MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ixpiunwdom Structured version   Visualization version   GIF version

Theorem ixpiunwdom 9279
Description: Describe an onto function from the indexed cartesian product to the indexed union. Together with ixpssmapg 8674 this shows that 𝑥𝐴𝐵 and X𝑥𝐴𝐵 have closely linked cardinalities. (Contributed by Mario Carneiro, 27-Aug-2015.)
Assertion
Ref Expression
ixpiunwdom ((𝐴𝑉 𝑥𝐴 𝐵𝑊X𝑥𝐴 𝐵 ≠ ∅) → 𝑥𝐴 𝐵* (X𝑥𝐴 𝐵 × 𝐴))
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝐵(𝑥)   𝑉(𝑥)   𝑊(𝑥)

Proof of Theorem ixpiunwdom
Dummy variables 𝑓 𝑔 𝑘 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 3426 . . . . . . . . . 10 𝑓 ∈ V
21elixp 8650 . . . . . . . . 9 (𝑓X𝑥𝐴 𝐵 ↔ (𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐵))
32simprbi 496 . . . . . . . 8 (𝑓X𝑥𝐴 𝐵 → ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐵)
4 ssiun2 4973 . . . . . . . . . 10 (𝑥𝐴𝐵 𝑥𝐴 𝐵)
54sseld 3916 . . . . . . . . 9 (𝑥𝐴 → ((𝑓𝑥) ∈ 𝐵 → (𝑓𝑥) ∈ 𝑥𝐴 𝐵))
65ralimia 3084 . . . . . . . 8 (∀𝑥𝐴 (𝑓𝑥) ∈ 𝐵 → ∀𝑥𝐴 (𝑓𝑥) ∈ 𝑥𝐴 𝐵)
73, 6syl 17 . . . . . . 7 (𝑓X𝑥𝐴 𝐵 → ∀𝑥𝐴 (𝑓𝑥) ∈ 𝑥𝐴 𝐵)
8 nfv 1918 . . . . . . . 8 𝑦(𝑓𝑥) ∈ 𝑥𝐴 𝐵
9 nfiu1 4955 . . . . . . . . 9 𝑥 𝑥𝐴 𝐵
109nfel2 2924 . . . . . . . 8 𝑥(𝑓𝑦) ∈ 𝑥𝐴 𝐵
11 fveq2 6756 . . . . . . . . 9 (𝑥 = 𝑦 → (𝑓𝑥) = (𝑓𝑦))
1211eleq1d 2823 . . . . . . . 8 (𝑥 = 𝑦 → ((𝑓𝑥) ∈ 𝑥𝐴 𝐵 ↔ (𝑓𝑦) ∈ 𝑥𝐴 𝐵))
138, 10, 12cbvralw 3363 . . . . . . 7 (∀𝑥𝐴 (𝑓𝑥) ∈ 𝑥𝐴 𝐵 ↔ ∀𝑦𝐴 (𝑓𝑦) ∈ 𝑥𝐴 𝐵)
147, 13sylib 217 . . . . . 6 (𝑓X𝑥𝐴 𝐵 → ∀𝑦𝐴 (𝑓𝑦) ∈ 𝑥𝐴 𝐵)
1514adantl 481 . . . . 5 (((𝐴𝑉 𝑥𝐴 𝐵𝑊X𝑥𝐴 𝐵 ≠ ∅) ∧ 𝑓X𝑥𝐴 𝐵) → ∀𝑦𝐴 (𝑓𝑦) ∈ 𝑥𝐴 𝐵)
1615ralrimiva 3107 . . . 4 ((𝐴𝑉 𝑥𝐴 𝐵𝑊X𝑥𝐴 𝐵 ≠ ∅) → ∀𝑓X 𝑥𝐴 𝐵𝑦𝐴 (𝑓𝑦) ∈ 𝑥𝐴 𝐵)
17 eqid 2738 . . . . 5 (𝑓X𝑥𝐴 𝐵, 𝑦𝐴 ↦ (𝑓𝑦)) = (𝑓X𝑥𝐴 𝐵, 𝑦𝐴 ↦ (𝑓𝑦))
1817fmpo 7881 . . . 4 (∀𝑓X 𝑥𝐴 𝐵𝑦𝐴 (𝑓𝑦) ∈ 𝑥𝐴 𝐵 ↔ (𝑓X𝑥𝐴 𝐵, 𝑦𝐴 ↦ (𝑓𝑦)):(X𝑥𝐴 𝐵 × 𝐴)⟶ 𝑥𝐴 𝐵)
1916, 18sylib 217 . . 3 ((𝐴𝑉 𝑥𝐴 𝐵𝑊X𝑥𝐴 𝐵 ≠ ∅) → (𝑓X𝑥𝐴 𝐵, 𝑦𝐴 ↦ (𝑓𝑦)):(X𝑥𝐴 𝐵 × 𝐴)⟶ 𝑥𝐴 𝐵)
20 ixpssmap2g 8673 . . . . . 6 ( 𝑥𝐴 𝐵𝑊X𝑥𝐴 𝐵 ⊆ ( 𝑥𝐴 𝐵m 𝐴))
21203ad2ant2 1132 . . . . 5 ((𝐴𝑉 𝑥𝐴 𝐵𝑊X𝑥𝐴 𝐵 ≠ ∅) → X𝑥𝐴 𝐵 ⊆ ( 𝑥𝐴 𝐵m 𝐴))
22 ovex 7288 . . . . . 6 ( 𝑥𝐴 𝐵m 𝐴) ∈ V
2322ssex 5240 . . . . 5 (X𝑥𝐴 𝐵 ⊆ ( 𝑥𝐴 𝐵m 𝐴) → X𝑥𝐴 𝐵 ∈ V)
2421, 23syl 17 . . . 4 ((𝐴𝑉 𝑥𝐴 𝐵𝑊X𝑥𝐴 𝐵 ≠ ∅) → X𝑥𝐴 𝐵 ∈ V)
25 simp1 1134 . . . 4 ((𝐴𝑉 𝑥𝐴 𝐵𝑊X𝑥𝐴 𝐵 ≠ ∅) → 𝐴𝑉)
2624, 25xpexd 7579 . . 3 ((𝐴𝑉 𝑥𝐴 𝐵𝑊X𝑥𝐴 𝐵 ≠ ∅) → (X𝑥𝐴 𝐵 × 𝐴) ∈ V)
2719, 26fexd 7085 . 2 ((𝐴𝑉 𝑥𝐴 𝐵𝑊X𝑥𝐴 𝐵 ≠ ∅) → (𝑓X𝑥𝐴 𝐵, 𝑦𝐴 ↦ (𝑓𝑦)) ∈ V)
2819ffnd 6585 . . . 4 ((𝐴𝑉 𝑥𝐴 𝐵𝑊X𝑥𝐴 𝐵 ≠ ∅) → (𝑓X𝑥𝐴 𝐵, 𝑦𝐴 ↦ (𝑓𝑦)) Fn (X𝑥𝐴 𝐵 × 𝐴))
29 dffn4 6678 . . . 4 ((𝑓X𝑥𝐴 𝐵, 𝑦𝐴 ↦ (𝑓𝑦)) Fn (X𝑥𝐴 𝐵 × 𝐴) ↔ (𝑓X𝑥𝐴 𝐵, 𝑦𝐴 ↦ (𝑓𝑦)):(X𝑥𝐴 𝐵 × 𝐴)–onto→ran (𝑓X𝑥𝐴 𝐵, 𝑦𝐴 ↦ (𝑓𝑦)))
3028, 29sylib 217 . . 3 ((𝐴𝑉 𝑥𝐴 𝐵𝑊X𝑥𝐴 𝐵 ≠ ∅) → (𝑓X𝑥𝐴 𝐵, 𝑦𝐴 ↦ (𝑓𝑦)):(X𝑥𝐴 𝐵 × 𝐴)–onto→ran (𝑓X𝑥𝐴 𝐵, 𝑦𝐴 ↦ (𝑓𝑦)))
31 n0 4277 . . . . . . . . . 10 (X𝑥𝐴 𝐵 ≠ ∅ ↔ ∃𝑔 𝑔X𝑥𝐴 𝐵)
32 eliun 4925 . . . . . . . . . . . 12 (𝑧 𝑥𝐴 𝐵 ↔ ∃𝑥𝐴 𝑧𝐵)
33 nfixp1 8664 . . . . . . . . . . . . . 14 𝑥X𝑥𝐴 𝐵
3433nfel2 2924 . . . . . . . . . . . . 13 𝑥 𝑔X𝑥𝐴 𝐵
35 nfv 1918 . . . . . . . . . . . . . 14 𝑥𝑦𝐴 𝑧 = (𝑓𝑦)
3633, 35nfrex 3237 . . . . . . . . . . . . 13 𝑥𝑓X 𝑥𝐴 𝐵𝑦𝐴 𝑧 = (𝑓𝑦)
37 simplrr 774 . . . . . . . . . . . . . . . . . . . 20 (((𝑔X𝑥𝐴 𝐵 ∧ (𝑥𝐴𝑧𝐵)) ∧ 𝑘𝐴) → 𝑧𝐵)
38 iftrue 4462 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 = 𝑥 → if(𝑘 = 𝑥, 𝑧, (𝑔𝑘)) = 𝑧)
39 csbeq1a 3842 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 = 𝑘𝐵 = 𝑘 / 𝑥𝐵)
4039equcoms 2024 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 = 𝑥𝐵 = 𝑘 / 𝑥𝐵)
4140eqcomd 2744 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 = 𝑥𝑘 / 𝑥𝐵 = 𝐵)
4238, 41eleq12d 2833 . . . . . . . . . . . . . . . . . . . 20 (𝑘 = 𝑥 → (if(𝑘 = 𝑥, 𝑧, (𝑔𝑘)) ∈ 𝑘 / 𝑥𝐵𝑧𝐵))
4337, 42syl5ibrcom 246 . . . . . . . . . . . . . . . . . . 19 (((𝑔X𝑥𝐴 𝐵 ∧ (𝑥𝐴𝑧𝐵)) ∧ 𝑘𝐴) → (𝑘 = 𝑥 → if(𝑘 = 𝑥, 𝑧, (𝑔𝑘)) ∈ 𝑘 / 𝑥𝐵))
44 vex 3426 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝑔 ∈ V
4544elixp 8650 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑔X𝑥𝐴 𝐵 ↔ (𝑔 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑔𝑥) ∈ 𝐵))
4645simprbi 496 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑔X𝑥𝐴 𝐵 → ∀𝑥𝐴 (𝑔𝑥) ∈ 𝐵)
4746adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑔X𝑥𝐴 𝐵 ∧ (𝑥𝐴𝑧𝐵)) → ∀𝑥𝐴 (𝑔𝑥) ∈ 𝐵)
48 nfv 1918 . . . . . . . . . . . . . . . . . . . . . . 23 𝑘(𝑔𝑥) ∈ 𝐵
49 nfcsb1v 3853 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑥𝑘 / 𝑥𝐵
5049nfel2 2924 . . . . . . . . . . . . . . . . . . . . . . 23 𝑥(𝑔𝑘) ∈ 𝑘 / 𝑥𝐵
51 fveq2 6756 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 = 𝑘 → (𝑔𝑥) = (𝑔𝑘))
5251, 39eleq12d 2833 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 = 𝑘 → ((𝑔𝑥) ∈ 𝐵 ↔ (𝑔𝑘) ∈ 𝑘 / 𝑥𝐵))
5348, 50, 52cbvralw 3363 . . . . . . . . . . . . . . . . . . . . . 22 (∀𝑥𝐴 (𝑔𝑥) ∈ 𝐵 ↔ ∀𝑘𝐴 (𝑔𝑘) ∈ 𝑘 / 𝑥𝐵)
5447, 53sylib 217 . . . . . . . . . . . . . . . . . . . . 21 ((𝑔X𝑥𝐴 𝐵 ∧ (𝑥𝐴𝑧𝐵)) → ∀𝑘𝐴 (𝑔𝑘) ∈ 𝑘 / 𝑥𝐵)
5554r19.21bi 3132 . . . . . . . . . . . . . . . . . . . 20 (((𝑔X𝑥𝐴 𝐵 ∧ (𝑥𝐴𝑧𝐵)) ∧ 𝑘𝐴) → (𝑔𝑘) ∈ 𝑘 / 𝑥𝐵)
56 iffalse 4465 . . . . . . . . . . . . . . . . . . . . 21 𝑘 = 𝑥 → if(𝑘 = 𝑥, 𝑧, (𝑔𝑘)) = (𝑔𝑘))
5756eleq1d 2823 . . . . . . . . . . . . . . . . . . . 20 𝑘 = 𝑥 → (if(𝑘 = 𝑥, 𝑧, (𝑔𝑘)) ∈ 𝑘 / 𝑥𝐵 ↔ (𝑔𝑘) ∈ 𝑘 / 𝑥𝐵))
5855, 57syl5ibrcom 246 . . . . . . . . . . . . . . . . . . 19 (((𝑔X𝑥𝐴 𝐵 ∧ (𝑥𝐴𝑧𝐵)) ∧ 𝑘𝐴) → (¬ 𝑘 = 𝑥 → if(𝑘 = 𝑥, 𝑧, (𝑔𝑘)) ∈ 𝑘 / 𝑥𝐵))
5943, 58pm2.61d 179 . . . . . . . . . . . . . . . . . 18 (((𝑔X𝑥𝐴 𝐵 ∧ (𝑥𝐴𝑧𝐵)) ∧ 𝑘𝐴) → if(𝑘 = 𝑥, 𝑧, (𝑔𝑘)) ∈ 𝑘 / 𝑥𝐵)
6059ralrimiva 3107 . . . . . . . . . . . . . . . . 17 ((𝑔X𝑥𝐴 𝐵 ∧ (𝑥𝐴𝑧𝐵)) → ∀𝑘𝐴 if(𝑘 = 𝑥, 𝑧, (𝑔𝑘)) ∈ 𝑘 / 𝑥𝐵)
61 ixpfn 8649 . . . . . . . . . . . . . . . . . . . . 21 (𝑔X𝑥𝐴 𝐵𝑔 Fn 𝐴)
6261adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝑔X𝑥𝐴 𝐵 ∧ (𝑥𝐴𝑧𝐵)) → 𝑔 Fn 𝐴)
6362fndmd 6522 . . . . . . . . . . . . . . . . . . 19 ((𝑔X𝑥𝐴 𝐵 ∧ (𝑥𝐴𝑧𝐵)) → dom 𝑔 = 𝐴)
6444dmex 7732 . . . . . . . . . . . . . . . . . . 19 dom 𝑔 ∈ V
6563, 64eqeltrrdi 2848 . . . . . . . . . . . . . . . . . 18 ((𝑔X𝑥𝐴 𝐵 ∧ (𝑥𝐴𝑧𝐵)) → 𝐴 ∈ V)
66 mptelixpg 8681 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ V → ((𝑘𝐴 ↦ if(𝑘 = 𝑥, 𝑧, (𝑔𝑘))) ∈ X𝑘𝐴 𝑘 / 𝑥𝐵 ↔ ∀𝑘𝐴 if(𝑘 = 𝑥, 𝑧, (𝑔𝑘)) ∈ 𝑘 / 𝑥𝐵))
6765, 66syl 17 . . . . . . . . . . . . . . . . 17 ((𝑔X𝑥𝐴 𝐵 ∧ (𝑥𝐴𝑧𝐵)) → ((𝑘𝐴 ↦ if(𝑘 = 𝑥, 𝑧, (𝑔𝑘))) ∈ X𝑘𝐴 𝑘 / 𝑥𝐵 ↔ ∀𝑘𝐴 if(𝑘 = 𝑥, 𝑧, (𝑔𝑘)) ∈ 𝑘 / 𝑥𝐵))
6860, 67mpbird 256 . . . . . . . . . . . . . . . 16 ((𝑔X𝑥𝐴 𝐵 ∧ (𝑥𝐴𝑧𝐵)) → (𝑘𝐴 ↦ if(𝑘 = 𝑥, 𝑧, (𝑔𝑘))) ∈ X𝑘𝐴 𝑘 / 𝑥𝐵)
69 nfcv 2906 . . . . . . . . . . . . . . . . 17 𝑘𝐵
7069, 49, 39cbvixp 8660 . . . . . . . . . . . . . . . 16 X𝑥𝐴 𝐵 = X𝑘𝐴 𝑘 / 𝑥𝐵
7168, 70eleqtrrdi 2850 . . . . . . . . . . . . . . 15 ((𝑔X𝑥𝐴 𝐵 ∧ (𝑥𝐴𝑧𝐵)) → (𝑘𝐴 ↦ if(𝑘 = 𝑥, 𝑧, (𝑔𝑘))) ∈ X𝑥𝐴 𝐵)
72 simprl 767 . . . . . . . . . . . . . . 15 ((𝑔X𝑥𝐴 𝐵 ∧ (𝑥𝐴𝑧𝐵)) → 𝑥𝐴)
73 eqid 2738 . . . . . . . . . . . . . . . . . 18 (𝑘𝐴 ↦ if(𝑘 = 𝑥, 𝑧, (𝑔𝑘))) = (𝑘𝐴 ↦ if(𝑘 = 𝑥, 𝑧, (𝑔𝑘)))
74 vex 3426 . . . . . . . . . . . . . . . . . 18 𝑧 ∈ V
7538, 73, 74fvmpt 6857 . . . . . . . . . . . . . . . . 17 (𝑥𝐴 → ((𝑘𝐴 ↦ if(𝑘 = 𝑥, 𝑧, (𝑔𝑘)))‘𝑥) = 𝑧)
7675ad2antrl 724 . . . . . . . . . . . . . . . 16 ((𝑔X𝑥𝐴 𝐵 ∧ (𝑥𝐴𝑧𝐵)) → ((𝑘𝐴 ↦ if(𝑘 = 𝑥, 𝑧, (𝑔𝑘)))‘𝑥) = 𝑧)
7776eqcomd 2744 . . . . . . . . . . . . . . 15 ((𝑔X𝑥𝐴 𝐵 ∧ (𝑥𝐴𝑧𝐵)) → 𝑧 = ((𝑘𝐴 ↦ if(𝑘 = 𝑥, 𝑧, (𝑔𝑘)))‘𝑥))
78 fveq1 6755 . . . . . . . . . . . . . . . . 17 (𝑓 = (𝑘𝐴 ↦ if(𝑘 = 𝑥, 𝑧, (𝑔𝑘))) → (𝑓𝑦) = ((𝑘𝐴 ↦ if(𝑘 = 𝑥, 𝑧, (𝑔𝑘)))‘𝑦))
7978eqeq2d 2749 . . . . . . . . . . . . . . . 16 (𝑓 = (𝑘𝐴 ↦ if(𝑘 = 𝑥, 𝑧, (𝑔𝑘))) → (𝑧 = (𝑓𝑦) ↔ 𝑧 = ((𝑘𝐴 ↦ if(𝑘 = 𝑥, 𝑧, (𝑔𝑘)))‘𝑦)))
80 fveq2 6756 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝑥 → ((𝑘𝐴 ↦ if(𝑘 = 𝑥, 𝑧, (𝑔𝑘)))‘𝑦) = ((𝑘𝐴 ↦ if(𝑘 = 𝑥, 𝑧, (𝑔𝑘)))‘𝑥))
8180eqeq2d 2749 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑥 → (𝑧 = ((𝑘𝐴 ↦ if(𝑘 = 𝑥, 𝑧, (𝑔𝑘)))‘𝑦) ↔ 𝑧 = ((𝑘𝐴 ↦ if(𝑘 = 𝑥, 𝑧, (𝑔𝑘)))‘𝑥)))
8279, 81rspc2ev 3564 . . . . . . . . . . . . . . 15 (((𝑘𝐴 ↦ if(𝑘 = 𝑥, 𝑧, (𝑔𝑘))) ∈ X𝑥𝐴 𝐵𝑥𝐴𝑧 = ((𝑘𝐴 ↦ if(𝑘 = 𝑥, 𝑧, (𝑔𝑘)))‘𝑥)) → ∃𝑓X 𝑥𝐴 𝐵𝑦𝐴 𝑧 = (𝑓𝑦))
8371, 72, 77, 82syl3anc 1369 . . . . . . . . . . . . . 14 ((𝑔X𝑥𝐴 𝐵 ∧ (𝑥𝐴𝑧𝐵)) → ∃𝑓X 𝑥𝐴 𝐵𝑦𝐴 𝑧 = (𝑓𝑦))
8483exp32 420 . . . . . . . . . . . . 13 (𝑔X𝑥𝐴 𝐵 → (𝑥𝐴 → (𝑧𝐵 → ∃𝑓X 𝑥𝐴 𝐵𝑦𝐴 𝑧 = (𝑓𝑦))))
8534, 36, 84rexlimd 3245 . . . . . . . . . . . 12 (𝑔X𝑥𝐴 𝐵 → (∃𝑥𝐴 𝑧𝐵 → ∃𝑓X 𝑥𝐴 𝐵𝑦𝐴 𝑧 = (𝑓𝑦)))
8632, 85syl5bi 241 . . . . . . . . . . 11 (𝑔X𝑥𝐴 𝐵 → (𝑧 𝑥𝐴 𝐵 → ∃𝑓X 𝑥𝐴 𝐵𝑦𝐴 𝑧 = (𝑓𝑦)))
8786exlimiv 1934 . . . . . . . . . 10 (∃𝑔 𝑔X𝑥𝐴 𝐵 → (𝑧 𝑥𝐴 𝐵 → ∃𝑓X 𝑥𝐴 𝐵𝑦𝐴 𝑧 = (𝑓𝑦)))
8831, 87sylbi 216 . . . . . . . . 9 (X𝑥𝐴 𝐵 ≠ ∅ → (𝑧 𝑥𝐴 𝐵 → ∃𝑓X 𝑥𝐴 𝐵𝑦𝐴 𝑧 = (𝑓𝑦)))
89883ad2ant3 1133 . . . . . . . 8 ((𝐴𝑉 𝑥𝐴 𝐵𝑊X𝑥𝐴 𝐵 ≠ ∅) → (𝑧 𝑥𝐴 𝐵 → ∃𝑓X 𝑥𝐴 𝐵𝑦𝐴 𝑧 = (𝑓𝑦)))
9089alrimiv 1931 . . . . . . 7 ((𝐴𝑉 𝑥𝐴 𝐵𝑊X𝑥𝐴 𝐵 ≠ ∅) → ∀𝑧(𝑧 𝑥𝐴 𝐵 → ∃𝑓X 𝑥𝐴 𝐵𝑦𝐴 𝑧 = (𝑓𝑦)))
91 ssab 3991 . . . . . . 7 ( 𝑥𝐴 𝐵 ⊆ {𝑧 ∣ ∃𝑓X 𝑥𝐴 𝐵𝑦𝐴 𝑧 = (𝑓𝑦)} ↔ ∀𝑧(𝑧 𝑥𝐴 𝐵 → ∃𝑓X 𝑥𝐴 𝐵𝑦𝐴 𝑧 = (𝑓𝑦)))
9290, 91sylibr 233 . . . . . 6 ((𝐴𝑉 𝑥𝐴 𝐵𝑊X𝑥𝐴 𝐵 ≠ ∅) → 𝑥𝐴 𝐵 ⊆ {𝑧 ∣ ∃𝑓X 𝑥𝐴 𝐵𝑦𝐴 𝑧 = (𝑓𝑦)})
9317rnmpo 7385 . . . . . 6 ran (𝑓X𝑥𝐴 𝐵, 𝑦𝐴 ↦ (𝑓𝑦)) = {𝑧 ∣ ∃𝑓X 𝑥𝐴 𝐵𝑦𝐴 𝑧 = (𝑓𝑦)}
9492, 93sseqtrrdi 3968 . . . . 5 ((𝐴𝑉 𝑥𝐴 𝐵𝑊X𝑥𝐴 𝐵 ≠ ∅) → 𝑥𝐴 𝐵 ⊆ ran (𝑓X𝑥𝐴 𝐵, 𝑦𝐴 ↦ (𝑓𝑦)))
9519frnd 6592 . . . . 5 ((𝐴𝑉 𝑥𝐴 𝐵𝑊X𝑥𝐴 𝐵 ≠ ∅) → ran (𝑓X𝑥𝐴 𝐵, 𝑦𝐴 ↦ (𝑓𝑦)) ⊆ 𝑥𝐴 𝐵)
9694, 95eqssd 3934 . . . 4 ((𝐴𝑉 𝑥𝐴 𝐵𝑊X𝑥𝐴 𝐵 ≠ ∅) → 𝑥𝐴 𝐵 = ran (𝑓X𝑥𝐴 𝐵, 𝑦𝐴 ↦ (𝑓𝑦)))
97 foeq3 6670 . . . 4 ( 𝑥𝐴 𝐵 = ran (𝑓X𝑥𝐴 𝐵, 𝑦𝐴 ↦ (𝑓𝑦)) → ((𝑓X𝑥𝐴 𝐵, 𝑦𝐴 ↦ (𝑓𝑦)):(X𝑥𝐴 𝐵 × 𝐴)–onto 𝑥𝐴 𝐵 ↔ (𝑓X𝑥𝐴 𝐵, 𝑦𝐴 ↦ (𝑓𝑦)):(X𝑥𝐴 𝐵 × 𝐴)–onto→ran (𝑓X𝑥𝐴 𝐵, 𝑦𝐴 ↦ (𝑓𝑦))))
9896, 97syl 17 . . 3 ((𝐴𝑉 𝑥𝐴 𝐵𝑊X𝑥𝐴 𝐵 ≠ ∅) → ((𝑓X𝑥𝐴 𝐵, 𝑦𝐴 ↦ (𝑓𝑦)):(X𝑥𝐴 𝐵 × 𝐴)–onto 𝑥𝐴 𝐵 ↔ (𝑓X𝑥𝐴 𝐵, 𝑦𝐴 ↦ (𝑓𝑦)):(X𝑥𝐴 𝐵 × 𝐴)–onto→ran (𝑓X𝑥𝐴 𝐵, 𝑦𝐴 ↦ (𝑓𝑦))))
9930, 98mpbird 256 . 2 ((𝐴𝑉 𝑥𝐴 𝐵𝑊X𝑥𝐴 𝐵 ≠ ∅) → (𝑓X𝑥𝐴 𝐵, 𝑦𝐴 ↦ (𝑓𝑦)):(X𝑥𝐴 𝐵 × 𝐴)–onto 𝑥𝐴 𝐵)
100 fowdom 9260 . 2 (((𝑓X𝑥𝐴 𝐵, 𝑦𝐴 ↦ (𝑓𝑦)) ∈ V ∧ (𝑓X𝑥𝐴 𝐵, 𝑦𝐴 ↦ (𝑓𝑦)):(X𝑥𝐴 𝐵 × 𝐴)–onto 𝑥𝐴 𝐵) → 𝑥𝐴 𝐵* (X𝑥𝐴 𝐵 × 𝐴))
10127, 99, 100syl2anc 583 1 ((𝐴𝑉 𝑥𝐴 𝐵𝑊X𝑥𝐴 𝐵 ≠ ∅) → 𝑥𝐴 𝐵* (X𝑥𝐴 𝐵 × 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  w3a 1085  wal 1537   = wceq 1539  wex 1783  wcel 2108  {cab 2715  wne 2942  wral 3063  wrex 3064  Vcvv 3422  csb 3828  wss 3883  c0 4253  ifcif 4456   ciun 4921   class class class wbr 5070  cmpt 5153   × cxp 5578  dom cdm 5580  ran crn 5581   Fn wfn 6413  wf 6414  ontowfo 6416  cfv 6418  (class class class)co 7255  cmpo 7257  m cmap 8573  Xcixp 8643  * cwdom 9253
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-1st 7804  df-2nd 7805  df-map 8575  df-ixp 8644  df-wdom 9254
This theorem is referenced by:  ptcmplem2  23112
  Copyright terms: Public domain W3C validator