MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wdomd Structured version   Visualization version   GIF version

Theorem wdomd 9462
Description: Deduce weak dominance from an implicit onto function. (Contributed by Stefan O'Rear, 13-Feb-2015.)
Hypotheses
Ref Expression
wdomd.b (𝜑𝐵𝑊)
wdomd.o ((𝜑𝑥𝐴) → ∃𝑦𝐵 𝑥 = 𝑋)
Assertion
Ref Expression
wdomd (𝜑𝐴* 𝐵)
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝜑,𝑥,𝑦   𝑥,𝑋
Allowed substitution hints:   𝑊(𝑥,𝑦)   𝑋(𝑦)

Proof of Theorem wdomd
StepHypRef Expression
1 wdomd.b . . . 4 (𝜑𝐵𝑊)
2 abrexexg 7888 . . . 4 (𝐵𝑊 → {𝑥 ∣ ∃𝑦𝐵 𝑥 = 𝑋} ∈ V)
31, 2syl 17 . . 3 (𝜑 → {𝑥 ∣ ∃𝑦𝐵 𝑥 = 𝑋} ∈ V)
4 wdomd.o . . . . . 6 ((𝜑𝑥𝐴) → ∃𝑦𝐵 𝑥 = 𝑋)
54ex 412 . . . . 5 (𝜑 → (𝑥𝐴 → ∃𝑦𝐵 𝑥 = 𝑋))
65alrimiv 1928 . . . 4 (𝜑 → ∀𝑥(𝑥𝐴 → ∃𝑦𝐵 𝑥 = 𝑋))
7 ssab 4010 . . . 4 (𝐴 ⊆ {𝑥 ∣ ∃𝑦𝐵 𝑥 = 𝑋} ↔ ∀𝑥(𝑥𝐴 → ∃𝑦𝐵 𝑥 = 𝑋))
86, 7sylibr 234 . . 3 (𝜑𝐴 ⊆ {𝑥 ∣ ∃𝑦𝐵 𝑥 = 𝑋})
93, 8ssexd 5257 . 2 (𝜑𝐴 ∈ V)
109, 1, 4wdom2d 9461 1 (𝜑𝐴* 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wal 1539   = wceq 1541  wcel 2111  {cab 2709  wrex 3056  Vcvv 3436  wss 3897   class class class wbr 5086  * cwdom 9445
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-br 5087  df-opab 5149  df-mpt 5168  df-id 5506  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-en 8865  df-dom 8866  df-sdom 8867  df-wdom 9446
This theorem is referenced by:  hsmexlem2  10313  unxpwdom3  43128
  Copyright terms: Public domain W3C validator