐵) → (𝐺 ∈ (𝐾‘{𝐺}) ∧ ∀𝑥 ∈ (𝐾‘{𝐺})𝐺 𝑥))
22 eleq2 2826 . . . 4 (𝐼 = (𝐾‘{𝐺}) → (𝐺𝐼𝐺 ∈ (𝐾‘{𝐺})))
23 raleq 3319 . . . 4 (𝐼 = (𝐾‘{𝐺}) → (∀𝑥𝐼 𝐺 𝑥 ↔ ∀𝑥 ∈ (𝐾‘{𝐺})𝐺 𝑥))
2422, 23anbi12d 634 . . 3 (𝐼 = (𝐾‘{𝐺}) → ((𝐺𝐼 ∧ ∀𝑥𝐼 𝐺 𝑥) ↔ (𝐺 ∈ (𝐾‘{𝐺}) ∧ ∀𝑥 ∈ (𝐾‘{𝐺})𝐺 𝑥)))
2521, 24syl5ibrcom 250 . 2 ((𝑅 ∈ Ring ∧ 𝐼𝑈𝐺𝐵) → (𝐼 = (𝐾‘{𝐺}) → (𝐺𝐼 ∧ ∀𝑥𝐼 𝐺 𝑥)))
26 df-ral 3066 . . . . . . 7 (∀𝑥𝐼 𝐺 𝑥 ↔ ∀𝑥(𝑥𝐼𝐺 𝑥))
27 ssab 3975 . . . . . . 7 (𝐼 ⊆ {𝑥𝐺 𝑥} ↔ ∀𝑥(𝑥𝐼𝐺 𝑥))
2826, 27sylbb2 241 . . . . . 6 (∀𝑥𝐼 𝐺 𝑥𝐼 ⊆ {𝑥𝐺 𝑥})
2928ad2antll 729 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐼𝑈𝐺𝐵) ∧ (𝐺𝐼 ∧ ∀𝑥𝐼 𝐺 𝑥)) → 𝐼 ⊆ {𝑥𝐺 𝑥})
305, 4, 11rspsn 20292 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐺𝐵) → (𝐾‘{𝐺}) = {𝑥𝐺 𝑥})
31303adant2 1133 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐼𝑈𝐺𝐵) → (𝐾‘{𝐺}) = {𝑥𝐺 𝑥})
3231adantr 484 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐼𝑈𝐺𝐵) ∧ (𝐺𝐼 ∧ ∀𝑥𝐼 𝐺 𝑥)) → (𝐾‘{𝐺}) = {𝑥𝐺 𝑥})
3329, 32sseqtrrd 3942 . . . 4 (((𝑅 ∈ Ring ∧ 𝐼𝑈𝐺𝐵) ∧ (𝐺𝐼 ∧ ∀𝑥𝐼 𝐺 𝑥)) → 𝐼 ⊆ (𝐾‘{𝐺}))
34 simpl1 1193 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐼𝑈𝐺𝐵) ∧ 𝐺𝐼) → 𝑅 ∈ Ring)
35 simpl2 1194 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐼𝑈𝐺𝐵) ∧ 𝐺𝐼) → 𝐼𝑈)
36 snssi 4721 . . . . . . 7 (𝐺𝐼 → {𝐺} ⊆ 𝐼)
3736adantl 485 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐼𝑈𝐺𝐵) ∧ 𝐺𝐼) → {𝐺} ⊆ 𝐼)
38 lidldvgen.u . . . . . . 7 𝑈 = (LIdeal‘𝑅)
394, 38rspssp 20264 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐼𝑈 ∧ {𝐺} ⊆ 𝐼) → (𝐾‘{𝐺}) ⊆ 𝐼)
4034, 35, 37, 39syl3anc 1373 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐼𝑈𝐺𝐵) ∧ 𝐺𝐼) → (𝐾‘{𝐺}) ⊆ 𝐼)
4140adantrr 717 . . . 4 (((𝑅 ∈ Ring ∧ 𝐼𝑈𝐺𝐵) ∧ (𝐺𝐼 ∧ ∀𝑥𝐼 𝐺 𝑥)) → (𝐾‘{𝐺}) ⊆ 𝐼)
4233, 41eqssd 3918 . . 3 (((𝑅 ∈ Ring ∧ 𝐼𝑈𝐺𝐵) ∧ (𝐺𝐼 ∧ ∀𝑥𝐼 𝐺 𝑥)) → 𝐼 = (𝐾‘{𝐺}))
4342ex 416 . 2 ((𝑅 ∈ Ring ∧ 𝐼𝑈𝐺𝐵) → ((𝐺𝐼 ∧ ∀𝑥𝐼 𝐺 𝑥) → 𝐼 = (𝐾‘{𝐺})))
4425, 43impbid 215 1 ((𝑅 ∈ Ring ∧ 𝐼𝑈𝐺𝐵) → (𝐼 = (𝐾‘{𝐺}) ↔ (𝐺𝐼 ∧ ∀𝑥𝐼 𝐺 𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1089  wal 1541   = wceq 1543  wcel 2110  {cab 2714  wral 3061  wss 3866  {csn 4541   class class class wbr 5053  cfv 6380  Basecbs 16760  Ringcrg 19562  rcdsr 19656  LIdealclidl 20207  RSpancrsp 20208
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-cnex 10785  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-int 4860  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-om 7645  df-1st 7761  df-2nd 7762  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-er 8391  df-en 8627  df-dom 8628  df-sdom 8629  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-nn 11831  df-2 11893  df-3 11894  df-4 11895  df-5 11896  df-6 11897  df-7 11898  df-8 11899  df-sets 16717  df-slot 16735  df-ndx 16745  df-base 16761  df-ress 16785  df-plusg 16815  df-mulr 16816  df-sca 16818  df-vsca 16819  df-ip 16820  df-0g 16946  df-mgm 18114  df-sgrp 18163  df-mnd 18174  df-grp 18368  df-minusg 18369  df-sbg 18370  df-subg 18540  df-mgp 19505  df-ur 19517  df-ring 19564  df-dvdsr 19659  df-subrg 19798  df-lmod 19901  df-lss 19969  df-lsp 20009  df-sra 20209  df-rgmod 20210  df-lidl 20211  df-rsp 20212
This theorem is referenced by:  lpigen  20294  ig1prsp  25075
  Copyright terms: Public domain W3C validator