![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > wdomd | Structured version Visualization version GIF version |
Description: Deduce weak dominance from an implicit onto function. (Contributed by Stefan O'Rear, 13-Feb-2015.) |
Ref | Expression |
---|---|
wdomd.b | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
wdomd.o | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ∃𝑦 ∈ 𝐵 𝑥 = 𝑋) |
Ref | Expression |
---|---|
wdomd | ⊢ (𝜑 → 𝐴 ≼* 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wdomd.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
2 | abrexexg 7468 | . . . 4 ⊢ (𝐵 ∈ 𝑊 → {𝑥 ∣ ∃𝑦 ∈ 𝐵 𝑥 = 𝑋} ∈ V) | |
3 | 1, 2 | syl 17 | . . 3 ⊢ (𝜑 → {𝑥 ∣ ∃𝑦 ∈ 𝐵 𝑥 = 𝑋} ∈ V) |
4 | wdomd.o | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ∃𝑦 ∈ 𝐵 𝑥 = 𝑋) | |
5 | 4 | ex 405 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → ∃𝑦 ∈ 𝐵 𝑥 = 𝑋)) |
6 | 5 | alrimiv 1886 | . . . 4 ⊢ (𝜑 → ∀𝑥(𝑥 ∈ 𝐴 → ∃𝑦 ∈ 𝐵 𝑥 = 𝑋)) |
7 | ssab 3927 | . . . 4 ⊢ (𝐴 ⊆ {𝑥 ∣ ∃𝑦 ∈ 𝐵 𝑥 = 𝑋} ↔ ∀𝑥(𝑥 ∈ 𝐴 → ∃𝑦 ∈ 𝐵 𝑥 = 𝑋)) | |
8 | 6, 7 | sylibr 226 | . . 3 ⊢ (𝜑 → 𝐴 ⊆ {𝑥 ∣ ∃𝑦 ∈ 𝐵 𝑥 = 𝑋}) |
9 | 3, 8 | ssexd 5078 | . 2 ⊢ (𝜑 → 𝐴 ∈ V) |
10 | 9, 1, 4 | wdom2d 8831 | 1 ⊢ (𝜑 → 𝐴 ≼* 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 387 ∀wal 1505 = wceq 1507 ∈ wcel 2048 {cab 2753 ∃wrex 3083 Vcvv 3409 ⊆ wss 3825 class class class wbr 4923 ≼* cwdom 8808 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1964 ax-8 2050 ax-9 2057 ax-10 2077 ax-11 2091 ax-12 2104 ax-13 2299 ax-ext 2745 ax-rep 5043 ax-sep 5054 ax-nul 5061 ax-pow 5113 ax-pr 5180 ax-un 7273 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2014 df-mo 2544 df-eu 2580 df-clab 2754 df-cleq 2765 df-clel 2840 df-nfc 2912 df-ne 2962 df-ral 3087 df-rex 3088 df-reu 3089 df-rab 3091 df-v 3411 df-sbc 3678 df-csb 3783 df-dif 3828 df-un 3830 df-in 3832 df-ss 3839 df-nul 4174 df-if 4345 df-pw 4418 df-sn 4436 df-pr 4438 df-op 4442 df-uni 4707 df-iun 4788 df-br 4924 df-opab 4986 df-mpt 5003 df-id 5305 df-xp 5406 df-rel 5407 df-cnv 5408 df-co 5409 df-dm 5410 df-rn 5411 df-res 5412 df-ima 5413 df-iota 6146 df-fun 6184 df-fn 6185 df-f 6186 df-f1 6187 df-fo 6188 df-f1o 6189 df-fv 6190 df-er 8081 df-en 8299 df-dom 8300 df-sdom 8301 df-wdom 8810 |
This theorem is referenced by: hsmexlem2 9639 unxpwdom3 39036 |
Copyright terms: Public domain | W3C validator |