MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wdomd Structured version   Visualization version   GIF version

Theorem wdomd 9624
Description: Deduce weak dominance from an implicit onto function. (Contributed by Stefan O'Rear, 13-Feb-2015.)
Hypotheses
Ref Expression
wdomd.b (𝜑𝐵𝑊)
wdomd.o ((𝜑𝑥𝐴) → ∃𝑦𝐵 𝑥 = 𝑋)
Assertion
Ref Expression
wdomd (𝜑𝐴* 𝐵)
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝜑,𝑥,𝑦   𝑥,𝑋
Allowed substitution hints:   𝑊(𝑥,𝑦)   𝑋(𝑦)

Proof of Theorem wdomd
StepHypRef Expression
1 wdomd.b . . . 4 (𝜑𝐵𝑊)
2 abrexexg 7974 . . . 4 (𝐵𝑊 → {𝑥 ∣ ∃𝑦𝐵 𝑥 = 𝑋} ∈ V)
31, 2syl 17 . . 3 (𝜑 → {𝑥 ∣ ∃𝑦𝐵 𝑥 = 𝑋} ∈ V)
4 wdomd.o . . . . . 6 ((𝜑𝑥𝐴) → ∃𝑦𝐵 𝑥 = 𝑋)
54ex 411 . . . . 5 (𝜑 → (𝑥𝐴 → ∃𝑦𝐵 𝑥 = 𝑋))
65alrimiv 1923 . . . 4 (𝜑 → ∀𝑥(𝑥𝐴 → ∃𝑦𝐵 𝑥 = 𝑋))
7 ssab 4058 . . . 4 (𝐴 ⊆ {𝑥 ∣ ∃𝑦𝐵 𝑥 = 𝑋} ↔ ∀𝑥(𝑥𝐴 → ∃𝑦𝐵 𝑥 = 𝑋))
86, 7sylibr 233 . . 3 (𝜑𝐴 ⊆ {𝑥 ∣ ∃𝑦𝐵 𝑥 = 𝑋})
93, 8ssexd 5329 . 2 (𝜑𝐴 ∈ V)
109, 1, 4wdom2d 9623 1 (𝜑𝐴* 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  wal 1532   = wceq 1534  wcel 2099  {cab 2703  wrex 3060  Vcvv 3462  wss 3947   class class class wbr 5153  * cwdom 9607
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5290  ax-sep 5304  ax-nul 5311  ax-pow 5369  ax-pr 5433  ax-un 7746
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-ral 3052  df-rex 3061  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4914  df-br 5154  df-opab 5216  df-mpt 5237  df-id 5580  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-iota 6506  df-fun 6556  df-fn 6557  df-f 6558  df-f1 6559  df-fo 6560  df-f1o 6561  df-fv 6562  df-en 8975  df-dom 8976  df-sdom 8977  df-wdom 9608
This theorem is referenced by:  hsmexlem2  10470  unxpwdom3  42756
  Copyright terms: Public domain W3C validator