MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wdomd Structured version   Visualization version   GIF version

Theorem wdomd 9510
Description: Deduce weak dominance from an implicit onto function. (Contributed by Stefan O'Rear, 13-Feb-2015.)
Hypotheses
Ref Expression
wdomd.b (𝜑𝐵𝑊)
wdomd.o ((𝜑𝑥𝐴) → ∃𝑦𝐵 𝑥 = 𝑋)
Assertion
Ref Expression
wdomd (𝜑𝐴* 𝐵)
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝜑,𝑥,𝑦   𝑥,𝑋
Allowed substitution hints:   𝑊(𝑥,𝑦)   𝑋(𝑦)

Proof of Theorem wdomd
StepHypRef Expression
1 wdomd.b . . . 4 (𝜑𝐵𝑊)
2 abrexexg 7919 . . . 4 (𝐵𝑊 → {𝑥 ∣ ∃𝑦𝐵 𝑥 = 𝑋} ∈ V)
31, 2syl 17 . . 3 (𝜑 → {𝑥 ∣ ∃𝑦𝐵 𝑥 = 𝑋} ∈ V)
4 wdomd.o . . . . . 6 ((𝜑𝑥𝐴) → ∃𝑦𝐵 𝑥 = 𝑋)
54ex 412 . . . . 5 (𝜑 → (𝑥𝐴 → ∃𝑦𝐵 𝑥 = 𝑋))
65alrimiv 1927 . . . 4 (𝜑 → ∀𝑥(𝑥𝐴 → ∃𝑦𝐵 𝑥 = 𝑋))
7 ssab 4024 . . . 4 (𝐴 ⊆ {𝑥 ∣ ∃𝑦𝐵 𝑥 = 𝑋} ↔ ∀𝑥(𝑥𝐴 → ∃𝑦𝐵 𝑥 = 𝑋))
86, 7sylibr 234 . . 3 (𝜑𝐴 ⊆ {𝑥 ∣ ∃𝑦𝐵 𝑥 = 𝑋})
93, 8ssexd 5274 . 2 (𝜑𝐴 ∈ V)
109, 1, 4wdom2d 9509 1 (𝜑𝐴* 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wal 1538   = wceq 1540  wcel 2109  {cab 2707  wrex 3053  Vcvv 3444  wss 3911   class class class wbr 5102  * cwdom 9493
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-en 8896  df-dom 8897  df-sdom 8898  df-wdom 9494
This theorem is referenced by:  hsmexlem2  10356  unxpwdom3  43057
  Copyright terms: Public domain W3C validator