| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > wdomd | Structured version Visualization version GIF version | ||
| Description: Deduce weak dominance from an implicit onto function. (Contributed by Stefan O'Rear, 13-Feb-2015.) |
| Ref | Expression |
|---|---|
| wdomd.b | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
| wdomd.o | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ∃𝑦 ∈ 𝐵 𝑥 = 𝑋) |
| Ref | Expression |
|---|---|
| wdomd | ⊢ (𝜑 → 𝐴 ≼* 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wdomd.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
| 2 | abrexexg 7919 | . . . 4 ⊢ (𝐵 ∈ 𝑊 → {𝑥 ∣ ∃𝑦 ∈ 𝐵 𝑥 = 𝑋} ∈ V) | |
| 3 | 1, 2 | syl 17 | . . 3 ⊢ (𝜑 → {𝑥 ∣ ∃𝑦 ∈ 𝐵 𝑥 = 𝑋} ∈ V) |
| 4 | wdomd.o | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ∃𝑦 ∈ 𝐵 𝑥 = 𝑋) | |
| 5 | 4 | ex 412 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → ∃𝑦 ∈ 𝐵 𝑥 = 𝑋)) |
| 6 | 5 | alrimiv 1927 | . . . 4 ⊢ (𝜑 → ∀𝑥(𝑥 ∈ 𝐴 → ∃𝑦 ∈ 𝐵 𝑥 = 𝑋)) |
| 7 | ssab 4024 | . . . 4 ⊢ (𝐴 ⊆ {𝑥 ∣ ∃𝑦 ∈ 𝐵 𝑥 = 𝑋} ↔ ∀𝑥(𝑥 ∈ 𝐴 → ∃𝑦 ∈ 𝐵 𝑥 = 𝑋)) | |
| 8 | 6, 7 | sylibr 234 | . . 3 ⊢ (𝜑 → 𝐴 ⊆ {𝑥 ∣ ∃𝑦 ∈ 𝐵 𝑥 = 𝑋}) |
| 9 | 3, 8 | ssexd 5274 | . 2 ⊢ (𝜑 → 𝐴 ∈ V) |
| 10 | 9, 1, 4 | wdom2d 9509 | 1 ⊢ (𝜑 → 𝐴 ≼* 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∀wal 1538 = wceq 1540 ∈ wcel 2109 {cab 2707 ∃wrex 3053 Vcvv 3444 ⊆ wss 3911 class class class wbr 5102 ≼* cwdom 9493 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-en 8896 df-dom 8897 df-sdom 8898 df-wdom 9494 |
| This theorem is referenced by: hsmexlem2 10356 unxpwdom3 43057 |
| Copyright terms: Public domain | W3C validator |