| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > wdomd | Structured version Visualization version GIF version | ||
| Description: Deduce weak dominance from an implicit onto function. (Contributed by Stefan O'Rear, 13-Feb-2015.) |
| Ref | Expression |
|---|---|
| wdomd.b | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
| wdomd.o | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ∃𝑦 ∈ 𝐵 𝑥 = 𝑋) |
| Ref | Expression |
|---|---|
| wdomd | ⊢ (𝜑 → 𝐴 ≼* 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wdomd.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
| 2 | abrexexg 7942 | . . . 4 ⊢ (𝐵 ∈ 𝑊 → {𝑥 ∣ ∃𝑦 ∈ 𝐵 𝑥 = 𝑋} ∈ V) | |
| 3 | 1, 2 | syl 17 | . . 3 ⊢ (𝜑 → {𝑥 ∣ ∃𝑦 ∈ 𝐵 𝑥 = 𝑋} ∈ V) |
| 4 | wdomd.o | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ∃𝑦 ∈ 𝐵 𝑥 = 𝑋) | |
| 5 | 4 | ex 412 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → ∃𝑦 ∈ 𝐵 𝑥 = 𝑋)) |
| 6 | 5 | alrimiv 1927 | . . . 4 ⊢ (𝜑 → ∀𝑥(𝑥 ∈ 𝐴 → ∃𝑦 ∈ 𝐵 𝑥 = 𝑋)) |
| 7 | ssab 4030 | . . . 4 ⊢ (𝐴 ⊆ {𝑥 ∣ ∃𝑦 ∈ 𝐵 𝑥 = 𝑋} ↔ ∀𝑥(𝑥 ∈ 𝐴 → ∃𝑦 ∈ 𝐵 𝑥 = 𝑋)) | |
| 8 | 6, 7 | sylibr 234 | . . 3 ⊢ (𝜑 → 𝐴 ⊆ {𝑥 ∣ ∃𝑦 ∈ 𝐵 𝑥 = 𝑋}) |
| 9 | 3, 8 | ssexd 5282 | . 2 ⊢ (𝜑 → 𝐴 ∈ V) |
| 10 | 9, 1, 4 | wdom2d 9540 | 1 ⊢ (𝜑 → 𝐴 ≼* 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∀wal 1538 = wceq 1540 ∈ wcel 2109 {cab 2708 ∃wrex 3054 Vcvv 3450 ⊆ wss 3917 class class class wbr 5110 ≼* cwdom 9524 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-en 8922 df-dom 8923 df-sdom 8924 df-wdom 9525 |
| This theorem is referenced by: hsmexlem2 10387 unxpwdom3 43091 |
| Copyright terms: Public domain | W3C validator |