MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ixpiunwdom Structured version   Visualization version   GIF version

Theorem ixpiunwdom 9349
Description: Describe an onto function from the indexed cartesian product to the indexed union. Together with ixpssmapg 8716 this shows that 𝑥𝐴𝐵 and X𝑥𝐴𝐵 have closely linked cardinalities. (Contributed by Mario Carneiro, 27-Aug-2015.)
Assertion
Ref Expression
ixpiunwdom ((𝐴𝑉 𝑥𝐴 𝐵𝑊X𝑥𝐴 𝐵 ≠ ∅) → 𝑥𝐴 𝐵* (X𝑥𝐴 𝐵 × 𝐴))
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝐵(𝑥)   𝑉(𝑥)   𝑊(𝑥)

Proof of Theorem ixpiunwdom
Dummy variables 𝑓 𝑔 𝑘 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 3436 . . . . . . . . . 10 𝑓 ∈ V
21elixp 8692 . . . . . . . . 9 (𝑓X𝑥𝐴 𝐵 ↔ (𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐵))
32simprbi 497 . . . . . . . 8 (𝑓X𝑥𝐴 𝐵 → ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐵)
4 ssiun2 4977 . . . . . . . . . 10 (𝑥𝐴𝐵 𝑥𝐴 𝐵)
54sseld 3920 . . . . . . . . 9 (𝑥𝐴 → ((𝑓𝑥) ∈ 𝐵 → (𝑓𝑥) ∈ 𝑥𝐴 𝐵))
65ralimia 3085 . . . . . . . 8 (∀𝑥𝐴 (𝑓𝑥) ∈ 𝐵 → ∀𝑥𝐴 (𝑓𝑥) ∈ 𝑥𝐴 𝐵)
73, 6syl 17 . . . . . . 7 (𝑓X𝑥𝐴 𝐵 → ∀𝑥𝐴 (𝑓𝑥) ∈ 𝑥𝐴 𝐵)
8 nfv 1917 . . . . . . . 8 𝑦(𝑓𝑥) ∈ 𝑥𝐴 𝐵
9 nfiu1 4958 . . . . . . . . 9 𝑥 𝑥𝐴 𝐵
109nfel2 2925 . . . . . . . 8 𝑥(𝑓𝑦) ∈ 𝑥𝐴 𝐵
11 fveq2 6774 . . . . . . . . 9 (𝑥 = 𝑦 → (𝑓𝑥) = (𝑓𝑦))
1211eleq1d 2823 . . . . . . . 8 (𝑥 = 𝑦 → ((𝑓𝑥) ∈ 𝑥𝐴 𝐵 ↔ (𝑓𝑦) ∈ 𝑥𝐴 𝐵))
138, 10, 12cbvralw 3373 . . . . . . 7 (∀𝑥𝐴 (𝑓𝑥) ∈ 𝑥𝐴 𝐵 ↔ ∀𝑦𝐴 (𝑓𝑦) ∈ 𝑥𝐴 𝐵)
147, 13sylib 217 . . . . . 6 (𝑓X𝑥𝐴 𝐵 → ∀𝑦𝐴 (𝑓𝑦) ∈ 𝑥𝐴 𝐵)
1514adantl 482 . . . . 5 (((𝐴𝑉 𝑥𝐴 𝐵𝑊X𝑥𝐴 𝐵 ≠ ∅) ∧ 𝑓X𝑥𝐴 𝐵) → ∀𝑦𝐴 (𝑓𝑦) ∈ 𝑥𝐴 𝐵)
1615ralrimiva 3103 . . . 4 ((𝐴𝑉 𝑥𝐴 𝐵𝑊X𝑥𝐴 𝐵 ≠ ∅) → ∀𝑓X 𝑥𝐴 𝐵𝑦𝐴 (𝑓𝑦) ∈ 𝑥𝐴 𝐵)
17 eqid 2738 . . . . 5 (𝑓X𝑥𝐴 𝐵, 𝑦𝐴 ↦ (𝑓𝑦)) = (𝑓X𝑥𝐴 𝐵, 𝑦𝐴 ↦ (𝑓𝑦))
1817fmpo 7908 . . . 4 (∀𝑓X 𝑥𝐴 𝐵𝑦𝐴 (𝑓𝑦) ∈ 𝑥𝐴 𝐵 ↔ (𝑓X𝑥𝐴 𝐵, 𝑦𝐴 ↦ (𝑓𝑦)):(X𝑥𝐴 𝐵 × 𝐴)⟶ 𝑥𝐴 𝐵)
1916, 18sylib 217 . . 3 ((𝐴𝑉 𝑥𝐴 𝐵𝑊X𝑥𝐴 𝐵 ≠ ∅) → (𝑓X𝑥𝐴 𝐵, 𝑦𝐴 ↦ (𝑓𝑦)):(X𝑥𝐴 𝐵 × 𝐴)⟶ 𝑥𝐴 𝐵)
20 ixpssmap2g 8715 . . . . . 6 ( 𝑥𝐴 𝐵𝑊X𝑥𝐴 𝐵 ⊆ ( 𝑥𝐴 𝐵m 𝐴))
21203ad2ant2 1133 . . . . 5 ((𝐴𝑉 𝑥𝐴 𝐵𝑊X𝑥𝐴 𝐵 ≠ ∅) → X𝑥𝐴 𝐵 ⊆ ( 𝑥𝐴 𝐵m 𝐴))
22 ovex 7308 . . . . . 6 ( 𝑥𝐴 𝐵m 𝐴) ∈ V
2322ssex 5245 . . . . 5 (X𝑥𝐴 𝐵 ⊆ ( 𝑥𝐴 𝐵m 𝐴) → X𝑥𝐴 𝐵 ∈ V)
2421, 23syl 17 . . . 4 ((𝐴𝑉 𝑥𝐴 𝐵𝑊X𝑥𝐴 𝐵 ≠ ∅) → X𝑥𝐴 𝐵 ∈ V)
25 simp1 1135 . . . 4 ((𝐴𝑉 𝑥𝐴 𝐵𝑊X𝑥𝐴 𝐵 ≠ ∅) → 𝐴𝑉)
2624, 25xpexd 7601 . . 3 ((𝐴𝑉 𝑥𝐴 𝐵𝑊X𝑥𝐴 𝐵 ≠ ∅) → (X𝑥𝐴 𝐵 × 𝐴) ∈ V)
2719, 26fexd 7103 . 2 ((𝐴𝑉 𝑥𝐴 𝐵𝑊X𝑥𝐴 𝐵 ≠ ∅) → (𝑓X𝑥𝐴 𝐵, 𝑦𝐴 ↦ (𝑓𝑦)) ∈ V)
2819ffnd 6601 . . . 4 ((𝐴𝑉 𝑥𝐴 𝐵𝑊X𝑥𝐴 𝐵 ≠ ∅) → (𝑓X𝑥𝐴 𝐵, 𝑦𝐴 ↦ (𝑓𝑦)) Fn (X𝑥𝐴 𝐵 × 𝐴))
29 dffn4 6694 . . . 4 ((𝑓X𝑥𝐴 𝐵, 𝑦𝐴 ↦ (𝑓𝑦)) Fn (X𝑥𝐴 𝐵 × 𝐴) ↔ (𝑓X𝑥𝐴 𝐵, 𝑦𝐴 ↦ (𝑓𝑦)):(X𝑥𝐴 𝐵 × 𝐴)–onto→ran (𝑓X𝑥𝐴 𝐵, 𝑦𝐴 ↦ (𝑓𝑦)))
3028, 29sylib 217 . . 3 ((𝐴𝑉 𝑥𝐴 𝐵𝑊X𝑥𝐴 𝐵 ≠ ∅) → (𝑓X𝑥𝐴 𝐵, 𝑦𝐴 ↦ (𝑓𝑦)):(X𝑥𝐴 𝐵 × 𝐴)–onto→ran (𝑓X𝑥𝐴 𝐵, 𝑦𝐴 ↦ (𝑓𝑦)))
31 n0 4280 . . . . . . . . . 10 (X𝑥𝐴 𝐵 ≠ ∅ ↔ ∃𝑔 𝑔X𝑥𝐴 𝐵)
32 eliun 4928 . . . . . . . . . . . 12 (𝑧 𝑥𝐴 𝐵 ↔ ∃𝑥𝐴 𝑧𝐵)
33 nfixp1 8706 . . . . . . . . . . . . . 14 𝑥X𝑥𝐴 𝐵
3433nfel2 2925 . . . . . . . . . . . . 13 𝑥 𝑔X𝑥𝐴 𝐵
35 nfv 1917 . . . . . . . . . . . . . 14 𝑥𝑦𝐴 𝑧 = (𝑓𝑦)
3633, 35nfrex 3242 . . . . . . . . . . . . 13 𝑥𝑓X 𝑥𝐴 𝐵𝑦𝐴 𝑧 = (𝑓𝑦)
37 simplrr 775 . . . . . . . . . . . . . . . . . . . 20 (((𝑔X𝑥𝐴 𝐵 ∧ (𝑥𝐴𝑧𝐵)) ∧ 𝑘𝐴) → 𝑧𝐵)
38 iftrue 4465 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 = 𝑥 → if(𝑘 = 𝑥, 𝑧, (𝑔𝑘)) = 𝑧)
39 csbeq1a 3846 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 = 𝑘𝐵 = 𝑘 / 𝑥𝐵)
4039equcoms 2023 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 = 𝑥𝐵 = 𝑘 / 𝑥𝐵)
4140eqcomd 2744 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 = 𝑥𝑘 / 𝑥𝐵 = 𝐵)
4238, 41eleq12d 2833 . . . . . . . . . . . . . . . . . . . 20 (𝑘 = 𝑥 → (if(𝑘 = 𝑥, 𝑧, (𝑔𝑘)) ∈ 𝑘 / 𝑥𝐵𝑧𝐵))
4337, 42syl5ibrcom 246 . . . . . . . . . . . . . . . . . . 19 (((𝑔X𝑥𝐴 𝐵 ∧ (𝑥𝐴𝑧𝐵)) ∧ 𝑘𝐴) → (𝑘 = 𝑥 → if(𝑘 = 𝑥, 𝑧, (𝑔𝑘)) ∈ 𝑘 / 𝑥𝐵))
44 vex 3436 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝑔 ∈ V
4544elixp 8692 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑔X𝑥𝐴 𝐵 ↔ (𝑔 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑔𝑥) ∈ 𝐵))
4645simprbi 497 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑔X𝑥𝐴 𝐵 → ∀𝑥𝐴 (𝑔𝑥) ∈ 𝐵)
4746adantr 481 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑔X𝑥𝐴 𝐵 ∧ (𝑥𝐴𝑧𝐵)) → ∀𝑥𝐴 (𝑔𝑥) ∈ 𝐵)
48 nfv 1917 . . . . . . . . . . . . . . . . . . . . . . 23 𝑘(𝑔𝑥) ∈ 𝐵
49 nfcsb1v 3857 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑥𝑘 / 𝑥𝐵
5049nfel2 2925 . . . . . . . . . . . . . . . . . . . . . . 23 𝑥(𝑔𝑘) ∈ 𝑘 / 𝑥𝐵
51 fveq2 6774 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 = 𝑘 → (𝑔𝑥) = (𝑔𝑘))
5251, 39eleq12d 2833 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 = 𝑘 → ((𝑔𝑥) ∈ 𝐵 ↔ (𝑔𝑘) ∈ 𝑘 / 𝑥𝐵))
5348, 50, 52cbvralw 3373 . . . . . . . . . . . . . . . . . . . . . 22 (∀𝑥𝐴 (𝑔𝑥) ∈ 𝐵 ↔ ∀𝑘𝐴 (𝑔𝑘) ∈ 𝑘 / 𝑥𝐵)
5447, 53sylib 217 . . . . . . . . . . . . . . . . . . . . 21 ((𝑔X𝑥𝐴 𝐵 ∧ (𝑥𝐴𝑧𝐵)) → ∀𝑘𝐴 (𝑔𝑘) ∈ 𝑘 / 𝑥𝐵)
5554r19.21bi 3134 . . . . . . . . . . . . . . . . . . . 20 (((𝑔X𝑥𝐴 𝐵 ∧ (𝑥𝐴𝑧𝐵)) ∧ 𝑘𝐴) → (𝑔𝑘) ∈ 𝑘 / 𝑥𝐵)
56 iffalse 4468 . . . . . . . . . . . . . . . . . . . . 21 𝑘 = 𝑥 → if(𝑘 = 𝑥, 𝑧, (𝑔𝑘)) = (𝑔𝑘))
5756eleq1d 2823 . . . . . . . . . . . . . . . . . . . 20 𝑘 = 𝑥 → (if(𝑘 = 𝑥, 𝑧, (𝑔𝑘)) ∈ 𝑘 / 𝑥𝐵 ↔ (𝑔𝑘) ∈ 𝑘 / 𝑥𝐵))
5855, 57syl5ibrcom 246 . . . . . . . . . . . . . . . . . . 19 (((𝑔X𝑥𝐴 𝐵 ∧ (𝑥𝐴𝑧𝐵)) ∧ 𝑘𝐴) → (¬ 𝑘 = 𝑥 → if(𝑘 = 𝑥, 𝑧, (𝑔𝑘)) ∈ 𝑘 / 𝑥𝐵))
5943, 58pm2.61d 179 . . . . . . . . . . . . . . . . . 18 (((𝑔X𝑥𝐴 𝐵 ∧ (𝑥𝐴𝑧𝐵)) ∧ 𝑘𝐴) → if(𝑘 = 𝑥, 𝑧, (𝑔𝑘)) ∈ 𝑘 / 𝑥𝐵)
6059ralrimiva 3103 . . . . . . . . . . . . . . . . 17 ((𝑔X𝑥𝐴 𝐵 ∧ (𝑥𝐴𝑧𝐵)) → ∀𝑘𝐴 if(𝑘 = 𝑥, 𝑧, (𝑔𝑘)) ∈ 𝑘 / 𝑥𝐵)
61 ixpfn 8691 . . . . . . . . . . . . . . . . . . . . 21 (𝑔X𝑥𝐴 𝐵𝑔 Fn 𝐴)
6261adantr 481 . . . . . . . . . . . . . . . . . . . 20 ((𝑔X𝑥𝐴 𝐵 ∧ (𝑥𝐴𝑧𝐵)) → 𝑔 Fn 𝐴)
6362fndmd 6538 . . . . . . . . . . . . . . . . . . 19 ((𝑔X𝑥𝐴 𝐵 ∧ (𝑥𝐴𝑧𝐵)) → dom 𝑔 = 𝐴)
6444dmex 7758 . . . . . . . . . . . . . . . . . . 19 dom 𝑔 ∈ V
6563, 64eqeltrrdi 2848 . . . . . . . . . . . . . . . . . 18 ((𝑔X𝑥𝐴 𝐵 ∧ (𝑥𝐴𝑧𝐵)) → 𝐴 ∈ V)
66 mptelixpg 8723 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ V → ((𝑘𝐴 ↦ if(𝑘 = 𝑥, 𝑧, (𝑔𝑘))) ∈ X𝑘𝐴 𝑘 / 𝑥𝐵 ↔ ∀𝑘𝐴 if(𝑘 = 𝑥, 𝑧, (𝑔𝑘)) ∈ 𝑘 / 𝑥𝐵))
6765, 66syl 17 . . . . . . . . . . . . . . . . 17 ((𝑔X𝑥𝐴 𝐵 ∧ (𝑥𝐴𝑧𝐵)) → ((𝑘𝐴 ↦ if(𝑘 = 𝑥, 𝑧, (𝑔𝑘))) ∈ X𝑘𝐴 𝑘 / 𝑥𝐵 ↔ ∀𝑘𝐴 if(𝑘 = 𝑥, 𝑧, (𝑔𝑘)) ∈ 𝑘 / 𝑥𝐵))
6860, 67mpbird 256 . . . . . . . . . . . . . . . 16 ((𝑔X𝑥𝐴 𝐵 ∧ (𝑥𝐴𝑧𝐵)) → (𝑘𝐴 ↦ if(𝑘 = 𝑥, 𝑧, (𝑔𝑘))) ∈ X𝑘𝐴 𝑘 / 𝑥𝐵)
69 nfcv 2907 . . . . . . . . . . . . . . . . 17 𝑘𝐵
7069, 49, 39cbvixp 8702 . . . . . . . . . . . . . . . 16 X𝑥𝐴 𝐵 = X𝑘𝐴 𝑘 / 𝑥𝐵
7168, 70eleqtrrdi 2850 . . . . . . . . . . . . . . 15 ((𝑔X𝑥𝐴 𝐵 ∧ (𝑥𝐴𝑧𝐵)) → (𝑘𝐴 ↦ if(𝑘 = 𝑥, 𝑧, (𝑔𝑘))) ∈ X𝑥𝐴 𝐵)
72 simprl 768 . . . . . . . . . . . . . . 15 ((𝑔X𝑥𝐴 𝐵 ∧ (𝑥𝐴𝑧𝐵)) → 𝑥𝐴)
73 eqid 2738 . . . . . . . . . . . . . . . . . 18 (𝑘𝐴 ↦ if(𝑘 = 𝑥, 𝑧, (𝑔𝑘))) = (𝑘𝐴 ↦ if(𝑘 = 𝑥, 𝑧, (𝑔𝑘)))
74 vex 3436 . . . . . . . . . . . . . . . . . 18 𝑧 ∈ V
7538, 73, 74fvmpt 6875 . . . . . . . . . . . . . . . . 17 (𝑥𝐴 → ((𝑘𝐴 ↦ if(𝑘 = 𝑥, 𝑧, (𝑔𝑘)))‘𝑥) = 𝑧)
7675ad2antrl 725 . . . . . . . . . . . . . . . 16 ((𝑔X𝑥𝐴 𝐵 ∧ (𝑥𝐴𝑧𝐵)) → ((𝑘𝐴 ↦ if(𝑘 = 𝑥, 𝑧, (𝑔𝑘)))‘𝑥) = 𝑧)
7776eqcomd 2744 . . . . . . . . . . . . . . 15 ((𝑔X𝑥𝐴 𝐵 ∧ (𝑥𝐴𝑧𝐵)) → 𝑧 = ((𝑘𝐴 ↦ if(𝑘 = 𝑥, 𝑧, (𝑔𝑘)))‘𝑥))
78 fveq1 6773 . . . . . . . . . . . . . . . . 17 (𝑓 = (𝑘𝐴 ↦ if(𝑘 = 𝑥, 𝑧, (𝑔𝑘))) → (𝑓𝑦) = ((𝑘𝐴 ↦ if(𝑘 = 𝑥, 𝑧, (𝑔𝑘)))‘𝑦))
7978eqeq2d 2749 . . . . . . . . . . . . . . . 16 (𝑓 = (𝑘𝐴 ↦ if(𝑘 = 𝑥, 𝑧, (𝑔𝑘))) → (𝑧 = (𝑓𝑦) ↔ 𝑧 = ((𝑘𝐴 ↦ if(𝑘 = 𝑥, 𝑧, (𝑔𝑘)))‘𝑦)))
80 fveq2 6774 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝑥 → ((𝑘𝐴 ↦ if(𝑘 = 𝑥, 𝑧, (𝑔𝑘)))‘𝑦) = ((𝑘𝐴 ↦ if(𝑘 = 𝑥, 𝑧, (𝑔𝑘)))‘𝑥))
8180eqeq2d 2749 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑥 → (𝑧 = ((𝑘𝐴 ↦ if(𝑘 = 𝑥, 𝑧, (𝑔𝑘)))‘𝑦) ↔ 𝑧 = ((𝑘𝐴 ↦ if(𝑘 = 𝑥, 𝑧, (𝑔𝑘)))‘𝑥)))
8279, 81rspc2ev 3572 . . . . . . . . . . . . . . 15 (((𝑘𝐴 ↦ if(𝑘 = 𝑥, 𝑧, (𝑔𝑘))) ∈ X𝑥𝐴 𝐵𝑥𝐴𝑧 = ((𝑘𝐴 ↦ if(𝑘 = 𝑥, 𝑧, (𝑔𝑘)))‘𝑥)) → ∃𝑓X 𝑥𝐴 𝐵𝑦𝐴 𝑧 = (𝑓𝑦))
8371, 72, 77, 82syl3anc 1370 . . . . . . . . . . . . . 14 ((𝑔X𝑥𝐴 𝐵 ∧ (𝑥𝐴𝑧𝐵)) → ∃𝑓X 𝑥𝐴 𝐵𝑦𝐴 𝑧 = (𝑓𝑦))
8483exp32 421 . . . . . . . . . . . . 13 (𝑔X𝑥𝐴 𝐵 → (𝑥𝐴 → (𝑧𝐵 → ∃𝑓X 𝑥𝐴 𝐵𝑦𝐴 𝑧 = (𝑓𝑦))))
8534, 36, 84rexlimd 3250 . . . . . . . . . . . 12 (𝑔X𝑥𝐴 𝐵 → (∃𝑥𝐴 𝑧𝐵 → ∃𝑓X 𝑥𝐴 𝐵𝑦𝐴 𝑧 = (𝑓𝑦)))
8632, 85syl5bi 241 . . . . . . . . . . 11 (𝑔X𝑥𝐴 𝐵 → (𝑧 𝑥𝐴 𝐵 → ∃𝑓X 𝑥𝐴 𝐵𝑦𝐴 𝑧 = (𝑓𝑦)))
8786exlimiv 1933 . . . . . . . . . 10 (∃𝑔 𝑔X𝑥𝐴 𝐵 → (𝑧 𝑥𝐴 𝐵 → ∃𝑓X 𝑥𝐴 𝐵𝑦𝐴 𝑧 = (𝑓𝑦)))
8831, 87sylbi 216 . . . . . . . . 9 (X𝑥𝐴 𝐵 ≠ ∅ → (𝑧 𝑥𝐴 𝐵 → ∃𝑓X 𝑥𝐴 𝐵𝑦𝐴 𝑧 = (𝑓𝑦)))
89883ad2ant3 1134 . . . . . . . 8 ((𝐴𝑉 𝑥𝐴 𝐵𝑊X𝑥𝐴 𝐵 ≠ ∅) → (𝑧 𝑥𝐴 𝐵 → ∃𝑓X 𝑥𝐴 𝐵𝑦𝐴 𝑧 = (𝑓𝑦)))
9089alrimiv 1930 . . . . . . 7 ((𝐴𝑉 𝑥𝐴 𝐵𝑊X𝑥𝐴 𝐵 ≠ ∅) → ∀𝑧(𝑧 𝑥𝐴 𝐵 → ∃𝑓X 𝑥𝐴 𝐵𝑦𝐴 𝑧 = (𝑓𝑦)))
91 ssab 3995 . . . . . . 7 ( 𝑥𝐴 𝐵 ⊆ {𝑧 ∣ ∃𝑓X 𝑥𝐴 𝐵𝑦𝐴 𝑧 = (𝑓𝑦)} ↔ ∀𝑧(𝑧 𝑥𝐴 𝐵 → ∃𝑓X 𝑥𝐴 𝐵𝑦𝐴 𝑧 = (𝑓𝑦)))
9290, 91sylibr 233 . . . . . 6 ((𝐴𝑉 𝑥𝐴 𝐵𝑊X𝑥𝐴 𝐵 ≠ ∅) → 𝑥𝐴 𝐵 ⊆ {𝑧 ∣ ∃𝑓X 𝑥𝐴 𝐵𝑦𝐴 𝑧 = (𝑓𝑦)})
9317rnmpo 7407 . . . . . 6 ran (𝑓X𝑥𝐴 𝐵, 𝑦𝐴 ↦ (𝑓𝑦)) = {𝑧 ∣ ∃𝑓X 𝑥𝐴 𝐵𝑦𝐴 𝑧 = (𝑓𝑦)}
9492, 93sseqtrrdi 3972 . . . . 5 ((𝐴𝑉 𝑥𝐴 𝐵𝑊X𝑥𝐴 𝐵 ≠ ∅) → 𝑥𝐴 𝐵 ⊆ ran (𝑓X𝑥𝐴 𝐵, 𝑦𝐴 ↦ (𝑓𝑦)))
9519frnd 6608 . . . . 5 ((𝐴𝑉 𝑥𝐴 𝐵𝑊X𝑥𝐴 𝐵 ≠ ∅) → ran (𝑓X𝑥𝐴 𝐵, 𝑦𝐴 ↦ (𝑓𝑦)) ⊆ 𝑥𝐴 𝐵)
9694, 95eqssd 3938 . . . 4 ((𝐴𝑉 𝑥𝐴 𝐵𝑊X𝑥𝐴 𝐵 ≠ ∅) → 𝑥𝐴 𝐵 = ran (𝑓X𝑥𝐴 𝐵, 𝑦𝐴 ↦ (𝑓𝑦)))
97 foeq3 6686 . . . 4 ( 𝑥𝐴 𝐵 = ran (𝑓X𝑥𝐴 𝐵, 𝑦𝐴 ↦ (𝑓𝑦)) → ((𝑓X𝑥𝐴 𝐵, 𝑦𝐴 ↦ (𝑓𝑦)):(X𝑥𝐴 𝐵 × 𝐴)–onto 𝑥𝐴 𝐵 ↔ (𝑓X𝑥𝐴 𝐵, 𝑦𝐴 ↦ (𝑓𝑦)):(X𝑥𝐴 𝐵 × 𝐴)–onto→ran (𝑓X𝑥𝐴 𝐵, 𝑦𝐴 ↦ (𝑓𝑦))))
9896, 97syl 17 . . 3 ((𝐴𝑉 𝑥𝐴 𝐵𝑊X𝑥𝐴 𝐵 ≠ ∅) → ((𝑓X𝑥𝐴 𝐵, 𝑦𝐴 ↦ (𝑓𝑦)):(X𝑥𝐴 𝐵 × 𝐴)–onto 𝑥𝐴 𝐵 ↔ (𝑓X𝑥𝐴 𝐵, 𝑦𝐴 ↦ (𝑓𝑦)):(X𝑥𝐴 𝐵 × 𝐴)–onto→ran (𝑓X𝑥𝐴 𝐵, 𝑦𝐴 ↦ (𝑓𝑦))))
9930, 98mpbird 256 . 2 ((𝐴𝑉 𝑥𝐴 𝐵𝑊X𝑥𝐴 𝐵 ≠ ∅) → (𝑓X𝑥𝐴 𝐵, 𝑦𝐴 ↦ (𝑓𝑦)):(X𝑥𝐴 𝐵 × 𝐴)–onto 𝑥𝐴 𝐵)
100 fowdom 9330 . 2 (((𝑓X𝑥𝐴 𝐵, 𝑦𝐴 ↦ (𝑓𝑦)) ∈ V ∧ (𝑓X𝑥𝐴 𝐵, 𝑦𝐴 ↦ (𝑓𝑦)):(X𝑥𝐴 𝐵 × 𝐴)–onto 𝑥𝐴 𝐵) → 𝑥𝐴 𝐵* (X𝑥𝐴 𝐵 × 𝐴))
10127, 99, 100syl2anc 584 1 ((𝐴𝑉 𝑥𝐴 𝐵𝑊X𝑥𝐴 𝐵 ≠ ∅) → 𝑥𝐴 𝐵* (X𝑥𝐴 𝐵 × 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1086  wal 1537   = wceq 1539  wex 1782  wcel 2106  {cab 2715  wne 2943  wral 3064  wrex 3065  Vcvv 3432  csb 3832  wss 3887  c0 4256  ifcif 4459   ciun 4924   class class class wbr 5074  cmpt 5157   × cxp 5587  dom cdm 5589  ran crn 5590   Fn wfn 6428  wf 6429  ontowfo 6431  cfv 6433  (class class class)co 7275  cmpo 7277  m cmap 8615  Xcixp 8685  * cwdom 9323
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-1st 7831  df-2nd 7832  df-map 8617  df-ixp 8686  df-wdom 9324
This theorem is referenced by:  ptcmplem2  23204
  Copyright terms: Public domain W3C validator