MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prdsxmslem2 Structured version   Visualization version   GIF version

Theorem prdsxmslem2 24563
Description: Lemma for prdsxms 24564. The topology generated by the supremum metric is the same as the product topology, when the index set is finite. (Contributed by Mario Carneiro, 28-Aug-2015.)
Hypotheses
Ref Expression
prdsxms.y 𝑌 = (𝑆Xs𝑅)
prdsxms.s (𝜑𝑆𝑊)
prdsxms.i (𝜑𝐼 ∈ Fin)
prdsxms.d 𝐷 = (dist‘𝑌)
prdsxms.b 𝐵 = (Base‘𝑌)
prdsxms.r (𝜑𝑅:𝐼⟶∞MetSp)
prdsxms.j 𝐽 = (TopOpen‘𝑌)
prdsxms.v 𝑉 = (Base‘(𝑅𝑘))
prdsxms.e 𝐸 = ((dist‘(𝑅𝑘)) ↾ (𝑉 × 𝑉))
prdsxms.k 𝐾 = (TopOpen‘(𝑅𝑘))
prdsxms.c 𝐶 = {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑔𝑘) ∈ ((TopOpen ∘ 𝑅)‘𝑘) ∧ ∃𝑧 ∈ Fin ∀𝑘 ∈ (𝐼𝑧)(𝑔𝑘) = ((TopOpen ∘ 𝑅)‘𝑘)) ∧ 𝑥 = X𝑘𝐼 (𝑔𝑘))}
Assertion
Ref Expression
prdsxmslem2 (𝜑𝐽 = (MetOpen‘𝐷))
Distinct variable groups:   𝑔,𝑘,𝐵   𝑥,𝑔,𝐷,𝑘   𝑧,𝑔,𝐼,𝑘,𝑥   𝑔,𝐸   𝑆,𝑔,𝑘,𝑥   𝑔,𝑊,𝑘,𝑥   𝑔,𝑌,𝑘,𝑥   𝜑,𝑔,𝑘,𝑥   𝑅,𝑔,𝑘,𝑥,𝑧
Allowed substitution hints:   𝜑(𝑧)   𝐵(𝑥,𝑧)   𝐶(𝑥,𝑧,𝑔,𝑘)   𝐷(𝑧)   𝑆(𝑧)   𝐸(𝑥,𝑧,𝑘)   𝐽(𝑥,𝑧,𝑔,𝑘)   𝐾(𝑥,𝑧,𝑔,𝑘)   𝑉(𝑥,𝑧,𝑔,𝑘)   𝑊(𝑧)   𝑌(𝑧)

Proof of Theorem prdsxmslem2
Dummy variables 𝑝 𝑟 𝑤 𝑦 𝑚 𝑢 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prdsxms.i . . . 4 (𝜑𝐼 ∈ Fin)
2 topnfn 17485 . . . . 5 TopOpen Fn V
3 prdsxms.r . . . . . . 7 (𝜑𝑅:𝐼⟶∞MetSp)
43ffnd 6748 . . . . . 6 (𝜑𝑅 Fn 𝐼)
5 dffn2 6749 . . . . . 6 (𝑅 Fn 𝐼𝑅:𝐼⟶V)
64, 5sylib 218 . . . . 5 (𝜑𝑅:𝐼⟶V)
7 fnfco 6786 . . . . 5 ((TopOpen Fn V ∧ 𝑅:𝐼⟶V) → (TopOpen ∘ 𝑅) Fn 𝐼)
82, 6, 7sylancr 586 . . . 4 (𝜑 → (TopOpen ∘ 𝑅) Fn 𝐼)
9 prdsxms.c . . . . 5 𝐶 = {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑔𝑘) ∈ ((TopOpen ∘ 𝑅)‘𝑘) ∧ ∃𝑧 ∈ Fin ∀𝑘 ∈ (𝐼𝑧)(𝑔𝑘) = ((TopOpen ∘ 𝑅)‘𝑘)) ∧ 𝑥 = X𝑘𝐼 (𝑔𝑘))}
109ptval 23599 . . . 4 ((𝐼 ∈ Fin ∧ (TopOpen ∘ 𝑅) Fn 𝐼) → (∏t‘(TopOpen ∘ 𝑅)) = (topGen‘𝐶))
111, 8, 10syl2anc 583 . . 3 (𝜑 → (∏t‘(TopOpen ∘ 𝑅)) = (topGen‘𝐶))
12 eldifsn 4811 . . . . . . . 8 (𝑥 ∈ (ran (ball‘𝐷) ∖ {∅}) ↔ (𝑥 ∈ ran (ball‘𝐷) ∧ 𝑥 ≠ ∅))
13 prdsxms.y . . . . . . . . . . . 12 𝑌 = (𝑆Xs𝑅)
14 prdsxms.s . . . . . . . . . . . 12 (𝜑𝑆𝑊)
15 prdsxms.d . . . . . . . . . . . 12 𝐷 = (dist‘𝑌)
16 prdsxms.b . . . . . . . . . . . 12 𝐵 = (Base‘𝑌)
1713, 14, 1, 15, 16, 3prdsxmslem1 24562 . . . . . . . . . . 11 (𝜑𝐷 ∈ (∞Met‘𝐵))
18 blrn 24440 . . . . . . . . . . 11 (𝐷 ∈ (∞Met‘𝐵) → (𝑥 ∈ ran (ball‘𝐷) ↔ ∃𝑝𝐵𝑟 ∈ ℝ* 𝑥 = (𝑝(ball‘𝐷)𝑟)))
1917, 18syl 17 . . . . . . . . . 10 (𝜑 → (𝑥 ∈ ran (ball‘𝐷) ↔ ∃𝑝𝐵𝑟 ∈ ℝ* 𝑥 = (𝑝(ball‘𝐷)𝑟)))
2017adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑝𝐵𝑟 ∈ ℝ*)) → 𝐷 ∈ (∞Met‘𝐵))
21 simprl 770 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑝𝐵𝑟 ∈ ℝ*)) → 𝑝𝐵)
22 simprr 772 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑝𝐵𝑟 ∈ ℝ*)) → 𝑟 ∈ ℝ*)
23 xbln0 24445 . . . . . . . . . . . . . . . 16 ((𝐷 ∈ (∞Met‘𝐵) ∧ 𝑝𝐵𝑟 ∈ ℝ*) → ((𝑝(ball‘𝐷)𝑟) ≠ ∅ ↔ 0 < 𝑟))
2420, 21, 22, 23syl3anc 1371 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑝𝐵𝑟 ∈ ℝ*)) → ((𝑝(ball‘𝐷)𝑟) ≠ ∅ ↔ 0 < 𝑟))
2513ad2ant1 1133 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑝𝐵𝑟 ∈ ℝ*) ∧ 0 < 𝑟) → 𝐼 ∈ Fin)
2625mptexd 7261 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑝𝐵𝑟 ∈ ℝ*) ∧ 0 < 𝑟) → (𝑛𝐼 ↦ ((𝑝𝑛)(ball‘((dist‘(𝑅𝑛)) ↾ ((Base‘(𝑅𝑛)) × (Base‘(𝑅𝑛)))))𝑟)) ∈ V)
27 ovex 7481 . . . . . . . . . . . . . . . . . . 19 ((𝑝𝑛)(ball‘((dist‘(𝑅𝑛)) ↾ ((Base‘(𝑅𝑛)) × (Base‘(𝑅𝑛)))))𝑟) ∈ V
2827rgenw 3071 . . . . . . . . . . . . . . . . . 18 𝑛𝐼 ((𝑝𝑛)(ball‘((dist‘(𝑅𝑛)) ↾ ((Base‘(𝑅𝑛)) × (Base‘(𝑅𝑛)))))𝑟) ∈ V
29 eqid 2740 . . . . . . . . . . . . . . . . . . 19 (𝑛𝐼 ↦ ((𝑝𝑛)(ball‘((dist‘(𝑅𝑛)) ↾ ((Base‘(𝑅𝑛)) × (Base‘(𝑅𝑛)))))𝑟)) = (𝑛𝐼 ↦ ((𝑝𝑛)(ball‘((dist‘(𝑅𝑛)) ↾ ((Base‘(𝑅𝑛)) × (Base‘(𝑅𝑛)))))𝑟))
3029fnmpt 6720 . . . . . . . . . . . . . . . . . 18 (∀𝑛𝐼 ((𝑝𝑛)(ball‘((dist‘(𝑅𝑛)) ↾ ((Base‘(𝑅𝑛)) × (Base‘(𝑅𝑛)))))𝑟) ∈ V → (𝑛𝐼 ↦ ((𝑝𝑛)(ball‘((dist‘(𝑅𝑛)) ↾ ((Base‘(𝑅𝑛)) × (Base‘(𝑅𝑛)))))𝑟)) Fn 𝐼)
3128, 30mp1i 13 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑝𝐵𝑟 ∈ ℝ*) ∧ 0 < 𝑟) → (𝑛𝐼 ↦ ((𝑝𝑛)(ball‘((dist‘(𝑅𝑛)) ↾ ((Base‘(𝑅𝑛)) × (Base‘(𝑅𝑛)))))𝑟)) Fn 𝐼)
3233ad2ant1 1133 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑝𝐵𝑟 ∈ ℝ*) ∧ 0 < 𝑟) → 𝑅:𝐼⟶∞MetSp)
3332ffvelcdmda 7118 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑝𝐵𝑟 ∈ ℝ*) ∧ 0 < 𝑟) ∧ 𝑘𝐼) → (𝑅𝑘) ∈ ∞MetSp)
34 prdsxms.v . . . . . . . . . . . . . . . . . . . . . 22 𝑉 = (Base‘(𝑅𝑘))
35 prdsxms.e . . . . . . . . . . . . . . . . . . . . . 22 𝐸 = ((dist‘(𝑅𝑘)) ↾ (𝑉 × 𝑉))
3634, 35xmsxmet 24487 . . . . . . . . . . . . . . . . . . . . 21 ((𝑅𝑘) ∈ ∞MetSp → 𝐸 ∈ (∞Met‘𝑉))
3733, 36syl 17 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑝𝐵𝑟 ∈ ℝ*) ∧ 0 < 𝑟) ∧ 𝑘𝐼) → 𝐸 ∈ (∞Met‘𝑉))
38 eqid 2740 . . . . . . . . . . . . . . . . . . . . . 22 (𝑆Xs(𝑘𝐼 ↦ (𝑅𝑘))) = (𝑆Xs(𝑘𝐼 ↦ (𝑅𝑘)))
39 eqid 2740 . . . . . . . . . . . . . . . . . . . . . 22 (Base‘(𝑆Xs(𝑘𝐼 ↦ (𝑅𝑘)))) = (Base‘(𝑆Xs(𝑘𝐼 ↦ (𝑅𝑘))))
40143ad2ant1 1133 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑝𝐵𝑟 ∈ ℝ*) ∧ 0 < 𝑟) → 𝑆𝑊)
4133ralrimiva 3152 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑝𝐵𝑟 ∈ ℝ*) ∧ 0 < 𝑟) → ∀𝑘𝐼 (𝑅𝑘) ∈ ∞MetSp)
42 simp2l 1199 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ (𝑝𝐵𝑟 ∈ ℝ*) ∧ 0 < 𝑟) → 𝑝𝐵)
4332feqmptd 6990 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑 ∧ (𝑝𝐵𝑟 ∈ ℝ*) ∧ 0 < 𝑟) → 𝑅 = (𝑘𝐼 ↦ (𝑅𝑘)))
4443oveq2d 7464 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑 ∧ (𝑝𝐵𝑟 ∈ ℝ*) ∧ 0 < 𝑟) → (𝑆Xs𝑅) = (𝑆Xs(𝑘𝐼 ↦ (𝑅𝑘))))
4513, 44eqtrid 2792 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑 ∧ (𝑝𝐵𝑟 ∈ ℝ*) ∧ 0 < 𝑟) → 𝑌 = (𝑆Xs(𝑘𝐼 ↦ (𝑅𝑘))))
4645fveq2d 6924 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑 ∧ (𝑝𝐵𝑟 ∈ ℝ*) ∧ 0 < 𝑟) → (Base‘𝑌) = (Base‘(𝑆Xs(𝑘𝐼 ↦ (𝑅𝑘)))))
4716, 46eqtrid 2792 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ (𝑝𝐵𝑟 ∈ ℝ*) ∧ 0 < 𝑟) → 𝐵 = (Base‘(𝑆Xs(𝑘𝐼 ↦ (𝑅𝑘)))))
4842, 47eleqtrd 2846 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑝𝐵𝑟 ∈ ℝ*) ∧ 0 < 𝑟) → 𝑝 ∈ (Base‘(𝑆Xs(𝑘𝐼 ↦ (𝑅𝑘)))))
4938, 39, 40, 25, 41, 34, 48prdsbascl 17543 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑝𝐵𝑟 ∈ ℝ*) ∧ 0 < 𝑟) → ∀𝑘𝐼 (𝑝𝑘) ∈ 𝑉)
5049r19.21bi 3257 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑝𝐵𝑟 ∈ ℝ*) ∧ 0 < 𝑟) ∧ 𝑘𝐼) → (𝑝𝑘) ∈ 𝑉)
51 simp2r 1200 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑝𝐵𝑟 ∈ ℝ*) ∧ 0 < 𝑟) → 𝑟 ∈ ℝ*)
5251adantr 480 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑝𝐵𝑟 ∈ ℝ*) ∧ 0 < 𝑟) ∧ 𝑘𝐼) → 𝑟 ∈ ℝ*)
53 eqid 2740 . . . . . . . . . . . . . . . . . . . . 21 (MetOpen‘𝐸) = (MetOpen‘𝐸)
5453blopn 24534 . . . . . . . . . . . . . . . . . . . 20 ((𝐸 ∈ (∞Met‘𝑉) ∧ (𝑝𝑘) ∈ 𝑉𝑟 ∈ ℝ*) → ((𝑝𝑘)(ball‘𝐸)𝑟) ∈ (MetOpen‘𝐸))
5537, 50, 52, 54syl3anc 1371 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑝𝐵𝑟 ∈ ℝ*) ∧ 0 < 𝑟) ∧ 𝑘𝐼) → ((𝑝𝑘)(ball‘𝐸)𝑟) ∈ (MetOpen‘𝐸))
56 2fveq3 6925 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑛 = 𝑘 → (dist‘(𝑅𝑛)) = (dist‘(𝑅𝑘)))
57 2fveq3 6925 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑛 = 𝑘 → (Base‘(𝑅𝑛)) = (Base‘(𝑅𝑘)))
5857, 34eqtr4di 2798 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑛 = 𝑘 → (Base‘(𝑅𝑛)) = 𝑉)
5958sqxpeqd 5732 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑛 = 𝑘 → ((Base‘(𝑅𝑛)) × (Base‘(𝑅𝑛))) = (𝑉 × 𝑉))
6056, 59reseq12d 6010 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑛 = 𝑘 → ((dist‘(𝑅𝑛)) ↾ ((Base‘(𝑅𝑛)) × (Base‘(𝑅𝑛)))) = ((dist‘(𝑅𝑘)) ↾ (𝑉 × 𝑉)))
6160, 35eqtr4di 2798 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑛 = 𝑘 → ((dist‘(𝑅𝑛)) ↾ ((Base‘(𝑅𝑛)) × (Base‘(𝑅𝑛)))) = 𝐸)
6261fveq2d 6924 . . . . . . . . . . . . . . . . . . . . . 22 (𝑛 = 𝑘 → (ball‘((dist‘(𝑅𝑛)) ↾ ((Base‘(𝑅𝑛)) × (Base‘(𝑅𝑛))))) = (ball‘𝐸))
63 fveq2 6920 . . . . . . . . . . . . . . . . . . . . . 22 (𝑛 = 𝑘 → (𝑝𝑛) = (𝑝𝑘))
64 eqidd 2741 . . . . . . . . . . . . . . . . . . . . . 22 (𝑛 = 𝑘𝑟 = 𝑟)
6562, 63, 64oveq123d 7469 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 = 𝑘 → ((𝑝𝑛)(ball‘((dist‘(𝑅𝑛)) ↾ ((Base‘(𝑅𝑛)) × (Base‘(𝑅𝑛)))))𝑟) = ((𝑝𝑘)(ball‘𝐸)𝑟))
66 ovex 7481 . . . . . . . . . . . . . . . . . . . . 21 ((𝑝𝑘)(ball‘𝐸)𝑟) ∈ V
6765, 29, 66fvmpt 7029 . . . . . . . . . . . . . . . . . . . 20 (𝑘𝐼 → ((𝑛𝐼 ↦ ((𝑝𝑛)(ball‘((dist‘(𝑅𝑛)) ↾ ((Base‘(𝑅𝑛)) × (Base‘(𝑅𝑛)))))𝑟))‘𝑘) = ((𝑝𝑘)(ball‘𝐸)𝑟))
6867adantl 481 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑝𝐵𝑟 ∈ ℝ*) ∧ 0 < 𝑟) ∧ 𝑘𝐼) → ((𝑛𝐼 ↦ ((𝑝𝑛)(ball‘((dist‘(𝑅𝑛)) ↾ ((Base‘(𝑅𝑛)) × (Base‘(𝑅𝑛)))))𝑟))‘𝑘) = ((𝑝𝑘)(ball‘𝐸)𝑟))
69 fvco3 7021 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑅:𝐼⟶∞MetSp ∧ 𝑘𝐼) → ((TopOpen ∘ 𝑅)‘𝑘) = (TopOpen‘(𝑅𝑘)))
70 prdsxms.k . . . . . . . . . . . . . . . . . . . . . 22 𝐾 = (TopOpen‘(𝑅𝑘))
7169, 70eqtr4di 2798 . . . . . . . . . . . . . . . . . . . . 21 ((𝑅:𝐼⟶∞MetSp ∧ 𝑘𝐼) → ((TopOpen ∘ 𝑅)‘𝑘) = 𝐾)
7232, 71sylan 579 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑝𝐵𝑟 ∈ ℝ*) ∧ 0 < 𝑟) ∧ 𝑘𝐼) → ((TopOpen ∘ 𝑅)‘𝑘) = 𝐾)
7370, 34, 35xmstopn 24482 . . . . . . . . . . . . . . . . . . . . 21 ((𝑅𝑘) ∈ ∞MetSp → 𝐾 = (MetOpen‘𝐸))
7433, 73syl 17 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑝𝐵𝑟 ∈ ℝ*) ∧ 0 < 𝑟) ∧ 𝑘𝐼) → 𝐾 = (MetOpen‘𝐸))
7572, 74eqtrd 2780 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑝𝐵𝑟 ∈ ℝ*) ∧ 0 < 𝑟) ∧ 𝑘𝐼) → ((TopOpen ∘ 𝑅)‘𝑘) = (MetOpen‘𝐸))
7655, 68, 753eltr4d 2859 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑝𝐵𝑟 ∈ ℝ*) ∧ 0 < 𝑟) ∧ 𝑘𝐼) → ((𝑛𝐼 ↦ ((𝑝𝑛)(ball‘((dist‘(𝑅𝑛)) ↾ ((Base‘(𝑅𝑛)) × (Base‘(𝑅𝑛)))))𝑟))‘𝑘) ∈ ((TopOpen ∘ 𝑅)‘𝑘))
7776ralrimiva 3152 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑝𝐵𝑟 ∈ ℝ*) ∧ 0 < 𝑟) → ∀𝑘𝐼 ((𝑛𝐼 ↦ ((𝑝𝑛)(ball‘((dist‘(𝑅𝑛)) ↾ ((Base‘(𝑅𝑛)) × (Base‘(𝑅𝑛)))))𝑟))‘𝑘) ∈ ((TopOpen ∘ 𝑅)‘𝑘))
7832feqmptd 6990 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑 ∧ (𝑝𝐵𝑟 ∈ ℝ*) ∧ 0 < 𝑟) → 𝑅 = (𝑛𝐼 ↦ (𝑅𝑛)))
7978oveq2d 7464 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ (𝑝𝐵𝑟 ∈ ℝ*) ∧ 0 < 𝑟) → (𝑆Xs𝑅) = (𝑆Xs(𝑛𝐼 ↦ (𝑅𝑛))))
8013, 79eqtrid 2792 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑝𝐵𝑟 ∈ ℝ*) ∧ 0 < 𝑟) → 𝑌 = (𝑆Xs(𝑛𝐼 ↦ (𝑅𝑛))))
8180fveq2d 6924 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑝𝐵𝑟 ∈ ℝ*) ∧ 0 < 𝑟) → (dist‘𝑌) = (dist‘(𝑆Xs(𝑛𝐼 ↦ (𝑅𝑛)))))
8215, 81eqtrid 2792 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑝𝐵𝑟 ∈ ℝ*) ∧ 0 < 𝑟) → 𝐷 = (dist‘(𝑆Xs(𝑛𝐼 ↦ (𝑅𝑛)))))
8382fveq2d 6924 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑝𝐵𝑟 ∈ ℝ*) ∧ 0 < 𝑟) → (ball‘𝐷) = (ball‘(dist‘(𝑆Xs(𝑛𝐼 ↦ (𝑅𝑛))))))
8483oveqd 7465 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑝𝐵𝑟 ∈ ℝ*) ∧ 0 < 𝑟) → (𝑝(ball‘𝐷)𝑟) = (𝑝(ball‘(dist‘(𝑆Xs(𝑛𝐼 ↦ (𝑅𝑛)))))𝑟))
85 fveq2 6920 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 = 𝑘 → (𝑅𝑛) = (𝑅𝑘))
8685cbvmptv 5279 . . . . . . . . . . . . . . . . . . . 20 (𝑛𝐼 ↦ (𝑅𝑛)) = (𝑘𝐼 ↦ (𝑅𝑘))
8786oveq2i 7459 . . . . . . . . . . . . . . . . . . 19 (𝑆Xs(𝑛𝐼 ↦ (𝑅𝑛))) = (𝑆Xs(𝑘𝐼 ↦ (𝑅𝑘)))
88 eqid 2740 . . . . . . . . . . . . . . . . . . 19 (Base‘(𝑆Xs(𝑛𝐼 ↦ (𝑅𝑛)))) = (Base‘(𝑆Xs(𝑛𝐼 ↦ (𝑅𝑛))))
89 eqid 2740 . . . . . . . . . . . . . . . . . . 19 (dist‘(𝑆Xs(𝑛𝐼 ↦ (𝑅𝑛)))) = (dist‘(𝑆Xs(𝑛𝐼 ↦ (𝑅𝑛))))
9080fveq2d 6924 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑝𝐵𝑟 ∈ ℝ*) ∧ 0 < 𝑟) → (Base‘𝑌) = (Base‘(𝑆Xs(𝑛𝐼 ↦ (𝑅𝑛)))))
9116, 90eqtrid 2792 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑝𝐵𝑟 ∈ ℝ*) ∧ 0 < 𝑟) → 𝐵 = (Base‘(𝑆Xs(𝑛𝐼 ↦ (𝑅𝑛)))))
9242, 91eleqtrd 2846 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑝𝐵𝑟 ∈ ℝ*) ∧ 0 < 𝑟) → 𝑝 ∈ (Base‘(𝑆Xs(𝑛𝐼 ↦ (𝑅𝑛)))))
93 simp3 1138 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑝𝐵𝑟 ∈ ℝ*) ∧ 0 < 𝑟) → 0 < 𝑟)
9487, 88, 34, 35, 89, 40, 25, 33, 37, 92, 51, 93prdsbl 24525 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑝𝐵𝑟 ∈ ℝ*) ∧ 0 < 𝑟) → (𝑝(ball‘(dist‘(𝑆Xs(𝑛𝐼 ↦ (𝑅𝑛)))))𝑟) = X𝑘𝐼 ((𝑝𝑘)(ball‘𝐸)𝑟))
9584, 94eqtrd 2780 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑝𝐵𝑟 ∈ ℝ*) ∧ 0 < 𝑟) → (𝑝(ball‘𝐷)𝑟) = X𝑘𝐼 ((𝑝𝑘)(ball‘𝐸)𝑟))
96 fneq1 6670 . . . . . . . . . . . . . . . . . . . . 21 (𝑔 = (𝑛𝐼 ↦ ((𝑝𝑛)(ball‘((dist‘(𝑅𝑛)) ↾ ((Base‘(𝑅𝑛)) × (Base‘(𝑅𝑛)))))𝑟)) → (𝑔 Fn 𝐼 ↔ (𝑛𝐼 ↦ ((𝑝𝑛)(ball‘((dist‘(𝑅𝑛)) ↾ ((Base‘(𝑅𝑛)) × (Base‘(𝑅𝑛)))))𝑟)) Fn 𝐼))
97 fveq1 6919 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑔 = (𝑛𝐼 ↦ ((𝑝𝑛)(ball‘((dist‘(𝑅𝑛)) ↾ ((Base‘(𝑅𝑛)) × (Base‘(𝑅𝑛)))))𝑟)) → (𝑔𝑘) = ((𝑛𝐼 ↦ ((𝑝𝑛)(ball‘((dist‘(𝑅𝑛)) ↾ ((Base‘(𝑅𝑛)) × (Base‘(𝑅𝑛)))))𝑟))‘𝑘))
9897eleq1d 2829 . . . . . . . . . . . . . . . . . . . . . 22 (𝑔 = (𝑛𝐼 ↦ ((𝑝𝑛)(ball‘((dist‘(𝑅𝑛)) ↾ ((Base‘(𝑅𝑛)) × (Base‘(𝑅𝑛)))))𝑟)) → ((𝑔𝑘) ∈ ((TopOpen ∘ 𝑅)‘𝑘) ↔ ((𝑛𝐼 ↦ ((𝑝𝑛)(ball‘((dist‘(𝑅𝑛)) ↾ ((Base‘(𝑅𝑛)) × (Base‘(𝑅𝑛)))))𝑟))‘𝑘) ∈ ((TopOpen ∘ 𝑅)‘𝑘)))
9998ralbidv 3184 . . . . . . . . . . . . . . . . . . . . 21 (𝑔 = (𝑛𝐼 ↦ ((𝑝𝑛)(ball‘((dist‘(𝑅𝑛)) ↾ ((Base‘(𝑅𝑛)) × (Base‘(𝑅𝑛)))))𝑟)) → (∀𝑘𝐼 (𝑔𝑘) ∈ ((TopOpen ∘ 𝑅)‘𝑘) ↔ ∀𝑘𝐼 ((𝑛𝐼 ↦ ((𝑝𝑛)(ball‘((dist‘(𝑅𝑛)) ↾ ((Base‘(𝑅𝑛)) × (Base‘(𝑅𝑛)))))𝑟))‘𝑘) ∈ ((TopOpen ∘ 𝑅)‘𝑘)))
10096, 99anbi12d 631 . . . . . . . . . . . . . . . . . . . 20 (𝑔 = (𝑛𝐼 ↦ ((𝑝𝑛)(ball‘((dist‘(𝑅𝑛)) ↾ ((Base‘(𝑅𝑛)) × (Base‘(𝑅𝑛)))))𝑟)) → ((𝑔 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑔𝑘) ∈ ((TopOpen ∘ 𝑅)‘𝑘)) ↔ ((𝑛𝐼 ↦ ((𝑝𝑛)(ball‘((dist‘(𝑅𝑛)) ↾ ((Base‘(𝑅𝑛)) × (Base‘(𝑅𝑛)))))𝑟)) Fn 𝐼 ∧ ∀𝑘𝐼 ((𝑛𝐼 ↦ ((𝑝𝑛)(ball‘((dist‘(𝑅𝑛)) ↾ ((Base‘(𝑅𝑛)) × (Base‘(𝑅𝑛)))))𝑟))‘𝑘) ∈ ((TopOpen ∘ 𝑅)‘𝑘))))
10197, 67sylan9eq 2800 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑔 = (𝑛𝐼 ↦ ((𝑝𝑛)(ball‘((dist‘(𝑅𝑛)) ↾ ((Base‘(𝑅𝑛)) × (Base‘(𝑅𝑛)))))𝑟)) ∧ 𝑘𝐼) → (𝑔𝑘) = ((𝑝𝑘)(ball‘𝐸)𝑟))
102101ixpeq2dva 8970 . . . . . . . . . . . . . . . . . . . . 21 (𝑔 = (𝑛𝐼 ↦ ((𝑝𝑛)(ball‘((dist‘(𝑅𝑛)) ↾ ((Base‘(𝑅𝑛)) × (Base‘(𝑅𝑛)))))𝑟)) → X𝑘𝐼 (𝑔𝑘) = X𝑘𝐼 ((𝑝𝑘)(ball‘𝐸)𝑟))
103102eqeq2d 2751 . . . . . . . . . . . . . . . . . . . 20 (𝑔 = (𝑛𝐼 ↦ ((𝑝𝑛)(ball‘((dist‘(𝑅𝑛)) ↾ ((Base‘(𝑅𝑛)) × (Base‘(𝑅𝑛)))))𝑟)) → ((𝑝(ball‘𝐷)𝑟) = X𝑘𝐼 (𝑔𝑘) ↔ (𝑝(ball‘𝐷)𝑟) = X𝑘𝐼 ((𝑝𝑘)(ball‘𝐸)𝑟)))
104100, 103anbi12d 631 . . . . . . . . . . . . . . . . . . 19 (𝑔 = (𝑛𝐼 ↦ ((𝑝𝑛)(ball‘((dist‘(𝑅𝑛)) ↾ ((Base‘(𝑅𝑛)) × (Base‘(𝑅𝑛)))))𝑟)) → (((𝑔 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑔𝑘) ∈ ((TopOpen ∘ 𝑅)‘𝑘)) ∧ (𝑝(ball‘𝐷)𝑟) = X𝑘𝐼 (𝑔𝑘)) ↔ (((𝑛𝐼 ↦ ((𝑝𝑛)(ball‘((dist‘(𝑅𝑛)) ↾ ((Base‘(𝑅𝑛)) × (Base‘(𝑅𝑛)))))𝑟)) Fn 𝐼 ∧ ∀𝑘𝐼 ((𝑛𝐼 ↦ ((𝑝𝑛)(ball‘((dist‘(𝑅𝑛)) ↾ ((Base‘(𝑅𝑛)) × (Base‘(𝑅𝑛)))))𝑟))‘𝑘) ∈ ((TopOpen ∘ 𝑅)‘𝑘)) ∧ (𝑝(ball‘𝐷)𝑟) = X𝑘𝐼 ((𝑝𝑘)(ball‘𝐸)𝑟))))
105104spcegv 3610 . . . . . . . . . . . . . . . . . 18 ((𝑛𝐼 ↦ ((𝑝𝑛)(ball‘((dist‘(𝑅𝑛)) ↾ ((Base‘(𝑅𝑛)) × (Base‘(𝑅𝑛)))))𝑟)) ∈ V → ((((𝑛𝐼 ↦ ((𝑝𝑛)(ball‘((dist‘(𝑅𝑛)) ↾ ((Base‘(𝑅𝑛)) × (Base‘(𝑅𝑛)))))𝑟)) Fn 𝐼 ∧ ∀𝑘𝐼 ((𝑛𝐼 ↦ ((𝑝𝑛)(ball‘((dist‘(𝑅𝑛)) ↾ ((Base‘(𝑅𝑛)) × (Base‘(𝑅𝑛)))))𝑟))‘𝑘) ∈ ((TopOpen ∘ 𝑅)‘𝑘)) ∧ (𝑝(ball‘𝐷)𝑟) = X𝑘𝐼 ((𝑝𝑘)(ball‘𝐸)𝑟)) → ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑔𝑘) ∈ ((TopOpen ∘ 𝑅)‘𝑘)) ∧ (𝑝(ball‘𝐷)𝑟) = X𝑘𝐼 (𝑔𝑘))))
1061053impib 1116 . . . . . . . . . . . . . . . . 17 (((𝑛𝐼 ↦ ((𝑝𝑛)(ball‘((dist‘(𝑅𝑛)) ↾ ((Base‘(𝑅𝑛)) × (Base‘(𝑅𝑛)))))𝑟)) ∈ V ∧ ((𝑛𝐼 ↦ ((𝑝𝑛)(ball‘((dist‘(𝑅𝑛)) ↾ ((Base‘(𝑅𝑛)) × (Base‘(𝑅𝑛)))))𝑟)) Fn 𝐼 ∧ ∀𝑘𝐼 ((𝑛𝐼 ↦ ((𝑝𝑛)(ball‘((dist‘(𝑅𝑛)) ↾ ((Base‘(𝑅𝑛)) × (Base‘(𝑅𝑛)))))𝑟))‘𝑘) ∈ ((TopOpen ∘ 𝑅)‘𝑘)) ∧ (𝑝(ball‘𝐷)𝑟) = X𝑘𝐼 ((𝑝𝑘)(ball‘𝐸)𝑟)) → ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑔𝑘) ∈ ((TopOpen ∘ 𝑅)‘𝑘)) ∧ (𝑝(ball‘𝐷)𝑟) = X𝑘𝐼 (𝑔𝑘)))
10726, 31, 77, 95, 106syl121anc 1375 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑝𝐵𝑟 ∈ ℝ*) ∧ 0 < 𝑟) → ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑔𝑘) ∈ ((TopOpen ∘ 𝑅)‘𝑘)) ∧ (𝑝(ball‘𝐷)𝑟) = X𝑘𝐼 (𝑔𝑘)))
1081073expia 1121 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑝𝐵𝑟 ∈ ℝ*)) → (0 < 𝑟 → ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑔𝑘) ∈ ((TopOpen ∘ 𝑅)‘𝑘)) ∧ (𝑝(ball‘𝐷)𝑟) = X𝑘𝐼 (𝑔𝑘))))
10924, 108sylbid 240 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑝𝐵𝑟 ∈ ℝ*)) → ((𝑝(ball‘𝐷)𝑟) ≠ ∅ → ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑔𝑘) ∈ ((TopOpen ∘ 𝑅)‘𝑘)) ∧ (𝑝(ball‘𝐷)𝑟) = X𝑘𝐼 (𝑔𝑘))))
110109adantr 480 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑝𝐵𝑟 ∈ ℝ*)) ∧ 𝑥 = (𝑝(ball‘𝐷)𝑟)) → ((𝑝(ball‘𝐷)𝑟) ≠ ∅ → ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑔𝑘) ∈ ((TopOpen ∘ 𝑅)‘𝑘)) ∧ (𝑝(ball‘𝐷)𝑟) = X𝑘𝐼 (𝑔𝑘))))
111 simpr 484 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑝𝐵𝑟 ∈ ℝ*)) ∧ 𝑥 = (𝑝(ball‘𝐷)𝑟)) → 𝑥 = (𝑝(ball‘𝐷)𝑟))
112111neeq1d 3006 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑝𝐵𝑟 ∈ ℝ*)) ∧ 𝑥 = (𝑝(ball‘𝐷)𝑟)) → (𝑥 ≠ ∅ ↔ (𝑝(ball‘𝐷)𝑟) ≠ ∅))
113 df-3an 1089 . . . . . . . . . . . . . . . 16 ((𝑔 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑔𝑘) ∈ ((TopOpen ∘ 𝑅)‘𝑘) ∧ ∃𝑧 ∈ Fin ∀𝑘 ∈ (𝐼𝑧)(𝑔𝑘) = ((TopOpen ∘ 𝑅)‘𝑘)) ↔ ((𝑔 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑔𝑘) ∈ ((TopOpen ∘ 𝑅)‘𝑘)) ∧ ∃𝑧 ∈ Fin ∀𝑘 ∈ (𝐼𝑧)(𝑔𝑘) = ((TopOpen ∘ 𝑅)‘𝑘)))
114 ral0 4536 . . . . . . . . . . . . . . . . . . 19 𝑘 ∈ ∅ (𝑔𝑘) = ((TopOpen ∘ 𝑅)‘𝑘)
115 difeq2 4143 . . . . . . . . . . . . . . . . . . . . . 22 (𝑧 = 𝐼 → (𝐼𝑧) = (𝐼𝐼))
116 difid 4398 . . . . . . . . . . . . . . . . . . . . . 22 (𝐼𝐼) = ∅
117115, 116eqtrdi 2796 . . . . . . . . . . . . . . . . . . . . 21 (𝑧 = 𝐼 → (𝐼𝑧) = ∅)
118117raleqdv 3334 . . . . . . . . . . . . . . . . . . . 20 (𝑧 = 𝐼 → (∀𝑘 ∈ (𝐼𝑧)(𝑔𝑘) = ((TopOpen ∘ 𝑅)‘𝑘) ↔ ∀𝑘 ∈ ∅ (𝑔𝑘) = ((TopOpen ∘ 𝑅)‘𝑘)))
119118rspcev 3635 . . . . . . . . . . . . . . . . . . 19 ((𝐼 ∈ Fin ∧ ∀𝑘 ∈ ∅ (𝑔𝑘) = ((TopOpen ∘ 𝑅)‘𝑘)) → ∃𝑧 ∈ Fin ∀𝑘 ∈ (𝐼𝑧)(𝑔𝑘) = ((TopOpen ∘ 𝑅)‘𝑘))
1201, 114, 119sylancl 585 . . . . . . . . . . . . . . . . . 18 (𝜑 → ∃𝑧 ∈ Fin ∀𝑘 ∈ (𝐼𝑧)(𝑔𝑘) = ((TopOpen ∘ 𝑅)‘𝑘))
121120adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑝𝐵𝑟 ∈ ℝ*)) → ∃𝑧 ∈ Fin ∀𝑘 ∈ (𝐼𝑧)(𝑔𝑘) = ((TopOpen ∘ 𝑅)‘𝑘))
122121biantrud 531 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑝𝐵𝑟 ∈ ℝ*)) → ((𝑔 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑔𝑘) ∈ ((TopOpen ∘ 𝑅)‘𝑘)) ↔ ((𝑔 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑔𝑘) ∈ ((TopOpen ∘ 𝑅)‘𝑘)) ∧ ∃𝑧 ∈ Fin ∀𝑘 ∈ (𝐼𝑧)(𝑔𝑘) = ((TopOpen ∘ 𝑅)‘𝑘))))
123113, 122bitr4id 290 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑝𝐵𝑟 ∈ ℝ*)) → ((𝑔 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑔𝑘) ∈ ((TopOpen ∘ 𝑅)‘𝑘) ∧ ∃𝑧 ∈ Fin ∀𝑘 ∈ (𝐼𝑧)(𝑔𝑘) = ((TopOpen ∘ 𝑅)‘𝑘)) ↔ (𝑔 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑔𝑘) ∈ ((TopOpen ∘ 𝑅)‘𝑘))))
124 eqeq1 2744 . . . . . . . . . . . . . . 15 (𝑥 = (𝑝(ball‘𝐷)𝑟) → (𝑥 = X𝑘𝐼 (𝑔𝑘) ↔ (𝑝(ball‘𝐷)𝑟) = X𝑘𝐼 (𝑔𝑘)))
125123, 124bi2anan9 637 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑝𝐵𝑟 ∈ ℝ*)) ∧ 𝑥 = (𝑝(ball‘𝐷)𝑟)) → (((𝑔 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑔𝑘) ∈ ((TopOpen ∘ 𝑅)‘𝑘) ∧ ∃𝑧 ∈ Fin ∀𝑘 ∈ (𝐼𝑧)(𝑔𝑘) = ((TopOpen ∘ 𝑅)‘𝑘)) ∧ 𝑥 = X𝑘𝐼 (𝑔𝑘)) ↔ ((𝑔 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑔𝑘) ∈ ((TopOpen ∘ 𝑅)‘𝑘)) ∧ (𝑝(ball‘𝐷)𝑟) = X𝑘𝐼 (𝑔𝑘))))
126125exbidv 1920 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑝𝐵𝑟 ∈ ℝ*)) ∧ 𝑥 = (𝑝(ball‘𝐷)𝑟)) → (∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑔𝑘) ∈ ((TopOpen ∘ 𝑅)‘𝑘) ∧ ∃𝑧 ∈ Fin ∀𝑘 ∈ (𝐼𝑧)(𝑔𝑘) = ((TopOpen ∘ 𝑅)‘𝑘)) ∧ 𝑥 = X𝑘𝐼 (𝑔𝑘)) ↔ ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑔𝑘) ∈ ((TopOpen ∘ 𝑅)‘𝑘)) ∧ (𝑝(ball‘𝐷)𝑟) = X𝑘𝐼 (𝑔𝑘))))
127110, 112, 1263imtr4d 294 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑝𝐵𝑟 ∈ ℝ*)) ∧ 𝑥 = (𝑝(ball‘𝐷)𝑟)) → (𝑥 ≠ ∅ → ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑔𝑘) ∈ ((TopOpen ∘ 𝑅)‘𝑘) ∧ ∃𝑧 ∈ Fin ∀𝑘 ∈ (𝐼𝑧)(𝑔𝑘) = ((TopOpen ∘ 𝑅)‘𝑘)) ∧ 𝑥 = X𝑘𝐼 (𝑔𝑘))))
128127ex 412 . . . . . . . . . . 11 ((𝜑 ∧ (𝑝𝐵𝑟 ∈ ℝ*)) → (𝑥 = (𝑝(ball‘𝐷)𝑟) → (𝑥 ≠ ∅ → ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑔𝑘) ∈ ((TopOpen ∘ 𝑅)‘𝑘) ∧ ∃𝑧 ∈ Fin ∀𝑘 ∈ (𝐼𝑧)(𝑔𝑘) = ((TopOpen ∘ 𝑅)‘𝑘)) ∧ 𝑥 = X𝑘𝐼 (𝑔𝑘)))))
129128rexlimdvva 3219 . . . . . . . . . 10 (𝜑 → (∃𝑝𝐵𝑟 ∈ ℝ* 𝑥 = (𝑝(ball‘𝐷)𝑟) → (𝑥 ≠ ∅ → ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑔𝑘) ∈ ((TopOpen ∘ 𝑅)‘𝑘) ∧ ∃𝑧 ∈ Fin ∀𝑘 ∈ (𝐼𝑧)(𝑔𝑘) = ((TopOpen ∘ 𝑅)‘𝑘)) ∧ 𝑥 = X𝑘𝐼 (𝑔𝑘)))))
13019, 129sylbid 240 . . . . . . . . 9 (𝜑 → (𝑥 ∈ ran (ball‘𝐷) → (𝑥 ≠ ∅ → ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑔𝑘) ∈ ((TopOpen ∘ 𝑅)‘𝑘) ∧ ∃𝑧 ∈ Fin ∀𝑘 ∈ (𝐼𝑧)(𝑔𝑘) = ((TopOpen ∘ 𝑅)‘𝑘)) ∧ 𝑥 = X𝑘𝐼 (𝑔𝑘)))))
131130impd 410 . . . . . . . 8 (𝜑 → ((𝑥 ∈ ran (ball‘𝐷) ∧ 𝑥 ≠ ∅) → ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑔𝑘) ∈ ((TopOpen ∘ 𝑅)‘𝑘) ∧ ∃𝑧 ∈ Fin ∀𝑘 ∈ (𝐼𝑧)(𝑔𝑘) = ((TopOpen ∘ 𝑅)‘𝑘)) ∧ 𝑥 = X𝑘𝐼 (𝑔𝑘))))
13212, 131biimtrid 242 . . . . . . 7 (𝜑 → (𝑥 ∈ (ran (ball‘𝐷) ∖ {∅}) → ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑔𝑘) ∈ ((TopOpen ∘ 𝑅)‘𝑘) ∧ ∃𝑧 ∈ Fin ∀𝑘 ∈ (𝐼𝑧)(𝑔𝑘) = ((TopOpen ∘ 𝑅)‘𝑘)) ∧ 𝑥 = X𝑘𝐼 (𝑔𝑘))))
133132alrimiv 1926 . . . . . 6 (𝜑 → ∀𝑥(𝑥 ∈ (ran (ball‘𝐷) ∖ {∅}) → ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑔𝑘) ∈ ((TopOpen ∘ 𝑅)‘𝑘) ∧ ∃𝑧 ∈ Fin ∀𝑘 ∈ (𝐼𝑧)(𝑔𝑘) = ((TopOpen ∘ 𝑅)‘𝑘)) ∧ 𝑥 = X𝑘𝐼 (𝑔𝑘))))
134 ssab 4087 . . . . . 6 ((ran (ball‘𝐷) ∖ {∅}) ⊆ {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑔𝑘) ∈ ((TopOpen ∘ 𝑅)‘𝑘) ∧ ∃𝑧 ∈ Fin ∀𝑘 ∈ (𝐼𝑧)(𝑔𝑘) = ((TopOpen ∘ 𝑅)‘𝑘)) ∧ 𝑥 = X𝑘𝐼 (𝑔𝑘))} ↔ ∀𝑥(𝑥 ∈ (ran (ball‘𝐷) ∖ {∅}) → ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑔𝑘) ∈ ((TopOpen ∘ 𝑅)‘𝑘) ∧ ∃𝑧 ∈ Fin ∀𝑘 ∈ (𝐼𝑧)(𝑔𝑘) = ((TopOpen ∘ 𝑅)‘𝑘)) ∧ 𝑥 = X𝑘𝐼 (𝑔𝑘))))
135133, 134sylibr 234 . . . . 5 (𝜑 → (ran (ball‘𝐷) ∖ {∅}) ⊆ {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑔𝑘) ∈ ((TopOpen ∘ 𝑅)‘𝑘) ∧ ∃𝑧 ∈ Fin ∀𝑘 ∈ (𝐼𝑧)(𝑔𝑘) = ((TopOpen ∘ 𝑅)‘𝑘)) ∧ 𝑥 = X𝑘𝐼 (𝑔𝑘))})
136135, 9sseqtrrdi 4060 . . . 4 (𝜑 → (ran (ball‘𝐷) ∖ {∅}) ⊆ 𝐶)
137 ssv 4033 . . . . . . . . . 10 ∞MetSp ⊆ V
138 fnssres 6703 . . . . . . . . . 10 ((TopOpen Fn V ∧ ∞MetSp ⊆ V) → (TopOpen ↾ ∞MetSp) Fn ∞MetSp)
1392, 137, 138mp2an 691 . . . . . . . . 9 (TopOpen ↾ ∞MetSp) Fn ∞MetSp
140 fvres 6939 . . . . . . . . . . 11 (𝑥 ∈ ∞MetSp → ((TopOpen ↾ ∞MetSp)‘𝑥) = (TopOpen‘𝑥))
141 xmstps 24484 . . . . . . . . . . . 12 (𝑥 ∈ ∞MetSp → 𝑥 ∈ TopSp)
142 eqid 2740 . . . . . . . . . . . . 13 (TopOpen‘𝑥) = (TopOpen‘𝑥)
143142tpstop 22964 . . . . . . . . . . . 12 (𝑥 ∈ TopSp → (TopOpen‘𝑥) ∈ Top)
144141, 143syl 17 . . . . . . . . . . 11 (𝑥 ∈ ∞MetSp → (TopOpen‘𝑥) ∈ Top)
145140, 144eqeltrd 2844 . . . . . . . . . 10 (𝑥 ∈ ∞MetSp → ((TopOpen ↾ ∞MetSp)‘𝑥) ∈ Top)
146145rgen 3069 . . . . . . . . 9 𝑥 ∈ ∞MetSp ((TopOpen ↾ ∞MetSp)‘𝑥) ∈ Top
147 ffnfv 7153 . . . . . . . . 9 ((TopOpen ↾ ∞MetSp):∞MetSp⟶Top ↔ ((TopOpen ↾ ∞MetSp) Fn ∞MetSp ∧ ∀𝑥 ∈ ∞MetSp ((TopOpen ↾ ∞MetSp)‘𝑥) ∈ Top))
148139, 146, 147mpbir2an 710 . . . . . . . 8 (TopOpen ↾ ∞MetSp):∞MetSp⟶Top
149 fco2 6774 . . . . . . . 8 (((TopOpen ↾ ∞MetSp):∞MetSp⟶Top ∧ 𝑅:𝐼⟶∞MetSp) → (TopOpen ∘ 𝑅):𝐼⟶Top)
150148, 3, 149sylancr 586 . . . . . . 7 (𝜑 → (TopOpen ∘ 𝑅):𝐼⟶Top)
151 eqid 2740 . . . . . . . 8 X𝑛𝐼 ((TopOpen ∘ 𝑅)‘𝑛) = X𝑛𝐼 ((TopOpen ∘ 𝑅)‘𝑛)
1529, 151ptbasfi 23610 . . . . . . 7 ((𝐼 ∈ Fin ∧ (TopOpen ∘ 𝑅):𝐼⟶Top) → 𝐶 = (fi‘({X𝑛𝐼 ((TopOpen ∘ 𝑅)‘𝑛)} ∪ ran (𝑚𝐼, 𝑢 ∈ ((TopOpen ∘ 𝑅)‘𝑚) ↦ ((𝑤X𝑛𝐼 ((TopOpen ∘ 𝑅)‘𝑛) ↦ (𝑤𝑚)) “ 𝑢)))))
1531, 150, 152syl2anc 583 . . . . . 6 (𝜑𝐶 = (fi‘({X𝑛𝐼 ((TopOpen ∘ 𝑅)‘𝑛)} ∪ ran (𝑚𝐼, 𝑢 ∈ ((TopOpen ∘ 𝑅)‘𝑚) ↦ ((𝑤X𝑛𝐼 ((TopOpen ∘ 𝑅)‘𝑛) ↦ (𝑤𝑚)) “ 𝑢)))))
154 eqid 2740 . . . . . . . . 9 (MetOpen‘𝐷) = (MetOpen‘𝐷)
155154mopntop 24471 . . . . . . . 8 (𝐷 ∈ (∞Met‘𝐵) → (MetOpen‘𝐷) ∈ Top)
15617, 155syl 17 . . . . . . 7 (𝜑 → (MetOpen‘𝐷) ∈ Top)
15713, 16, 14, 1, 4prdsbas2 17529 . . . . . . . . . . . 12 (𝜑𝐵 = X𝑘𝐼 (Base‘(𝑅𝑘)))
1583, 71sylan 579 . . . . . . . . . . . . . . . 16 ((𝜑𝑘𝐼) → ((TopOpen ∘ 𝑅)‘𝑘) = 𝐾)
1593ffvelcdmda 7118 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘𝐼) → (𝑅𝑘) ∈ ∞MetSp)
160 xmstps 24484 . . . . . . . . . . . . . . . . . 18 ((𝑅𝑘) ∈ ∞MetSp → (𝑅𝑘) ∈ TopSp)
161159, 160syl 17 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘𝐼) → (𝑅𝑘) ∈ TopSp)
16234, 70istps 22961 . . . . . . . . . . . . . . . . 17 ((𝑅𝑘) ∈ TopSp ↔ 𝐾 ∈ (TopOn‘𝑉))
163161, 162sylib 218 . . . . . . . . . . . . . . . 16 ((𝜑𝑘𝐼) → 𝐾 ∈ (TopOn‘𝑉))
164158, 163eqeltrd 2844 . . . . . . . . . . . . . . 15 ((𝜑𝑘𝐼) → ((TopOpen ∘ 𝑅)‘𝑘) ∈ (TopOn‘𝑉))
165 toponuni 22941 . . . . . . . . . . . . . . 15 (((TopOpen ∘ 𝑅)‘𝑘) ∈ (TopOn‘𝑉) → 𝑉 = ((TopOpen ∘ 𝑅)‘𝑘))
166164, 165syl 17 . . . . . . . . . . . . . 14 ((𝜑𝑘𝐼) → 𝑉 = ((TopOpen ∘ 𝑅)‘𝑘))
16734, 166eqtr3id 2794 . . . . . . . . . . . . 13 ((𝜑𝑘𝐼) → (Base‘(𝑅𝑘)) = ((TopOpen ∘ 𝑅)‘𝑘))
168167ixpeq2dva 8970 . . . . . . . . . . . 12 (𝜑X𝑘𝐼 (Base‘(𝑅𝑘)) = X𝑘𝐼 ((TopOpen ∘ 𝑅)‘𝑘))
169157, 168eqtrd 2780 . . . . . . . . . . 11 (𝜑𝐵 = X𝑘𝐼 ((TopOpen ∘ 𝑅)‘𝑘))
170 fveq2 6920 . . . . . . . . . . . . 13 (𝑘 = 𝑛 → ((TopOpen ∘ 𝑅)‘𝑘) = ((TopOpen ∘ 𝑅)‘𝑛))
171170unieqd 4944 . . . . . . . . . . . 12 (𝑘 = 𝑛 ((TopOpen ∘ 𝑅)‘𝑘) = ((TopOpen ∘ 𝑅)‘𝑛))
172171cbvixpv 8973 . . . . . . . . . . 11 X𝑘𝐼 ((TopOpen ∘ 𝑅)‘𝑘) = X𝑛𝐼 ((TopOpen ∘ 𝑅)‘𝑛)
173169, 172eqtrdi 2796 . . . . . . . . . 10 (𝜑𝐵 = X𝑛𝐼 ((TopOpen ∘ 𝑅)‘𝑛))
174154mopntopon 24470 . . . . . . . . . . . 12 (𝐷 ∈ (∞Met‘𝐵) → (MetOpen‘𝐷) ∈ (TopOn‘𝐵))
17517, 174syl 17 . . . . . . . . . . 11 (𝜑 → (MetOpen‘𝐷) ∈ (TopOn‘𝐵))
176 toponmax 22953 . . . . . . . . . . 11 ((MetOpen‘𝐷) ∈ (TopOn‘𝐵) → 𝐵 ∈ (MetOpen‘𝐷))
177175, 176syl 17 . . . . . . . . . 10 (𝜑𝐵 ∈ (MetOpen‘𝐷))
178173, 177eqeltrrd 2845 . . . . . . . . 9 (𝜑X𝑛𝐼 ((TopOpen ∘ 𝑅)‘𝑛) ∈ (MetOpen‘𝐷))
179178snssd 4834 . . . . . . . 8 (𝜑 → {X𝑛𝐼 ((TopOpen ∘ 𝑅)‘𝑛)} ⊆ (MetOpen‘𝐷))
180173mpteq1d 5261 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑤𝐵 ↦ (𝑤𝑘)) = (𝑤X𝑛𝐼 ((TopOpen ∘ 𝑅)‘𝑛) ↦ (𝑤𝑘)))
181180ad2antrr 725 . . . . . . . . . . . . . . . . 17 (((𝜑𝑘𝐼) ∧ 𝑢𝐾) → (𝑤𝐵 ↦ (𝑤𝑘)) = (𝑤X𝑛𝐼 ((TopOpen ∘ 𝑅)‘𝑛) ↦ (𝑤𝑘)))
182181cnveqd 5900 . . . . . . . . . . . . . . . 16 (((𝜑𝑘𝐼) ∧ 𝑢𝐾) → (𝑤𝐵 ↦ (𝑤𝑘)) = (𝑤X𝑛𝐼 ((TopOpen ∘ 𝑅)‘𝑛) ↦ (𝑤𝑘)))
183182imaeq1d 6088 . . . . . . . . . . . . . . 15 (((𝜑𝑘𝐼) ∧ 𝑢𝐾) → ((𝑤𝐵 ↦ (𝑤𝑘)) “ 𝑢) = ((𝑤X𝑛𝐼 ((TopOpen ∘ 𝑅)‘𝑛) ↦ (𝑤𝑘)) “ 𝑢))
184 fveq1 6919 . . . . . . . . . . . . . . . . . . . 20 (𝑤 = 𝑝 → (𝑤𝑘) = (𝑝𝑘))
185184eleq1d 2829 . . . . . . . . . . . . . . . . . . 19 (𝑤 = 𝑝 → ((𝑤𝑘) ∈ 𝑢 ↔ (𝑝𝑘) ∈ 𝑢))
186 eqid 2740 . . . . . . . . . . . . . . . . . . . 20 (𝑤𝐵 ↦ (𝑤𝑘)) = (𝑤𝐵 ↦ (𝑤𝑘))
187186mptpreima 6269 . . . . . . . . . . . . . . . . . . 19 ((𝑤𝐵 ↦ (𝑤𝑘)) “ 𝑢) = {𝑤𝐵 ∣ (𝑤𝑘) ∈ 𝑢}
188185, 187elrab2 3711 . . . . . . . . . . . . . . . . . 18 (𝑝 ∈ ((𝑤𝐵 ↦ (𝑤𝑘)) “ 𝑢) ↔ (𝑝𝐵 ∧ (𝑝𝑘) ∈ 𝑢))
189159, 36syl 17 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑘𝐼) → 𝐸 ∈ (∞Met‘𝑉))
190189adantr 480 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑘𝐼) ∧ (𝑢𝐾 ∧ (𝑝𝐵 ∧ (𝑝𝑘) ∈ 𝑢))) → 𝐸 ∈ (∞Met‘𝑉))
191 simprl 770 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑘𝐼) ∧ (𝑢𝐾 ∧ (𝑝𝐵 ∧ (𝑝𝑘) ∈ 𝑢))) → 𝑢𝐾)
192159, 73syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑘𝐼) → 𝐾 = (MetOpen‘𝐸))
193192adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑘𝐼) ∧ (𝑢𝐾 ∧ (𝑝𝐵 ∧ (𝑝𝑘) ∈ 𝑢))) → 𝐾 = (MetOpen‘𝐸))
194191, 193eleqtrd 2846 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑘𝐼) ∧ (𝑢𝐾 ∧ (𝑝𝐵 ∧ (𝑝𝑘) ∈ 𝑢))) → 𝑢 ∈ (MetOpen‘𝐸))
195 simprrr 781 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑘𝐼) ∧ (𝑢𝐾 ∧ (𝑝𝐵 ∧ (𝑝𝑘) ∈ 𝑢))) → (𝑝𝑘) ∈ 𝑢)
19653mopni2 24527 . . . . . . . . . . . . . . . . . . . . 21 ((𝐸 ∈ (∞Met‘𝑉) ∧ 𝑢 ∈ (MetOpen‘𝐸) ∧ (𝑝𝑘) ∈ 𝑢) → ∃𝑟 ∈ ℝ+ ((𝑝𝑘)(ball‘𝐸)𝑟) ⊆ 𝑢)
197190, 194, 195, 196syl3anc 1371 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑘𝐼) ∧ (𝑢𝐾 ∧ (𝑝𝐵 ∧ (𝑝𝑘) ∈ 𝑢))) → ∃𝑟 ∈ ℝ+ ((𝑝𝑘)(ball‘𝐸)𝑟) ⊆ 𝑢)
19817ad3antrrr 729 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑘𝐼) ∧ (𝑢𝐾 ∧ (𝑝𝐵 ∧ (𝑝𝑘) ∈ 𝑢))) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑝𝑘)(ball‘𝐸)𝑟) ⊆ 𝑢)) → 𝐷 ∈ (∞Met‘𝐵))
199 simprrl 780 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑘𝐼) ∧ (𝑢𝐾 ∧ (𝑝𝐵 ∧ (𝑝𝑘) ∈ 𝑢))) → 𝑝𝐵)
200199adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑘𝐼) ∧ (𝑢𝐾 ∧ (𝑝𝐵 ∧ (𝑝𝑘) ∈ 𝑢))) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑝𝑘)(ball‘𝐸)𝑟) ⊆ 𝑢)) → 𝑝𝐵)
201 rpxr 13066 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑟 ∈ ℝ+𝑟 ∈ ℝ*)
202201ad2antrl 727 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑘𝐼) ∧ (𝑢𝐾 ∧ (𝑝𝐵 ∧ (𝑝𝑘) ∈ 𝑢))) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑝𝑘)(ball‘𝐸)𝑟) ⊆ 𝑢)) → 𝑟 ∈ ℝ*)
203154blopn 24534 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐷 ∈ (∞Met‘𝐵) ∧ 𝑝𝐵𝑟 ∈ ℝ*) → (𝑝(ball‘𝐷)𝑟) ∈ (MetOpen‘𝐷))
204198, 200, 202, 203syl3anc 1371 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑘𝐼) ∧ (𝑢𝐾 ∧ (𝑝𝐵 ∧ (𝑝𝑘) ∈ 𝑢))) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑝𝑘)(ball‘𝐸)𝑟) ⊆ 𝑢)) → (𝑝(ball‘𝐷)𝑟) ∈ (MetOpen‘𝐷))
205 simprl 770 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑘𝐼) ∧ (𝑢𝐾 ∧ (𝑝𝐵 ∧ (𝑝𝑘) ∈ 𝑢))) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑝𝑘)(ball‘𝐸)𝑟) ⊆ 𝑢)) → 𝑟 ∈ ℝ+)
206 blcntr 24444 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐷 ∈ (∞Met‘𝐵) ∧ 𝑝𝐵𝑟 ∈ ℝ+) → 𝑝 ∈ (𝑝(ball‘𝐷)𝑟))
207198, 200, 205, 206syl3anc 1371 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑘𝐼) ∧ (𝑢𝐾 ∧ (𝑝𝐵 ∧ (𝑝𝑘) ∈ 𝑢))) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑝𝑘)(ball‘𝐸)𝑟) ⊆ 𝑢)) → 𝑝 ∈ (𝑝(ball‘𝐷)𝑟))
208 blssm 24449 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐷 ∈ (∞Met‘𝐵) ∧ 𝑝𝐵𝑟 ∈ ℝ*) → (𝑝(ball‘𝐷)𝑟) ⊆ 𝐵)
209198, 200, 202, 208syl3anc 1371 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑘𝐼) ∧ (𝑢𝐾 ∧ (𝑝𝐵 ∧ (𝑝𝑘) ∈ 𝑢))) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑝𝑘)(ball‘𝐸)𝑟) ⊆ 𝑢)) → (𝑝(ball‘𝐷)𝑟) ⊆ 𝐵)
210 simplrr 777 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝜑𝑘𝐼) ∧ (𝑢𝐾 ∧ (𝑝𝐵 ∧ (𝑝𝑘) ∈ 𝑢))) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑝𝑘)(ball‘𝐸)𝑟) ⊆ 𝑢)) ∧ 𝑤 ∈ (𝑝(ball‘𝐷)𝑟)) → ((𝑝𝑘)(ball‘𝐸)𝑟) ⊆ 𝑢)
211 simplll 774 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝜑𝑘𝐼) ∧ (𝑢𝐾 ∧ (𝑝𝐵 ∧ (𝑝𝑘) ∈ 𝑢))) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑝𝑘)(ball‘𝐸)𝑟) ⊆ 𝑢)) → 𝜑)
212 rpgt0 13069 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑟 ∈ ℝ+ → 0 < 𝑟)
213212ad2antrl 727 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝜑𝑘𝐼) ∧ (𝑢𝐾 ∧ (𝑝𝐵 ∧ (𝑝𝑘) ∈ 𝑢))) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑝𝑘)(ball‘𝐸)𝑟) ⊆ 𝑢)) → 0 < 𝑟)
214211, 200, 202, 213, 95syl121anc 1375 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑𝑘𝐼) ∧ (𝑢𝐾 ∧ (𝑝𝐵 ∧ (𝑝𝑘) ∈ 𝑢))) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑝𝑘)(ball‘𝐸)𝑟) ⊆ 𝑢)) → (𝑝(ball‘𝐷)𝑟) = X𝑘𝐼 ((𝑝𝑘)(ball‘𝐸)𝑟))
215214eleq2d 2830 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑘𝐼) ∧ (𝑢𝐾 ∧ (𝑝𝐵 ∧ (𝑝𝑘) ∈ 𝑢))) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑝𝑘)(ball‘𝐸)𝑟) ⊆ 𝑢)) → (𝑤 ∈ (𝑝(ball‘𝐷)𝑟) ↔ 𝑤X𝑘𝐼 ((𝑝𝑘)(ball‘𝐸)𝑟)))
216215biimpa 476 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝜑𝑘𝐼) ∧ (𝑢𝐾 ∧ (𝑝𝐵 ∧ (𝑝𝑘) ∈ 𝑢))) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑝𝑘)(ball‘𝐸)𝑟) ⊆ 𝑢)) ∧ 𝑤 ∈ (𝑝(ball‘𝐷)𝑟)) → 𝑤X𝑘𝐼 ((𝑝𝑘)(ball‘𝐸)𝑟))
217 vex 3492 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 𝑤 ∈ V
218217elixp 8962 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑤X𝑘𝐼 ((𝑝𝑘)(ball‘𝐸)𝑟) ↔ (𝑤 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑤𝑘) ∈ ((𝑝𝑘)(ball‘𝐸)𝑟)))
219218simprbi 496 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑤X𝑘𝐼 ((𝑝𝑘)(ball‘𝐸)𝑟) → ∀𝑘𝐼 (𝑤𝑘) ∈ ((𝑝𝑘)(ball‘𝐸)𝑟))
220216, 219syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝜑𝑘𝐼) ∧ (𝑢𝐾 ∧ (𝑝𝐵 ∧ (𝑝𝑘) ∈ 𝑢))) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑝𝑘)(ball‘𝐸)𝑟) ⊆ 𝑢)) ∧ 𝑤 ∈ (𝑝(ball‘𝐷)𝑟)) → ∀𝑘𝐼 (𝑤𝑘) ∈ ((𝑝𝑘)(ball‘𝐸)𝑟))
221 simp-4r 783 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝜑𝑘𝐼) ∧ (𝑢𝐾 ∧ (𝑝𝐵 ∧ (𝑝𝑘) ∈ 𝑢))) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑝𝑘)(ball‘𝐸)𝑟) ⊆ 𝑢)) ∧ 𝑤 ∈ (𝑝(ball‘𝐷)𝑟)) → 𝑘𝐼)
222 rsp 3253 . . . . . . . . . . . . . . . . . . . . . . . . 25 (∀𝑘𝐼 (𝑤𝑘) ∈ ((𝑝𝑘)(ball‘𝐸)𝑟) → (𝑘𝐼 → (𝑤𝑘) ∈ ((𝑝𝑘)(ball‘𝐸)𝑟)))
223220, 221, 222sylc 65 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝜑𝑘𝐼) ∧ (𝑢𝐾 ∧ (𝑝𝐵 ∧ (𝑝𝑘) ∈ 𝑢))) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑝𝑘)(ball‘𝐸)𝑟) ⊆ 𝑢)) ∧ 𝑤 ∈ (𝑝(ball‘𝐷)𝑟)) → (𝑤𝑘) ∈ ((𝑝𝑘)(ball‘𝐸)𝑟))
224210, 223sseldd 4009 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑𝑘𝐼) ∧ (𝑢𝐾 ∧ (𝑝𝐵 ∧ (𝑝𝑘) ∈ 𝑢))) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑝𝑘)(ball‘𝐸)𝑟) ⊆ 𝑢)) ∧ 𝑤 ∈ (𝑝(ball‘𝐷)𝑟)) → (𝑤𝑘) ∈ 𝑢)
225209, 224ssrabdv 4097 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑘𝐼) ∧ (𝑢𝐾 ∧ (𝑝𝐵 ∧ (𝑝𝑘) ∈ 𝑢))) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑝𝑘)(ball‘𝐸)𝑟) ⊆ 𝑢)) → (𝑝(ball‘𝐷)𝑟) ⊆ {𝑤𝐵 ∣ (𝑤𝑘) ∈ 𝑢})
226225, 187sseqtrrdi 4060 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑘𝐼) ∧ (𝑢𝐾 ∧ (𝑝𝐵 ∧ (𝑝𝑘) ∈ 𝑢))) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑝𝑘)(ball‘𝐸)𝑟) ⊆ 𝑢)) → (𝑝(ball‘𝐷)𝑟) ⊆ ((𝑤𝐵 ↦ (𝑤𝑘)) “ 𝑢))
227 eleq2 2833 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦 = (𝑝(ball‘𝐷)𝑟) → (𝑝𝑦𝑝 ∈ (𝑝(ball‘𝐷)𝑟)))
228 sseq1 4034 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦 = (𝑝(ball‘𝐷)𝑟) → (𝑦 ⊆ ((𝑤𝐵 ↦ (𝑤𝑘)) “ 𝑢) ↔ (𝑝(ball‘𝐷)𝑟) ⊆ ((𝑤𝐵 ↦ (𝑤𝑘)) “ 𝑢)))
229227, 228anbi12d 631 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 = (𝑝(ball‘𝐷)𝑟) → ((𝑝𝑦𝑦 ⊆ ((𝑤𝐵 ↦ (𝑤𝑘)) “ 𝑢)) ↔ (𝑝 ∈ (𝑝(ball‘𝐷)𝑟) ∧ (𝑝(ball‘𝐷)𝑟) ⊆ ((𝑤𝐵 ↦ (𝑤𝑘)) “ 𝑢))))
230229rspcev 3635 . . . . . . . . . . . . . . . . . . . . 21 (((𝑝(ball‘𝐷)𝑟) ∈ (MetOpen‘𝐷) ∧ (𝑝 ∈ (𝑝(ball‘𝐷)𝑟) ∧ (𝑝(ball‘𝐷)𝑟) ⊆ ((𝑤𝐵 ↦ (𝑤𝑘)) “ 𝑢))) → ∃𝑦 ∈ (MetOpen‘𝐷)(𝑝𝑦𝑦 ⊆ ((𝑤𝐵 ↦ (𝑤𝑘)) “ 𝑢)))
231204, 207, 226, 230syl12anc 836 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑘𝐼) ∧ (𝑢𝐾 ∧ (𝑝𝐵 ∧ (𝑝𝑘) ∈ 𝑢))) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑝𝑘)(ball‘𝐸)𝑟) ⊆ 𝑢)) → ∃𝑦 ∈ (MetOpen‘𝐷)(𝑝𝑦𝑦 ⊆ ((𝑤𝐵 ↦ (𝑤𝑘)) “ 𝑢)))
232197, 231rexlimddv 3167 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑘𝐼) ∧ (𝑢𝐾 ∧ (𝑝𝐵 ∧ (𝑝𝑘) ∈ 𝑢))) → ∃𝑦 ∈ (MetOpen‘𝐷)(𝑝𝑦𝑦 ⊆ ((𝑤𝐵 ↦ (𝑤𝑘)) “ 𝑢)))
233232expr 456 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑘𝐼) ∧ 𝑢𝐾) → ((𝑝𝐵 ∧ (𝑝𝑘) ∈ 𝑢) → ∃𝑦 ∈ (MetOpen‘𝐷)(𝑝𝑦𝑦 ⊆ ((𝑤𝐵 ↦ (𝑤𝑘)) “ 𝑢))))
234188, 233biimtrid 242 . . . . . . . . . . . . . . . . 17 (((𝜑𝑘𝐼) ∧ 𝑢𝐾) → (𝑝 ∈ ((𝑤𝐵 ↦ (𝑤𝑘)) “ 𝑢) → ∃𝑦 ∈ (MetOpen‘𝐷)(𝑝𝑦𝑦 ⊆ ((𝑤𝐵 ↦ (𝑤𝑘)) “ 𝑢))))
235234ralrimiv 3151 . . . . . . . . . . . . . . . 16 (((𝜑𝑘𝐼) ∧ 𝑢𝐾) → ∀𝑝 ∈ ((𝑤𝐵 ↦ (𝑤𝑘)) “ 𝑢)∃𝑦 ∈ (MetOpen‘𝐷)(𝑝𝑦𝑦 ⊆ ((𝑤𝐵 ↦ (𝑤𝑘)) “ 𝑢)))
236156ad2antrr 725 . . . . . . . . . . . . . . . . 17 (((𝜑𝑘𝐼) ∧ 𝑢𝐾) → (MetOpen‘𝐷) ∈ Top)
237 eltop2 23003 . . . . . . . . . . . . . . . . 17 ((MetOpen‘𝐷) ∈ Top → (((𝑤𝐵 ↦ (𝑤𝑘)) “ 𝑢) ∈ (MetOpen‘𝐷) ↔ ∀𝑝 ∈ ((𝑤𝐵 ↦ (𝑤𝑘)) “ 𝑢)∃𝑦 ∈ (MetOpen‘𝐷)(𝑝𝑦𝑦 ⊆ ((𝑤𝐵 ↦ (𝑤𝑘)) “ 𝑢))))
238236, 237syl 17 . . . . . . . . . . . . . . . 16 (((𝜑𝑘𝐼) ∧ 𝑢𝐾) → (((𝑤𝐵 ↦ (𝑤𝑘)) “ 𝑢) ∈ (MetOpen‘𝐷) ↔ ∀𝑝 ∈ ((𝑤𝐵 ↦ (𝑤𝑘)) “ 𝑢)∃𝑦 ∈ (MetOpen‘𝐷)(𝑝𝑦𝑦 ⊆ ((𝑤𝐵 ↦ (𝑤𝑘)) “ 𝑢))))
239235, 238mpbird 257 . . . . . . . . . . . . . . 15 (((𝜑𝑘𝐼) ∧ 𝑢𝐾) → ((𝑤𝐵 ↦ (𝑤𝑘)) “ 𝑢) ∈ (MetOpen‘𝐷))
240183, 239eqeltrrd 2845 . . . . . . . . . . . . . 14 (((𝜑𝑘𝐼) ∧ 𝑢𝐾) → ((𝑤X𝑛𝐼 ((TopOpen ∘ 𝑅)‘𝑛) ↦ (𝑤𝑘)) “ 𝑢) ∈ (MetOpen‘𝐷))
241240ralrimiva 3152 . . . . . . . . . . . . 13 ((𝜑𝑘𝐼) → ∀𝑢𝐾 ((𝑤X𝑛𝐼 ((TopOpen ∘ 𝑅)‘𝑛) ↦ (𝑤𝑘)) “ 𝑢) ∈ (MetOpen‘𝐷))
242241, 158raleqtrrdv 3338 . . . . . . . . . . . 12 ((𝜑𝑘𝐼) → ∀𝑢 ∈ ((TopOpen ∘ 𝑅)‘𝑘)((𝑤X𝑛𝐼 ((TopOpen ∘ 𝑅)‘𝑛) ↦ (𝑤𝑘)) “ 𝑢) ∈ (MetOpen‘𝐷))
243242ralrimiva 3152 . . . . . . . . . . 11 (𝜑 → ∀𝑘𝐼𝑢 ∈ ((TopOpen ∘ 𝑅)‘𝑘)((𝑤X𝑛𝐼 ((TopOpen ∘ 𝑅)‘𝑛) ↦ (𝑤𝑘)) “ 𝑢) ∈ (MetOpen‘𝐷))
244 fveq2 6920 . . . . . . . . . . . . 13 (𝑘 = 𝑚 → ((TopOpen ∘ 𝑅)‘𝑘) = ((TopOpen ∘ 𝑅)‘𝑚))
245 fveq2 6920 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑚 → (𝑤𝑘) = (𝑤𝑚))
246245mpteq2dv 5268 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑚 → (𝑤X𝑛𝐼 ((TopOpen ∘ 𝑅)‘𝑛) ↦ (𝑤𝑘)) = (𝑤X𝑛𝐼 ((TopOpen ∘ 𝑅)‘𝑛) ↦ (𝑤𝑚)))
247246cnveqd 5900 . . . . . . . . . . . . . . 15 (𝑘 = 𝑚(𝑤X𝑛𝐼 ((TopOpen ∘ 𝑅)‘𝑛) ↦ (𝑤𝑘)) = (𝑤X𝑛𝐼 ((TopOpen ∘ 𝑅)‘𝑛) ↦ (𝑤𝑚)))
248247imaeq1d 6088 . . . . . . . . . . . . . 14 (𝑘 = 𝑚 → ((𝑤X𝑛𝐼 ((TopOpen ∘ 𝑅)‘𝑛) ↦ (𝑤𝑘)) “ 𝑢) = ((𝑤X𝑛𝐼 ((TopOpen ∘ 𝑅)‘𝑛) ↦ (𝑤𝑚)) “ 𝑢))
249248eleq1d 2829 . . . . . . . . . . . . 13 (𝑘 = 𝑚 → (((𝑤X𝑛𝐼 ((TopOpen ∘ 𝑅)‘𝑛) ↦ (𝑤𝑘)) “ 𝑢) ∈ (MetOpen‘𝐷) ↔ ((𝑤X𝑛𝐼 ((TopOpen ∘ 𝑅)‘𝑛) ↦ (𝑤𝑚)) “ 𝑢) ∈ (MetOpen‘𝐷)))
250244, 249raleqbidv 3354 . . . . . . . . . . . 12 (𝑘 = 𝑚 → (∀𝑢 ∈ ((TopOpen ∘ 𝑅)‘𝑘)((𝑤X𝑛𝐼 ((TopOpen ∘ 𝑅)‘𝑛) ↦ (𝑤𝑘)) “ 𝑢) ∈ (MetOpen‘𝐷) ↔ ∀𝑢 ∈ ((TopOpen ∘ 𝑅)‘𝑚)((𝑤X𝑛𝐼 ((TopOpen ∘ 𝑅)‘𝑛) ↦ (𝑤𝑚)) “ 𝑢) ∈ (MetOpen‘𝐷)))
251250cbvralvw 3243 . . . . . . . . . . 11 (∀𝑘𝐼𝑢 ∈ ((TopOpen ∘ 𝑅)‘𝑘)((𝑤X𝑛𝐼 ((TopOpen ∘ 𝑅)‘𝑛) ↦ (𝑤𝑘)) “ 𝑢) ∈ (MetOpen‘𝐷) ↔ ∀𝑚𝐼𝑢 ∈ ((TopOpen ∘ 𝑅)‘𝑚)((𝑤X𝑛𝐼 ((TopOpen ∘ 𝑅)‘𝑛) ↦ (𝑤𝑚)) “ 𝑢) ∈ (MetOpen‘𝐷))
252243, 251sylib 218 . . . . . . . . . 10 (𝜑 → ∀𝑚𝐼𝑢 ∈ ((TopOpen ∘ 𝑅)‘𝑚)((𝑤X𝑛𝐼 ((TopOpen ∘ 𝑅)‘𝑛) ↦ (𝑤𝑚)) “ 𝑢) ∈ (MetOpen‘𝐷))
253 eqid 2740 . . . . . . . . . . 11 (𝑚𝐼, 𝑢 ∈ ((TopOpen ∘ 𝑅)‘𝑚) ↦ ((𝑤X𝑛𝐼 ((TopOpen ∘ 𝑅)‘𝑛) ↦ (𝑤𝑚)) “ 𝑢)) = (𝑚𝐼, 𝑢 ∈ ((TopOpen ∘ 𝑅)‘𝑚) ↦ ((𝑤X𝑛𝐼 ((TopOpen ∘ 𝑅)‘𝑛) ↦ (𝑤𝑚)) “ 𝑢))
254253fmpox 8108 . . . . . . . . . 10 (∀𝑚𝐼𝑢 ∈ ((TopOpen ∘ 𝑅)‘𝑚)((𝑤X𝑛𝐼 ((TopOpen ∘ 𝑅)‘𝑛) ↦ (𝑤𝑚)) “ 𝑢) ∈ (MetOpen‘𝐷) ↔ (𝑚𝐼, 𝑢 ∈ ((TopOpen ∘ 𝑅)‘𝑚) ↦ ((𝑤X𝑛𝐼 ((TopOpen ∘ 𝑅)‘𝑛) ↦ (𝑤𝑚)) “ 𝑢)): 𝑚𝐼 ({𝑚} × ((TopOpen ∘ 𝑅)‘𝑚))⟶(MetOpen‘𝐷))
255252, 254sylib 218 . . . . . . . . 9 (𝜑 → (𝑚𝐼, 𝑢 ∈ ((TopOpen ∘ 𝑅)‘𝑚) ↦ ((𝑤X𝑛𝐼 ((TopOpen ∘ 𝑅)‘𝑛) ↦ (𝑤𝑚)) “ 𝑢)): 𝑚𝐼 ({𝑚} × ((TopOpen ∘ 𝑅)‘𝑚))⟶(MetOpen‘𝐷))
256255frnd 6755 . . . . . . . 8 (𝜑 → ran (𝑚𝐼, 𝑢 ∈ ((TopOpen ∘ 𝑅)‘𝑚) ↦ ((𝑤X𝑛𝐼 ((TopOpen ∘ 𝑅)‘𝑛) ↦ (𝑤𝑚)) “ 𝑢)) ⊆ (MetOpen‘𝐷))
257179, 256unssd 4215 . . . . . . 7 (𝜑 → ({X𝑛𝐼 ((TopOpen ∘ 𝑅)‘𝑛)} ∪ ran (𝑚𝐼, 𝑢 ∈ ((TopOpen ∘ 𝑅)‘𝑚) ↦ ((𝑤X𝑛𝐼 ((TopOpen ∘ 𝑅)‘𝑛) ↦ (𝑤𝑚)) “ 𝑢))) ⊆ (MetOpen‘𝐷))
258 fiss 9493 . . . . . . 7 (((MetOpen‘𝐷) ∈ Top ∧ ({X𝑛𝐼 ((TopOpen ∘ 𝑅)‘𝑛)} ∪ ran (𝑚𝐼, 𝑢 ∈ ((TopOpen ∘ 𝑅)‘𝑚) ↦ ((𝑤X𝑛𝐼 ((TopOpen ∘ 𝑅)‘𝑛) ↦ (𝑤𝑚)) “ 𝑢))) ⊆ (MetOpen‘𝐷)) → (fi‘({X𝑛𝐼 ((TopOpen ∘ 𝑅)‘𝑛)} ∪ ran (𝑚𝐼, 𝑢 ∈ ((TopOpen ∘ 𝑅)‘𝑚) ↦ ((𝑤X𝑛𝐼 ((TopOpen ∘ 𝑅)‘𝑛) ↦ (𝑤𝑚)) “ 𝑢)))) ⊆ (fi‘(MetOpen‘𝐷)))
259156, 257, 258syl2anc 583 . . . . . 6 (𝜑 → (fi‘({X𝑛𝐼 ((TopOpen ∘ 𝑅)‘𝑛)} ∪ ran (𝑚𝐼, 𝑢 ∈ ((TopOpen ∘ 𝑅)‘𝑚) ↦ ((𝑤X𝑛𝐼 ((TopOpen ∘ 𝑅)‘𝑛) ↦ (𝑤𝑚)) “ 𝑢)))) ⊆ (fi‘(MetOpen‘𝐷)))
260153, 259eqsstrd 4047 . . . . 5 (𝜑𝐶 ⊆ (fi‘(MetOpen‘𝐷)))
261 fitop 22927 . . . . . . 7 ((MetOpen‘𝐷) ∈ Top → (fi‘(MetOpen‘𝐷)) = (MetOpen‘𝐷))
262156, 261syl 17 . . . . . 6 (𝜑 → (fi‘(MetOpen‘𝐷)) = (MetOpen‘𝐷))
263154mopnval 24469 . . . . . . . 8 (𝐷 ∈ (∞Met‘𝐵) → (MetOpen‘𝐷) = (topGen‘ran (ball‘𝐷)))
26417, 263syl 17 . . . . . . 7 (𝜑 → (MetOpen‘𝐷) = (topGen‘ran (ball‘𝐷)))
265 tgdif0 23020 . . . . . . 7 (topGen‘(ran (ball‘𝐷) ∖ {∅})) = (topGen‘ran (ball‘𝐷))
266264, 265eqtr4di 2798 . . . . . 6 (𝜑 → (MetOpen‘𝐷) = (topGen‘(ran (ball‘𝐷) ∖ {∅})))
267262, 266eqtrd 2780 . . . . 5 (𝜑 → (fi‘(MetOpen‘𝐷)) = (topGen‘(ran (ball‘𝐷) ∖ {∅})))
268260, 267sseqtrd 4049 . . . 4 (𝜑𝐶 ⊆ (topGen‘(ran (ball‘𝐷) ∖ {∅})))
269 2basgen 23018 . . . 4 (((ran (ball‘𝐷) ∖ {∅}) ⊆ 𝐶𝐶 ⊆ (topGen‘(ran (ball‘𝐷) ∖ {∅}))) → (topGen‘(ran (ball‘𝐷) ∖ {∅})) = (topGen‘𝐶))
270136, 268, 269syl2anc 583 . . 3 (𝜑 → (topGen‘(ran (ball‘𝐷) ∖ {∅})) = (topGen‘𝐶))
27111, 270eqtr4d 2783 . 2 (𝜑 → (∏t‘(TopOpen ∘ 𝑅)) = (topGen‘(ran (ball‘𝐷) ∖ {∅})))
272 prdsxms.j . . 3 𝐽 = (TopOpen‘𝑌)
27313, 14, 1, 4, 272prdstopn 23657 . 2 (𝜑𝐽 = (∏t‘(TopOpen ∘ 𝑅)))
274271, 273, 2663eqtr4d 2790 1 (𝜑𝐽 = (MetOpen‘𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087  wal 1535   = wceq 1537  wex 1777  wcel 2108  {cab 2717  wne 2946  wral 3067  wrex 3076  {crab 3443  Vcvv 3488  cdif 3973  cun 3974  wss 3976  c0 4352  {csn 4648   cuni 4931   ciun 5015   class class class wbr 5166  cmpt 5249   × cxp 5698  ccnv 5699  ran crn 5701  cres 5702  cima 5703  ccom 5704   Fn wfn 6568  wf 6569  cfv 6573  (class class class)co 7448  cmpo 7450  Xcixp 8955  Fincfn 9003  ficfi 9479  0cc0 11184  *cxr 11323   < clt 11324  +crp 13057  Basecbs 17258  distcds 17320  TopOpenctopn 17481  topGenctg 17497  tcpt 17498  Xscprds 17505  ∞Metcxmet 21372  ballcbl 21374  MetOpencmopn 21377  Topctop 22920  TopOnctopon 22937  TopSpctps 22959  ∞MetSpcxms 24348
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-map 8886  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fi 9480  df-sup 9511  df-inf 9512  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-q 13014  df-rp 13058  df-xneg 13175  df-xadd 13176  df-xmul 13177  df-icc 13414  df-fz 13568  df-struct 17194  df-slot 17229  df-ndx 17241  df-base 17259  df-plusg 17324  df-mulr 17325  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-hom 17335  df-cco 17336  df-rest 17482  df-topn 17483  df-topgen 17503  df-pt 17504  df-prds 17507  df-psmet 21379  df-xmet 21380  df-bl 21382  df-mopn 21383  df-top 22921  df-topon 22938  df-topsp 22960  df-bases 22974  df-xms 24351
This theorem is referenced by:  prdsxms  24564
  Copyright terms: Public domain W3C validator