![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > wdomd | Structured version Visualization version GIF version |
Description: Deduce weak dominance from an implicit onto function. (Contributed by Stefan O'Rear, 13-Feb-2015.) |
Ref | Expression |
---|---|
wdomd.b | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
wdomd.o | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ∃𝑦 ∈ 𝐵 𝑥 = 𝑋) |
Ref | Expression |
---|---|
wdomd | ⊢ (𝜑 → 𝐴 ≼* 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wdomd.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
2 | abrexexg 7897 | . . . 4 ⊢ (𝐵 ∈ 𝑊 → {𝑥 ∣ ∃𝑦 ∈ 𝐵 𝑥 = 𝑋} ∈ V) | |
3 | 1, 2 | syl 17 | . . 3 ⊢ (𝜑 → {𝑥 ∣ ∃𝑦 ∈ 𝐵 𝑥 = 𝑋} ∈ V) |
4 | wdomd.o | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ∃𝑦 ∈ 𝐵 𝑥 = 𝑋) | |
5 | 4 | ex 414 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → ∃𝑦 ∈ 𝐵 𝑥 = 𝑋)) |
6 | 5 | alrimiv 1931 | . . . 4 ⊢ (𝜑 → ∀𝑥(𝑥 ∈ 𝐴 → ∃𝑦 ∈ 𝐵 𝑥 = 𝑋)) |
7 | ssab 4022 | . . . 4 ⊢ (𝐴 ⊆ {𝑥 ∣ ∃𝑦 ∈ 𝐵 𝑥 = 𝑋} ↔ ∀𝑥(𝑥 ∈ 𝐴 → ∃𝑦 ∈ 𝐵 𝑥 = 𝑋)) | |
8 | 6, 7 | sylibr 233 | . . 3 ⊢ (𝜑 → 𝐴 ⊆ {𝑥 ∣ ∃𝑦 ∈ 𝐵 𝑥 = 𝑋}) |
9 | 3, 8 | ssexd 5285 | . 2 ⊢ (𝜑 → 𝐴 ∈ V) |
10 | 9, 1, 4 | wdom2d 9524 | 1 ⊢ (𝜑 → 𝐴 ≼* 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∀wal 1540 = wceq 1542 ∈ wcel 2107 {cab 2710 ∃wrex 3070 Vcvv 3447 ⊆ wss 3914 class class class wbr 5109 ≼* cwdom 9508 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5246 ax-sep 5260 ax-nul 5267 ax-pow 5324 ax-pr 5388 ax-un 7676 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3407 df-v 3449 df-sbc 3744 df-csb 3860 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4287 df-if 4491 df-pw 4566 df-sn 4591 df-pr 4593 df-op 4597 df-uni 4870 df-br 5110 df-opab 5172 df-mpt 5193 df-id 5535 df-xp 5643 df-rel 5644 df-cnv 5645 df-co 5646 df-dm 5647 df-rn 5648 df-res 5649 df-ima 5650 df-iota 6452 df-fun 6502 df-fn 6503 df-f 6504 df-f1 6505 df-fo 6506 df-f1o 6507 df-fv 6508 df-en 8890 df-dom 8891 df-sdom 8892 df-wdom 9509 |
This theorem is referenced by: hsmexlem2 10371 unxpwdom3 41469 |
Copyright terms: Public domain | W3C validator |