MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lidldvgen Structured version   Visualization version   GIF version

Theorem lidldvgen 19616
Description: An element generates an ideal iff it is contained in the ideal and all elements are right-divided by it. (Contributed by Stefan O'Rear, 3-Jan-2015.)
Hypotheses
Ref Expression
lidldvgen.b 𝐵 = (Base‘𝑅)
lidldvgen.u 𝑈 = (LIdeal‘𝑅)
lidldvgen.k 𝐾 = (RSpan‘𝑅)
lidldvgen.d = (∥r𝑅)
Assertion
Ref Expression
lidldvgen ((𝑅 ∈ Ring ∧ 𝐼𝑈𝐺𝐵) → (𝐼 = (𝐾‘{𝐺}) ↔ (𝐺𝐼 ∧ ∀𝑥𝐼 𝐺 𝑥)))
Distinct variable groups:   𝑥,𝑈   𝑥,𝐵   𝑥,   𝑥,𝑅   𝑥,𝐼   𝑥,𝐾   𝑥,𝐺

Proof of Theorem lidldvgen
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 simp1 1170 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐼𝑈𝐺𝐵) → 𝑅 ∈ Ring)
2 simp3 1172 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐼𝑈𝐺𝐵) → 𝐺𝐵)
32snssd 4558 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐼𝑈𝐺𝐵) → {𝐺} ⊆ 𝐵)
4 lidldvgen.k . . . . . . 7 𝐾 = (RSpan‘𝑅)
5 lidldvgen.b . . . . . . 7 𝐵 = (Base‘𝑅)
64, 5rspssid 19584 . . . . . 6 ((𝑅 ∈ Ring ∧ {𝐺} ⊆ 𝐵) → {𝐺} ⊆ (𝐾‘{𝐺}))
71, 3, 6syl2anc 579 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐼𝑈𝐺𝐵) → {𝐺} ⊆ (𝐾‘{𝐺}))
8 snssg 4534 . . . . . 6 (𝐺𝐵 → (𝐺 ∈ (𝐾‘{𝐺}) ↔ {𝐺} ⊆ (𝐾‘{𝐺})))
983ad2ant3 1169 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐼𝑈𝐺𝐵) → (𝐺 ∈ (𝐾‘{𝐺}) ↔ {𝐺} ⊆ (𝐾‘{𝐺})))
107, 9mpbird 249 . . . 4 ((𝑅 ∈ Ring ∧ 𝐼𝑈𝐺𝐵) → 𝐺 ∈ (𝐾‘{𝐺}))
11 lidldvgen.d . . . . . . . . . 10 = (∥r𝑅)
125, 4, 11rspsn 19615 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝐺𝐵) → (𝐾‘{𝐺}) = {𝑦𝐺 𝑦})
13123adant2 1165 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝐼𝑈𝐺𝐵) → (𝐾‘{𝐺}) = {𝑦𝐺 𝑦})
1413eleq2d 2892 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐼𝑈𝐺𝐵) → (𝑥 ∈ (𝐾‘{𝐺}) ↔ 𝑥 ∈ {𝑦𝐺 𝑦}))
15 vex 3417 . . . . . . . 8 𝑥 ∈ V
16 breq2 4877 . . . . . . . 8 (𝑦 = 𝑥 → (𝐺 𝑦𝐺 𝑥))
1715, 16elab 3571 . . . . . . 7 (𝑥 ∈ {𝑦𝐺 𝑦} ↔ 𝐺 𝑥)
1814, 17syl6bb 279 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐼𝑈𝐺𝐵) → (𝑥 ∈ (𝐾‘{𝐺}) ↔ 𝐺 𝑥))
1918biimpd 221 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐼𝑈𝐺𝐵) → (𝑥 ∈ (𝐾‘{𝐺}) → 𝐺 𝑥))
2019ralrimiv 3174 . . . 4 ((𝑅 ∈ Ring ∧ 𝐼𝑈𝐺𝐵) → ∀𝑥 ∈ (𝐾‘{𝐺})𝐺 𝑥)
2110, 20jca 507 . . 3 ((𝑅 ∈ Ring ∧ 𝐼𝑈𝐺𝐵) → (𝐺 ∈ (𝐾‘{𝐺}) ∧ ∀𝑥 ∈ (𝐾‘{𝐺})𝐺 𝑥))
22 eleq2 2895 . . . 4 (𝐼 = (𝐾‘{𝐺}) → (𝐺𝐼𝐺 ∈ (𝐾‘{𝐺})))
23 raleq 3350 . . . 4 (𝐼 = (𝐾‘{𝐺}) → (∀𝑥𝐼 𝐺 𝑥 ↔ ∀𝑥 ∈ (𝐾‘{𝐺})𝐺 𝑥))
2422, 23anbi12d 624 . . 3 (𝐼 = (𝐾‘{𝐺}) → ((𝐺𝐼 ∧ ∀𝑥𝐼 𝐺 𝑥) ↔ (𝐺 ∈ (𝐾‘{𝐺}) ∧ ∀𝑥 ∈ (𝐾‘{𝐺})𝐺 𝑥)))
2521, 24syl5ibrcom 239 . 2 ((𝑅 ∈ Ring ∧ 𝐼𝑈𝐺𝐵) → (𝐼 = (𝐾‘{𝐺}) → (𝐺𝐼 ∧ ∀𝑥𝐼 𝐺 𝑥)))
26 df-ral 3122 . . . . . . . 8 (∀𝑥𝐼 𝐺 𝑥 ↔ ∀𝑥(𝑥𝐼𝐺 𝑥))
27 ssab 3897 . . . . . . . 8 (𝐼 ⊆ {𝑥𝐺 𝑥} ↔ ∀𝑥(𝑥𝐼𝐺 𝑥))
2826, 27bitr4i 270 . . . . . . 7 (∀𝑥𝐼 𝐺 𝑥𝐼 ⊆ {𝑥𝐺 𝑥})
2928biimpi 208 . . . . . 6 (∀𝑥𝐼 𝐺 𝑥𝐼 ⊆ {𝑥𝐺 𝑥})
3029ad2antll 720 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐼𝑈𝐺𝐵) ∧ (𝐺𝐼 ∧ ∀𝑥𝐼 𝐺 𝑥)) → 𝐼 ⊆ {𝑥𝐺 𝑥})
315, 4, 11rspsn 19615 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐺𝐵) → (𝐾‘{𝐺}) = {𝑥𝐺 𝑥})
32313adant2 1165 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐼𝑈𝐺𝐵) → (𝐾‘{𝐺}) = {𝑥𝐺 𝑥})
3332adantr 474 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐼𝑈𝐺𝐵) ∧ (𝐺𝐼 ∧ ∀𝑥𝐼 𝐺 𝑥)) → (𝐾‘{𝐺}) = {𝑥𝐺 𝑥})
3430, 33sseqtr4d 3867 . . . 4 (((𝑅 ∈ Ring ∧ 𝐼𝑈𝐺𝐵) ∧ (𝐺𝐼 ∧ ∀𝑥𝐼 𝐺 𝑥)) → 𝐼 ⊆ (𝐾‘{𝐺}))
35 simpl1 1246 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐼𝑈𝐺𝐵) ∧ 𝐺𝐼) → 𝑅 ∈ Ring)
36 simpl2 1248 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐼𝑈𝐺𝐵) ∧ 𝐺𝐼) → 𝐼𝑈)
37 snssi 4557 . . . . . . 7 (𝐺𝐼 → {𝐺} ⊆ 𝐼)
3837adantl 475 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐼𝑈𝐺𝐵) ∧ 𝐺𝐼) → {𝐺} ⊆ 𝐼)
39 lidldvgen.u . . . . . . 7 𝑈 = (LIdeal‘𝑅)
404, 39rspssp 19587 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐼𝑈 ∧ {𝐺} ⊆ 𝐼) → (𝐾‘{𝐺}) ⊆ 𝐼)
4135, 36, 38, 40syl3anc 1494 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐼𝑈𝐺𝐵) ∧ 𝐺𝐼) → (𝐾‘{𝐺}) ⊆ 𝐼)
4241adantrr 708 . . . 4 (((𝑅 ∈ Ring ∧ 𝐼𝑈𝐺𝐵) ∧ (𝐺𝐼 ∧ ∀𝑥𝐼 𝐺 𝑥)) → (𝐾‘{𝐺}) ⊆ 𝐼)
4334, 42eqssd 3844 . . 3 (((𝑅 ∈ Ring ∧ 𝐼𝑈𝐺𝐵) ∧ (𝐺𝐼 ∧ ∀𝑥𝐼 𝐺 𝑥)) → 𝐼 = (𝐾‘{𝐺}))
4443ex 403 . 2 ((𝑅 ∈ Ring ∧ 𝐼𝑈𝐺𝐵) → ((𝐺𝐼 ∧ ∀𝑥𝐼 𝐺 𝑥) → 𝐼 = (𝐾‘{𝐺})))
4525, 44impbid 204 1 ((𝑅 ∈ Ring ∧ 𝐼𝑈𝐺𝐵) → (𝐼 = (𝐾‘{𝐺}) ↔ (𝐺𝐼 ∧ ∀𝑥𝐼 𝐺 𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386  w3a 1111  wal 1654   = wceq 1656  wcel 2164  {cab 2811  wral 3117  wss 3798  {csn 4397   class class class wbr 4873  cfv 6123  Basecbs 16222  Ringcrg 18901  rcdsr 18992  LIdealclidl 19531  RSpancrsp 19532
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-8 2166  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-rep 4994  ax-sep 5005  ax-nul 5013  ax-pow 5065  ax-pr 5127  ax-un 7209  ax-cnex 10308  ax-resscn 10309  ax-1cn 10310  ax-icn 10311  ax-addcl 10312  ax-addrcl 10313  ax-mulcl 10314  ax-mulrcl 10315  ax-mulcom 10316  ax-addass 10317  ax-mulass 10318  ax-distr 10319  ax-i2m1 10320  ax-1ne0 10321  ax-1rid 10322  ax-rnegex 10323  ax-rrecex 10324  ax-cnre 10325  ax-pre-lttri 10326  ax-pre-lttrn 10327  ax-pre-ltadd 10328  ax-pre-mulgt0 10329
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3or 1112  df-3an 1113  df-tru 1660  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rmo 3125  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4145  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-tp 4402  df-op 4404  df-uni 4659  df-int 4698  df-iun 4742  df-br 4874  df-opab 4936  df-mpt 4953  df-tr 4976  df-id 5250  df-eprel 5255  df-po 5263  df-so 5264  df-fr 5301  df-we 5303  df-xp 5348  df-rel 5349  df-cnv 5350  df-co 5351  df-dm 5352  df-rn 5353  df-res 5354  df-ima 5355  df-pred 5920  df-ord 5966  df-on 5967  df-lim 5968  df-suc 5969  df-iota 6086  df-fun 6125  df-fn 6126  df-f 6127  df-f1 6128  df-fo 6129  df-f1o 6130  df-fv 6131  df-riota 6866  df-ov 6908  df-oprab 6909  df-mpt2 6910  df-om 7327  df-1st 7428  df-2nd 7429  df-wrecs 7672  df-recs 7734  df-rdg 7772  df-er 8009  df-en 8223  df-dom 8224  df-sdom 8225  df-pnf 10393  df-mnf 10394  df-xr 10395  df-ltxr 10396  df-le 10397  df-sub 10587  df-neg 10588  df-nn 11351  df-2 11414  df-3 11415  df-4 11416  df-5 11417  df-6 11418  df-7 11419  df-8 11420  df-ndx 16225  df-slot 16226  df-base 16228  df-sets 16229  df-ress 16230  df-plusg 16318  df-mulr 16319  df-sca 16321  df-vsca 16322  df-ip 16323  df-0g 16455  df-mgm 17595  df-sgrp 17637  df-mnd 17648  df-grp 17779  df-minusg 17780  df-sbg 17781  df-subg 17942  df-mgp 18844  df-ur 18856  df-ring 18903  df-dvdsr 18995  df-subrg 19134  df-lmod 19221  df-lss 19289  df-lsp 19331  df-sra 19533  df-rgmod 19534  df-lidl 19535  df-rsp 19536
This theorem is referenced by:  lpigen  19617  ig1prsp  24336
  Copyright terms: Public domain W3C validator