MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lidldvgen Structured version   Visualization version   GIF version

Theorem lidldvgen 21259
Description: An element generates an ideal iff it is contained in the ideal and all elements are right-divided by it. (Contributed by Stefan O'Rear, 3-Jan-2015.)
Hypotheses
Ref Expression
lidldvgen.b 𝐵 = (Base‘𝑅)
lidldvgen.u 𝑈 = (LIdeal‘𝑅)
lidldvgen.k 𝐾 = (RSpan‘𝑅)
lidldvgen.d = (∥r𝑅)
Assertion
Ref Expression
lidldvgen ((𝑅 ∈ Ring ∧ 𝐼𝑈𝐺𝐵) → (𝐼 = (𝐾‘{𝐺}) ↔ (𝐺𝐼 ∧ ∀𝑥𝐼 𝐺 𝑥)))
Distinct variable groups:   𝑥,𝑈   𝑥,𝐵   𝑥,   𝑥,𝑅   𝑥,𝐼   𝑥,𝐾   𝑥,𝐺

Proof of Theorem lidldvgen
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 simp1 1136 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐼𝑈𝐺𝐵) → 𝑅 ∈ Ring)
2 simp3 1138 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐼𝑈𝐺𝐵) → 𝐺𝐵)
32snssd 4763 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐼𝑈𝐺𝐵) → {𝐺} ⊆ 𝐵)
4 lidldvgen.k . . . . . . 7 𝐾 = (RSpan‘𝑅)
5 lidldvgen.b . . . . . . 7 𝐵 = (Base‘𝑅)
64, 5rspssid 21161 . . . . . 6 ((𝑅 ∈ Ring ∧ {𝐺} ⊆ 𝐵) → {𝐺} ⊆ (𝐾‘{𝐺}))
71, 3, 6syl2anc 584 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐼𝑈𝐺𝐵) → {𝐺} ⊆ (𝐾‘{𝐺}))
8 snssg 4737 . . . . . 6 (𝐺𝐵 → (𝐺 ∈ (𝐾‘{𝐺}) ↔ {𝐺} ⊆ (𝐾‘{𝐺})))
983ad2ant3 1135 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐼𝑈𝐺𝐵) → (𝐺 ∈ (𝐾‘{𝐺}) ↔ {𝐺} ⊆ (𝐾‘{𝐺})))
107, 9mpbird 257 . . . 4 ((𝑅 ∈ Ring ∧ 𝐼𝑈𝐺𝐵) → 𝐺 ∈ (𝐾‘{𝐺}))
11 lidldvgen.d . . . . . . . . . 10 = (∥r𝑅)
125, 4, 11rspsn 21258 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝐺𝐵) → (𝐾‘{𝐺}) = {𝑦𝐺 𝑦})
13123adant2 1131 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝐼𝑈𝐺𝐵) → (𝐾‘{𝐺}) = {𝑦𝐺 𝑦})
1413eleq2d 2814 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐼𝑈𝐺𝐵) → (𝑥 ∈ (𝐾‘{𝐺}) ↔ 𝑥 ∈ {𝑦𝐺 𝑦}))
15 vex 3442 . . . . . . . 8 𝑥 ∈ V
16 breq2 5099 . . . . . . . 8 (𝑦 = 𝑥 → (𝐺 𝑦𝐺 𝑥))
1715, 16elab 3637 . . . . . . 7 (𝑥 ∈ {𝑦𝐺 𝑦} ↔ 𝐺 𝑥)
1814, 17bitrdi 287 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐼𝑈𝐺𝐵) → (𝑥 ∈ (𝐾‘{𝐺}) ↔ 𝐺 𝑥))
1918biimpd 229 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐼𝑈𝐺𝐵) → (𝑥 ∈ (𝐾‘{𝐺}) → 𝐺 𝑥))
2019ralrimiv 3120 . . . 4 ((𝑅 ∈ Ring ∧ 𝐼𝑈𝐺𝐵) → ∀𝑥 ∈ (𝐾‘{𝐺})𝐺 𝑥)
2110, 20jca 511 . . 3 ((𝑅 ∈ Ring ∧ 𝐼𝑈𝐺𝐵) → (𝐺 ∈ (𝐾‘{𝐺}) ∧ ∀𝑥 ∈ (𝐾‘{𝐺})𝐺 𝑥))
22 eleq2 2817 . . . 4 (𝐼 = (𝐾‘{𝐺}) → (𝐺𝐼𝐺 ∈ (𝐾‘{𝐺})))
23 raleq 3287 . . . 4 (𝐼 = (𝐾‘{𝐺}) → (∀𝑥𝐼 𝐺 𝑥 ↔ ∀𝑥 ∈ (𝐾‘{𝐺})𝐺 𝑥))
2422, 23anbi12d 632 . . 3 (𝐼 = (𝐾‘{𝐺}) → ((𝐺𝐼 ∧ ∀𝑥𝐼 𝐺 𝑥) ↔ (𝐺 ∈ (𝐾‘{𝐺}) ∧ ∀𝑥 ∈ (𝐾‘{𝐺})𝐺 𝑥)))
2521, 24syl5ibrcom 247 . 2 ((𝑅 ∈ Ring ∧ 𝐼𝑈𝐺𝐵) → (𝐼 = (𝐾‘{𝐺}) → (𝐺𝐼 ∧ ∀𝑥𝐼 𝐺 𝑥)))
26 df-ral 3045 . . . . . . 7 (∀𝑥𝐼 𝐺 𝑥 ↔ ∀𝑥(𝑥𝐼𝐺 𝑥))
27 ssab 4018 . . . . . . 7 (𝐼 ⊆ {𝑥𝐺 𝑥} ↔ ∀𝑥(𝑥𝐼𝐺 𝑥))
2826, 27sylbb2 238 . . . . . 6 (∀𝑥𝐼 𝐺 𝑥𝐼 ⊆ {𝑥𝐺 𝑥})
2928ad2antll 729 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐼𝑈𝐺𝐵) ∧ (𝐺𝐼 ∧ ∀𝑥𝐼 𝐺 𝑥)) → 𝐼 ⊆ {𝑥𝐺 𝑥})
305, 4, 11rspsn 21258 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐺𝐵) → (𝐾‘{𝐺}) = {𝑥𝐺 𝑥})
31303adant2 1131 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐼𝑈𝐺𝐵) → (𝐾‘{𝐺}) = {𝑥𝐺 𝑥})
3231adantr 480 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐼𝑈𝐺𝐵) ∧ (𝐺𝐼 ∧ ∀𝑥𝐼 𝐺 𝑥)) → (𝐾‘{𝐺}) = {𝑥𝐺 𝑥})
3329, 32sseqtrrd 3975 . . . 4 (((𝑅 ∈ Ring ∧ 𝐼𝑈𝐺𝐵) ∧ (𝐺𝐼 ∧ ∀𝑥𝐼 𝐺 𝑥)) → 𝐼 ⊆ (𝐾‘{𝐺}))
34 simpl1 1192 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐼𝑈𝐺𝐵) ∧ 𝐺𝐼) → 𝑅 ∈ Ring)
35 simpl2 1193 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐼𝑈𝐺𝐵) ∧ 𝐺𝐼) → 𝐼𝑈)
36 snssi 4762 . . . . . . 7 (𝐺𝐼 → {𝐺} ⊆ 𝐼)
3736adantl 481 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐼𝑈𝐺𝐵) ∧ 𝐺𝐼) → {𝐺} ⊆ 𝐼)
38 lidldvgen.u . . . . . . 7 𝑈 = (LIdeal‘𝑅)
394, 38rspssp 21164 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐼𝑈 ∧ {𝐺} ⊆ 𝐼) → (𝐾‘{𝐺}) ⊆ 𝐼)
4034, 35, 37, 39syl3anc 1373 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐼𝑈𝐺𝐵) ∧ 𝐺𝐼) → (𝐾‘{𝐺}) ⊆ 𝐼)
4140adantrr 717 . . . 4 (((𝑅 ∈ Ring ∧ 𝐼𝑈𝐺𝐵) ∧ (𝐺𝐼 ∧ ∀𝑥𝐼 𝐺 𝑥)) → (𝐾‘{𝐺}) ⊆ 𝐼)
4233, 41eqssd 3955 . . 3 (((𝑅 ∈ Ring ∧ 𝐼𝑈𝐺𝐵) ∧ (𝐺𝐼 ∧ ∀𝑥𝐼 𝐺 𝑥)) → 𝐼 = (𝐾‘{𝐺}))
4342ex 412 . 2 ((𝑅 ∈ Ring ∧ 𝐼𝑈𝐺𝐵) → ((𝐺𝐼 ∧ ∀𝑥𝐼 𝐺 𝑥) → 𝐼 = (𝐾‘{𝐺})))
4425, 43impbid 212 1 ((𝑅 ∈ Ring ∧ 𝐼𝑈𝐺𝐵) → (𝐼 = (𝐾‘{𝐺}) ↔ (𝐺𝐼 ∧ ∀𝑥𝐼 𝐺 𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086  wal 1538   = wceq 1540  wcel 2109  {cab 2707  wral 3044  wss 3905  {csn 4579   class class class wbr 5095  cfv 6486  Basecbs 17138  Ringcrg 20136  rcdsr 20257  LIdealclidl 21131  RSpancrsp 21132
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-nn 12147  df-2 12209  df-3 12210  df-4 12211  df-5 12212  df-6 12213  df-7 12214  df-8 12215  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17139  df-ress 17160  df-plusg 17192  df-mulr 17193  df-sca 17195  df-vsca 17196  df-ip 17197  df-0g 17363  df-mgm 18532  df-sgrp 18611  df-mnd 18627  df-grp 18833  df-minusg 18834  df-sbg 18835  df-subg 19020  df-mgp 20044  df-ur 20085  df-ring 20138  df-dvdsr 20260  df-subrg 20473  df-lmod 20783  df-lss 20853  df-lsp 20893  df-sra 21095  df-rgmod 21096  df-lidl 21133  df-rsp 21134
This theorem is referenced by:  lpigen  21260  ig1prsp  26102
  Copyright terms: Public domain W3C validator