MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prdsxmslem2 Structured version   Visualization version   GIF version

Theorem prdsxmslem2 23591
Description: Lemma for prdsxms 23592. The topology generated by the supremum metric is the same as the product topology, when the index set is finite. (Contributed by Mario Carneiro, 28-Aug-2015.)
Hypotheses
Ref Expression
prdsxms.y 𝑌 = (𝑆Xs𝑅)
prdsxms.s (𝜑𝑆𝑊)
prdsxms.i (𝜑𝐼 ∈ Fin)
prdsxms.d 𝐷 = (dist‘𝑌)
prdsxms.b 𝐵 = (Base‘𝑌)
prdsxms.r (𝜑𝑅:𝐼⟶∞MetSp)
prdsxms.j 𝐽 = (TopOpen‘𝑌)
prdsxms.v 𝑉 = (Base‘(𝑅𝑘))
prdsxms.e 𝐸 = ((dist‘(𝑅𝑘)) ↾ (𝑉 × 𝑉))
prdsxms.k 𝐾 = (TopOpen‘(𝑅𝑘))
prdsxms.c 𝐶 = {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑔𝑘) ∈ ((TopOpen ∘ 𝑅)‘𝑘) ∧ ∃𝑧 ∈ Fin ∀𝑘 ∈ (𝐼𝑧)(𝑔𝑘) = ((TopOpen ∘ 𝑅)‘𝑘)) ∧ 𝑥 = X𝑘𝐼 (𝑔𝑘))}
Assertion
Ref Expression
prdsxmslem2 (𝜑𝐽 = (MetOpen‘𝐷))
Distinct variable groups:   𝑔,𝑘,𝐵   𝑥,𝑔,𝐷,𝑘   𝑧,𝑔,𝐼,𝑘,𝑥   𝑔,𝐸   𝑆,𝑔,𝑘,𝑥   𝑔,𝑊,𝑘,𝑥   𝑔,𝑌,𝑘,𝑥   𝜑,𝑔,𝑘,𝑥   𝑅,𝑔,𝑘,𝑥,𝑧
Allowed substitution hints:   𝜑(𝑧)   𝐵(𝑥,𝑧)   𝐶(𝑥,𝑧,𝑔,𝑘)   𝐷(𝑧)   𝑆(𝑧)   𝐸(𝑥,𝑧,𝑘)   𝐽(𝑥,𝑧,𝑔,𝑘)   𝐾(𝑥,𝑧,𝑔,𝑘)   𝑉(𝑥,𝑧,𝑔,𝑘)   𝑊(𝑧)   𝑌(𝑧)

Proof of Theorem prdsxmslem2
Dummy variables 𝑝 𝑟 𝑤 𝑦 𝑚 𝑢 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prdsxms.i . . . 4 (𝜑𝐼 ∈ Fin)
2 topnfn 17053 . . . . 5 TopOpen Fn V
3 prdsxms.r . . . . . . 7 (𝜑𝑅:𝐼⟶∞MetSp)
43ffnd 6585 . . . . . 6 (𝜑𝑅 Fn 𝐼)
5 dffn2 6586 . . . . . 6 (𝑅 Fn 𝐼𝑅:𝐼⟶V)
64, 5sylib 217 . . . . 5 (𝜑𝑅:𝐼⟶V)
7 fnfco 6623 . . . . 5 ((TopOpen Fn V ∧ 𝑅:𝐼⟶V) → (TopOpen ∘ 𝑅) Fn 𝐼)
82, 6, 7sylancr 586 . . . 4 (𝜑 → (TopOpen ∘ 𝑅) Fn 𝐼)
9 prdsxms.c . . . . 5 𝐶 = {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑔𝑘) ∈ ((TopOpen ∘ 𝑅)‘𝑘) ∧ ∃𝑧 ∈ Fin ∀𝑘 ∈ (𝐼𝑧)(𝑔𝑘) = ((TopOpen ∘ 𝑅)‘𝑘)) ∧ 𝑥 = X𝑘𝐼 (𝑔𝑘))}
109ptval 22629 . . . 4 ((𝐼 ∈ Fin ∧ (TopOpen ∘ 𝑅) Fn 𝐼) → (∏t‘(TopOpen ∘ 𝑅)) = (topGen‘𝐶))
111, 8, 10syl2anc 583 . . 3 (𝜑 → (∏t‘(TopOpen ∘ 𝑅)) = (topGen‘𝐶))
12 eldifsn 4717 . . . . . . . 8 (𝑥 ∈ (ran (ball‘𝐷) ∖ {∅}) ↔ (𝑥 ∈ ran (ball‘𝐷) ∧ 𝑥 ≠ ∅))
13 prdsxms.y . . . . . . . . . . . 12 𝑌 = (𝑆Xs𝑅)
14 prdsxms.s . . . . . . . . . . . 12 (𝜑𝑆𝑊)
15 prdsxms.d . . . . . . . . . . . 12 𝐷 = (dist‘𝑌)
16 prdsxms.b . . . . . . . . . . . 12 𝐵 = (Base‘𝑌)
1713, 14, 1, 15, 16, 3prdsxmslem1 23590 . . . . . . . . . . 11 (𝜑𝐷 ∈ (∞Met‘𝐵))
18 blrn 23470 . . . . . . . . . . 11 (𝐷 ∈ (∞Met‘𝐵) → (𝑥 ∈ ran (ball‘𝐷) ↔ ∃𝑝𝐵𝑟 ∈ ℝ* 𝑥 = (𝑝(ball‘𝐷)𝑟)))
1917, 18syl 17 . . . . . . . . . 10 (𝜑 → (𝑥 ∈ ran (ball‘𝐷) ↔ ∃𝑝𝐵𝑟 ∈ ℝ* 𝑥 = (𝑝(ball‘𝐷)𝑟)))
2017adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑝𝐵𝑟 ∈ ℝ*)) → 𝐷 ∈ (∞Met‘𝐵))
21 simprl 767 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑝𝐵𝑟 ∈ ℝ*)) → 𝑝𝐵)
22 simprr 769 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑝𝐵𝑟 ∈ ℝ*)) → 𝑟 ∈ ℝ*)
23 xbln0 23475 . . . . . . . . . . . . . . . 16 ((𝐷 ∈ (∞Met‘𝐵) ∧ 𝑝𝐵𝑟 ∈ ℝ*) → ((𝑝(ball‘𝐷)𝑟) ≠ ∅ ↔ 0 < 𝑟))
2420, 21, 22, 23syl3anc 1369 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑝𝐵𝑟 ∈ ℝ*)) → ((𝑝(ball‘𝐷)𝑟) ≠ ∅ ↔ 0 < 𝑟))
2513ad2ant1 1131 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑝𝐵𝑟 ∈ ℝ*) ∧ 0 < 𝑟) → 𝐼 ∈ Fin)
2625mptexd 7082 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑝𝐵𝑟 ∈ ℝ*) ∧ 0 < 𝑟) → (𝑛𝐼 ↦ ((𝑝𝑛)(ball‘((dist‘(𝑅𝑛)) ↾ ((Base‘(𝑅𝑛)) × (Base‘(𝑅𝑛)))))𝑟)) ∈ V)
27 ovex 7288 . . . . . . . . . . . . . . . . . . 19 ((𝑝𝑛)(ball‘((dist‘(𝑅𝑛)) ↾ ((Base‘(𝑅𝑛)) × (Base‘(𝑅𝑛)))))𝑟) ∈ V
2827rgenw 3075 . . . . . . . . . . . . . . . . . 18 𝑛𝐼 ((𝑝𝑛)(ball‘((dist‘(𝑅𝑛)) ↾ ((Base‘(𝑅𝑛)) × (Base‘(𝑅𝑛)))))𝑟) ∈ V
29 eqid 2738 . . . . . . . . . . . . . . . . . . 19 (𝑛𝐼 ↦ ((𝑝𝑛)(ball‘((dist‘(𝑅𝑛)) ↾ ((Base‘(𝑅𝑛)) × (Base‘(𝑅𝑛)))))𝑟)) = (𝑛𝐼 ↦ ((𝑝𝑛)(ball‘((dist‘(𝑅𝑛)) ↾ ((Base‘(𝑅𝑛)) × (Base‘(𝑅𝑛)))))𝑟))
3029fnmpt 6557 . . . . . . . . . . . . . . . . . 18 (∀𝑛𝐼 ((𝑝𝑛)(ball‘((dist‘(𝑅𝑛)) ↾ ((Base‘(𝑅𝑛)) × (Base‘(𝑅𝑛)))))𝑟) ∈ V → (𝑛𝐼 ↦ ((𝑝𝑛)(ball‘((dist‘(𝑅𝑛)) ↾ ((Base‘(𝑅𝑛)) × (Base‘(𝑅𝑛)))))𝑟)) Fn 𝐼)
3128, 30mp1i 13 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑝𝐵𝑟 ∈ ℝ*) ∧ 0 < 𝑟) → (𝑛𝐼 ↦ ((𝑝𝑛)(ball‘((dist‘(𝑅𝑛)) ↾ ((Base‘(𝑅𝑛)) × (Base‘(𝑅𝑛)))))𝑟)) Fn 𝐼)
3233ad2ant1 1131 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑝𝐵𝑟 ∈ ℝ*) ∧ 0 < 𝑟) → 𝑅:𝐼⟶∞MetSp)
3332ffvelrnda 6943 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑝𝐵𝑟 ∈ ℝ*) ∧ 0 < 𝑟) ∧ 𝑘𝐼) → (𝑅𝑘) ∈ ∞MetSp)
34 prdsxms.v . . . . . . . . . . . . . . . . . . . . . 22 𝑉 = (Base‘(𝑅𝑘))
35 prdsxms.e . . . . . . . . . . . . . . . . . . . . . 22 𝐸 = ((dist‘(𝑅𝑘)) ↾ (𝑉 × 𝑉))
3634, 35xmsxmet 23517 . . . . . . . . . . . . . . . . . . . . 21 ((𝑅𝑘) ∈ ∞MetSp → 𝐸 ∈ (∞Met‘𝑉))
3733, 36syl 17 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑝𝐵𝑟 ∈ ℝ*) ∧ 0 < 𝑟) ∧ 𝑘𝐼) → 𝐸 ∈ (∞Met‘𝑉))
38 eqid 2738 . . . . . . . . . . . . . . . . . . . . . 22 (𝑆Xs(𝑘𝐼 ↦ (𝑅𝑘))) = (𝑆Xs(𝑘𝐼 ↦ (𝑅𝑘)))
39 eqid 2738 . . . . . . . . . . . . . . . . . . . . . 22 (Base‘(𝑆Xs(𝑘𝐼 ↦ (𝑅𝑘)))) = (Base‘(𝑆Xs(𝑘𝐼 ↦ (𝑅𝑘))))
40143ad2ant1 1131 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑝𝐵𝑟 ∈ ℝ*) ∧ 0 < 𝑟) → 𝑆𝑊)
4133ralrimiva 3107 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑝𝐵𝑟 ∈ ℝ*) ∧ 0 < 𝑟) → ∀𝑘𝐼 (𝑅𝑘) ∈ ∞MetSp)
42 simp2l 1197 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ (𝑝𝐵𝑟 ∈ ℝ*) ∧ 0 < 𝑟) → 𝑝𝐵)
4332feqmptd 6819 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑 ∧ (𝑝𝐵𝑟 ∈ ℝ*) ∧ 0 < 𝑟) → 𝑅 = (𝑘𝐼 ↦ (𝑅𝑘)))
4443oveq2d 7271 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑 ∧ (𝑝𝐵𝑟 ∈ ℝ*) ∧ 0 < 𝑟) → (𝑆Xs𝑅) = (𝑆Xs(𝑘𝐼 ↦ (𝑅𝑘))))
4513, 44eqtrid 2790 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑 ∧ (𝑝𝐵𝑟 ∈ ℝ*) ∧ 0 < 𝑟) → 𝑌 = (𝑆Xs(𝑘𝐼 ↦ (𝑅𝑘))))
4645fveq2d 6760 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑 ∧ (𝑝𝐵𝑟 ∈ ℝ*) ∧ 0 < 𝑟) → (Base‘𝑌) = (Base‘(𝑆Xs(𝑘𝐼 ↦ (𝑅𝑘)))))
4716, 46eqtrid 2790 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ (𝑝𝐵𝑟 ∈ ℝ*) ∧ 0 < 𝑟) → 𝐵 = (Base‘(𝑆Xs(𝑘𝐼 ↦ (𝑅𝑘)))))
4842, 47eleqtrd 2841 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑝𝐵𝑟 ∈ ℝ*) ∧ 0 < 𝑟) → 𝑝 ∈ (Base‘(𝑆Xs(𝑘𝐼 ↦ (𝑅𝑘)))))
4938, 39, 40, 25, 41, 34, 48prdsbascl 17111 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑝𝐵𝑟 ∈ ℝ*) ∧ 0 < 𝑟) → ∀𝑘𝐼 (𝑝𝑘) ∈ 𝑉)
5049r19.21bi 3132 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑝𝐵𝑟 ∈ ℝ*) ∧ 0 < 𝑟) ∧ 𝑘𝐼) → (𝑝𝑘) ∈ 𝑉)
51 simp2r 1198 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑝𝐵𝑟 ∈ ℝ*) ∧ 0 < 𝑟) → 𝑟 ∈ ℝ*)
5251adantr 480 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑝𝐵𝑟 ∈ ℝ*) ∧ 0 < 𝑟) ∧ 𝑘𝐼) → 𝑟 ∈ ℝ*)
53 eqid 2738 . . . . . . . . . . . . . . . . . . . . 21 (MetOpen‘𝐸) = (MetOpen‘𝐸)
5453blopn 23562 . . . . . . . . . . . . . . . . . . . 20 ((𝐸 ∈ (∞Met‘𝑉) ∧ (𝑝𝑘) ∈ 𝑉𝑟 ∈ ℝ*) → ((𝑝𝑘)(ball‘𝐸)𝑟) ∈ (MetOpen‘𝐸))
5537, 50, 52, 54syl3anc 1369 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑝𝐵𝑟 ∈ ℝ*) ∧ 0 < 𝑟) ∧ 𝑘𝐼) → ((𝑝𝑘)(ball‘𝐸)𝑟) ∈ (MetOpen‘𝐸))
56 2fveq3 6761 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑛 = 𝑘 → (dist‘(𝑅𝑛)) = (dist‘(𝑅𝑘)))
57 2fveq3 6761 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑛 = 𝑘 → (Base‘(𝑅𝑛)) = (Base‘(𝑅𝑘)))
5857, 34eqtr4di 2797 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑛 = 𝑘 → (Base‘(𝑅𝑛)) = 𝑉)
5958sqxpeqd 5612 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑛 = 𝑘 → ((Base‘(𝑅𝑛)) × (Base‘(𝑅𝑛))) = (𝑉 × 𝑉))
6056, 59reseq12d 5881 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑛 = 𝑘 → ((dist‘(𝑅𝑛)) ↾ ((Base‘(𝑅𝑛)) × (Base‘(𝑅𝑛)))) = ((dist‘(𝑅𝑘)) ↾ (𝑉 × 𝑉)))
6160, 35eqtr4di 2797 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑛 = 𝑘 → ((dist‘(𝑅𝑛)) ↾ ((Base‘(𝑅𝑛)) × (Base‘(𝑅𝑛)))) = 𝐸)
6261fveq2d 6760 . . . . . . . . . . . . . . . . . . . . . 22 (𝑛 = 𝑘 → (ball‘((dist‘(𝑅𝑛)) ↾ ((Base‘(𝑅𝑛)) × (Base‘(𝑅𝑛))))) = (ball‘𝐸))
63 fveq2 6756 . . . . . . . . . . . . . . . . . . . . . 22 (𝑛 = 𝑘 → (𝑝𝑛) = (𝑝𝑘))
64 eqidd 2739 . . . . . . . . . . . . . . . . . . . . . 22 (𝑛 = 𝑘𝑟 = 𝑟)
6562, 63, 64oveq123d 7276 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 = 𝑘 → ((𝑝𝑛)(ball‘((dist‘(𝑅𝑛)) ↾ ((Base‘(𝑅𝑛)) × (Base‘(𝑅𝑛)))))𝑟) = ((𝑝𝑘)(ball‘𝐸)𝑟))
66 ovex 7288 . . . . . . . . . . . . . . . . . . . . 21 ((𝑝𝑘)(ball‘𝐸)𝑟) ∈ V
6765, 29, 66fvmpt 6857 . . . . . . . . . . . . . . . . . . . 20 (𝑘𝐼 → ((𝑛𝐼 ↦ ((𝑝𝑛)(ball‘((dist‘(𝑅𝑛)) ↾ ((Base‘(𝑅𝑛)) × (Base‘(𝑅𝑛)))))𝑟))‘𝑘) = ((𝑝𝑘)(ball‘𝐸)𝑟))
6867adantl 481 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑝𝐵𝑟 ∈ ℝ*) ∧ 0 < 𝑟) ∧ 𝑘𝐼) → ((𝑛𝐼 ↦ ((𝑝𝑛)(ball‘((dist‘(𝑅𝑛)) ↾ ((Base‘(𝑅𝑛)) × (Base‘(𝑅𝑛)))))𝑟))‘𝑘) = ((𝑝𝑘)(ball‘𝐸)𝑟))
69 fvco3 6849 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑅:𝐼⟶∞MetSp ∧ 𝑘𝐼) → ((TopOpen ∘ 𝑅)‘𝑘) = (TopOpen‘(𝑅𝑘)))
70 prdsxms.k . . . . . . . . . . . . . . . . . . . . . 22 𝐾 = (TopOpen‘(𝑅𝑘))
7169, 70eqtr4di 2797 . . . . . . . . . . . . . . . . . . . . 21 ((𝑅:𝐼⟶∞MetSp ∧ 𝑘𝐼) → ((TopOpen ∘ 𝑅)‘𝑘) = 𝐾)
7232, 71sylan 579 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑝𝐵𝑟 ∈ ℝ*) ∧ 0 < 𝑟) ∧ 𝑘𝐼) → ((TopOpen ∘ 𝑅)‘𝑘) = 𝐾)
7370, 34, 35xmstopn 23512 . . . . . . . . . . . . . . . . . . . . 21 ((𝑅𝑘) ∈ ∞MetSp → 𝐾 = (MetOpen‘𝐸))
7433, 73syl 17 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑝𝐵𝑟 ∈ ℝ*) ∧ 0 < 𝑟) ∧ 𝑘𝐼) → 𝐾 = (MetOpen‘𝐸))
7572, 74eqtrd 2778 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑝𝐵𝑟 ∈ ℝ*) ∧ 0 < 𝑟) ∧ 𝑘𝐼) → ((TopOpen ∘ 𝑅)‘𝑘) = (MetOpen‘𝐸))
7655, 68, 753eltr4d 2854 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑝𝐵𝑟 ∈ ℝ*) ∧ 0 < 𝑟) ∧ 𝑘𝐼) → ((𝑛𝐼 ↦ ((𝑝𝑛)(ball‘((dist‘(𝑅𝑛)) ↾ ((Base‘(𝑅𝑛)) × (Base‘(𝑅𝑛)))))𝑟))‘𝑘) ∈ ((TopOpen ∘ 𝑅)‘𝑘))
7776ralrimiva 3107 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑝𝐵𝑟 ∈ ℝ*) ∧ 0 < 𝑟) → ∀𝑘𝐼 ((𝑛𝐼 ↦ ((𝑝𝑛)(ball‘((dist‘(𝑅𝑛)) ↾ ((Base‘(𝑅𝑛)) × (Base‘(𝑅𝑛)))))𝑟))‘𝑘) ∈ ((TopOpen ∘ 𝑅)‘𝑘))
7832feqmptd 6819 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑 ∧ (𝑝𝐵𝑟 ∈ ℝ*) ∧ 0 < 𝑟) → 𝑅 = (𝑛𝐼 ↦ (𝑅𝑛)))
7978oveq2d 7271 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ (𝑝𝐵𝑟 ∈ ℝ*) ∧ 0 < 𝑟) → (𝑆Xs𝑅) = (𝑆Xs(𝑛𝐼 ↦ (𝑅𝑛))))
8013, 79eqtrid 2790 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑝𝐵𝑟 ∈ ℝ*) ∧ 0 < 𝑟) → 𝑌 = (𝑆Xs(𝑛𝐼 ↦ (𝑅𝑛))))
8180fveq2d 6760 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑝𝐵𝑟 ∈ ℝ*) ∧ 0 < 𝑟) → (dist‘𝑌) = (dist‘(𝑆Xs(𝑛𝐼 ↦ (𝑅𝑛)))))
8215, 81eqtrid 2790 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑝𝐵𝑟 ∈ ℝ*) ∧ 0 < 𝑟) → 𝐷 = (dist‘(𝑆Xs(𝑛𝐼 ↦ (𝑅𝑛)))))
8382fveq2d 6760 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑝𝐵𝑟 ∈ ℝ*) ∧ 0 < 𝑟) → (ball‘𝐷) = (ball‘(dist‘(𝑆Xs(𝑛𝐼 ↦ (𝑅𝑛))))))
8483oveqd 7272 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑝𝐵𝑟 ∈ ℝ*) ∧ 0 < 𝑟) → (𝑝(ball‘𝐷)𝑟) = (𝑝(ball‘(dist‘(𝑆Xs(𝑛𝐼 ↦ (𝑅𝑛)))))𝑟))
85 fveq2 6756 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 = 𝑘 → (𝑅𝑛) = (𝑅𝑘))
8685cbvmptv 5183 . . . . . . . . . . . . . . . . . . . 20 (𝑛𝐼 ↦ (𝑅𝑛)) = (𝑘𝐼 ↦ (𝑅𝑘))
8786oveq2i 7266 . . . . . . . . . . . . . . . . . . 19 (𝑆Xs(𝑛𝐼 ↦ (𝑅𝑛))) = (𝑆Xs(𝑘𝐼 ↦ (𝑅𝑘)))
88 eqid 2738 . . . . . . . . . . . . . . . . . . 19 (Base‘(𝑆Xs(𝑛𝐼 ↦ (𝑅𝑛)))) = (Base‘(𝑆Xs(𝑛𝐼 ↦ (𝑅𝑛))))
89 eqid 2738 . . . . . . . . . . . . . . . . . . 19 (dist‘(𝑆Xs(𝑛𝐼 ↦ (𝑅𝑛)))) = (dist‘(𝑆Xs(𝑛𝐼 ↦ (𝑅𝑛))))
9080fveq2d 6760 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑝𝐵𝑟 ∈ ℝ*) ∧ 0 < 𝑟) → (Base‘𝑌) = (Base‘(𝑆Xs(𝑛𝐼 ↦ (𝑅𝑛)))))
9116, 90eqtrid 2790 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑝𝐵𝑟 ∈ ℝ*) ∧ 0 < 𝑟) → 𝐵 = (Base‘(𝑆Xs(𝑛𝐼 ↦ (𝑅𝑛)))))
9242, 91eleqtrd 2841 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑝𝐵𝑟 ∈ ℝ*) ∧ 0 < 𝑟) → 𝑝 ∈ (Base‘(𝑆Xs(𝑛𝐼 ↦ (𝑅𝑛)))))
93 simp3 1136 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑝𝐵𝑟 ∈ ℝ*) ∧ 0 < 𝑟) → 0 < 𝑟)
9487, 88, 34, 35, 89, 40, 25, 33, 37, 92, 51, 93prdsbl 23553 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑝𝐵𝑟 ∈ ℝ*) ∧ 0 < 𝑟) → (𝑝(ball‘(dist‘(𝑆Xs(𝑛𝐼 ↦ (𝑅𝑛)))))𝑟) = X𝑘𝐼 ((𝑝𝑘)(ball‘𝐸)𝑟))
9584, 94eqtrd 2778 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑝𝐵𝑟 ∈ ℝ*) ∧ 0 < 𝑟) → (𝑝(ball‘𝐷)𝑟) = X𝑘𝐼 ((𝑝𝑘)(ball‘𝐸)𝑟))
96 fneq1 6508 . . . . . . . . . . . . . . . . . . . . 21 (𝑔 = (𝑛𝐼 ↦ ((𝑝𝑛)(ball‘((dist‘(𝑅𝑛)) ↾ ((Base‘(𝑅𝑛)) × (Base‘(𝑅𝑛)))))𝑟)) → (𝑔 Fn 𝐼 ↔ (𝑛𝐼 ↦ ((𝑝𝑛)(ball‘((dist‘(𝑅𝑛)) ↾ ((Base‘(𝑅𝑛)) × (Base‘(𝑅𝑛)))))𝑟)) Fn 𝐼))
97 fveq1 6755 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑔 = (𝑛𝐼 ↦ ((𝑝𝑛)(ball‘((dist‘(𝑅𝑛)) ↾ ((Base‘(𝑅𝑛)) × (Base‘(𝑅𝑛)))))𝑟)) → (𝑔𝑘) = ((𝑛𝐼 ↦ ((𝑝𝑛)(ball‘((dist‘(𝑅𝑛)) ↾ ((Base‘(𝑅𝑛)) × (Base‘(𝑅𝑛)))))𝑟))‘𝑘))
9897eleq1d 2823 . . . . . . . . . . . . . . . . . . . . . 22 (𝑔 = (𝑛𝐼 ↦ ((𝑝𝑛)(ball‘((dist‘(𝑅𝑛)) ↾ ((Base‘(𝑅𝑛)) × (Base‘(𝑅𝑛)))))𝑟)) → ((𝑔𝑘) ∈ ((TopOpen ∘ 𝑅)‘𝑘) ↔ ((𝑛𝐼 ↦ ((𝑝𝑛)(ball‘((dist‘(𝑅𝑛)) ↾ ((Base‘(𝑅𝑛)) × (Base‘(𝑅𝑛)))))𝑟))‘𝑘) ∈ ((TopOpen ∘ 𝑅)‘𝑘)))
9998ralbidv 3120 . . . . . . . . . . . . . . . . . . . . 21 (𝑔 = (𝑛𝐼 ↦ ((𝑝𝑛)(ball‘((dist‘(𝑅𝑛)) ↾ ((Base‘(𝑅𝑛)) × (Base‘(𝑅𝑛)))))𝑟)) → (∀𝑘𝐼 (𝑔𝑘) ∈ ((TopOpen ∘ 𝑅)‘𝑘) ↔ ∀𝑘𝐼 ((𝑛𝐼 ↦ ((𝑝𝑛)(ball‘((dist‘(𝑅𝑛)) ↾ ((Base‘(𝑅𝑛)) × (Base‘(𝑅𝑛)))))𝑟))‘𝑘) ∈ ((TopOpen ∘ 𝑅)‘𝑘)))
10096, 99anbi12d 630 . . . . . . . . . . . . . . . . . . . 20 (𝑔 = (𝑛𝐼 ↦ ((𝑝𝑛)(ball‘((dist‘(𝑅𝑛)) ↾ ((Base‘(𝑅𝑛)) × (Base‘(𝑅𝑛)))))𝑟)) → ((𝑔 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑔𝑘) ∈ ((TopOpen ∘ 𝑅)‘𝑘)) ↔ ((𝑛𝐼 ↦ ((𝑝𝑛)(ball‘((dist‘(𝑅𝑛)) ↾ ((Base‘(𝑅𝑛)) × (Base‘(𝑅𝑛)))))𝑟)) Fn 𝐼 ∧ ∀𝑘𝐼 ((𝑛𝐼 ↦ ((𝑝𝑛)(ball‘((dist‘(𝑅𝑛)) ↾ ((Base‘(𝑅𝑛)) × (Base‘(𝑅𝑛)))))𝑟))‘𝑘) ∈ ((TopOpen ∘ 𝑅)‘𝑘))))
10197, 67sylan9eq 2799 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑔 = (𝑛𝐼 ↦ ((𝑝𝑛)(ball‘((dist‘(𝑅𝑛)) ↾ ((Base‘(𝑅𝑛)) × (Base‘(𝑅𝑛)))))𝑟)) ∧ 𝑘𝐼) → (𝑔𝑘) = ((𝑝𝑘)(ball‘𝐸)𝑟))
102101ixpeq2dva 8658 . . . . . . . . . . . . . . . . . . . . 21 (𝑔 = (𝑛𝐼 ↦ ((𝑝𝑛)(ball‘((dist‘(𝑅𝑛)) ↾ ((Base‘(𝑅𝑛)) × (Base‘(𝑅𝑛)))))𝑟)) → X𝑘𝐼 (𝑔𝑘) = X𝑘𝐼 ((𝑝𝑘)(ball‘𝐸)𝑟))
103102eqeq2d 2749 . . . . . . . . . . . . . . . . . . . 20 (𝑔 = (𝑛𝐼 ↦ ((𝑝𝑛)(ball‘((dist‘(𝑅𝑛)) ↾ ((Base‘(𝑅𝑛)) × (Base‘(𝑅𝑛)))))𝑟)) → ((𝑝(ball‘𝐷)𝑟) = X𝑘𝐼 (𝑔𝑘) ↔ (𝑝(ball‘𝐷)𝑟) = X𝑘𝐼 ((𝑝𝑘)(ball‘𝐸)𝑟)))
104100, 103anbi12d 630 . . . . . . . . . . . . . . . . . . 19 (𝑔 = (𝑛𝐼 ↦ ((𝑝𝑛)(ball‘((dist‘(𝑅𝑛)) ↾ ((Base‘(𝑅𝑛)) × (Base‘(𝑅𝑛)))))𝑟)) → (((𝑔 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑔𝑘) ∈ ((TopOpen ∘ 𝑅)‘𝑘)) ∧ (𝑝(ball‘𝐷)𝑟) = X𝑘𝐼 (𝑔𝑘)) ↔ (((𝑛𝐼 ↦ ((𝑝𝑛)(ball‘((dist‘(𝑅𝑛)) ↾ ((Base‘(𝑅𝑛)) × (Base‘(𝑅𝑛)))))𝑟)) Fn 𝐼 ∧ ∀𝑘𝐼 ((𝑛𝐼 ↦ ((𝑝𝑛)(ball‘((dist‘(𝑅𝑛)) ↾ ((Base‘(𝑅𝑛)) × (Base‘(𝑅𝑛)))))𝑟))‘𝑘) ∈ ((TopOpen ∘ 𝑅)‘𝑘)) ∧ (𝑝(ball‘𝐷)𝑟) = X𝑘𝐼 ((𝑝𝑘)(ball‘𝐸)𝑟))))
105104spcegv 3526 . . . . . . . . . . . . . . . . . 18 ((𝑛𝐼 ↦ ((𝑝𝑛)(ball‘((dist‘(𝑅𝑛)) ↾ ((Base‘(𝑅𝑛)) × (Base‘(𝑅𝑛)))))𝑟)) ∈ V → ((((𝑛𝐼 ↦ ((𝑝𝑛)(ball‘((dist‘(𝑅𝑛)) ↾ ((Base‘(𝑅𝑛)) × (Base‘(𝑅𝑛)))))𝑟)) Fn 𝐼 ∧ ∀𝑘𝐼 ((𝑛𝐼 ↦ ((𝑝𝑛)(ball‘((dist‘(𝑅𝑛)) ↾ ((Base‘(𝑅𝑛)) × (Base‘(𝑅𝑛)))))𝑟))‘𝑘) ∈ ((TopOpen ∘ 𝑅)‘𝑘)) ∧ (𝑝(ball‘𝐷)𝑟) = X𝑘𝐼 ((𝑝𝑘)(ball‘𝐸)𝑟)) → ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑔𝑘) ∈ ((TopOpen ∘ 𝑅)‘𝑘)) ∧ (𝑝(ball‘𝐷)𝑟) = X𝑘𝐼 (𝑔𝑘))))
1061053impib 1114 . . . . . . . . . . . . . . . . 17 (((𝑛𝐼 ↦ ((𝑝𝑛)(ball‘((dist‘(𝑅𝑛)) ↾ ((Base‘(𝑅𝑛)) × (Base‘(𝑅𝑛)))))𝑟)) ∈ V ∧ ((𝑛𝐼 ↦ ((𝑝𝑛)(ball‘((dist‘(𝑅𝑛)) ↾ ((Base‘(𝑅𝑛)) × (Base‘(𝑅𝑛)))))𝑟)) Fn 𝐼 ∧ ∀𝑘𝐼 ((𝑛𝐼 ↦ ((𝑝𝑛)(ball‘((dist‘(𝑅𝑛)) ↾ ((Base‘(𝑅𝑛)) × (Base‘(𝑅𝑛)))))𝑟))‘𝑘) ∈ ((TopOpen ∘ 𝑅)‘𝑘)) ∧ (𝑝(ball‘𝐷)𝑟) = X𝑘𝐼 ((𝑝𝑘)(ball‘𝐸)𝑟)) → ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑔𝑘) ∈ ((TopOpen ∘ 𝑅)‘𝑘)) ∧ (𝑝(ball‘𝐷)𝑟) = X𝑘𝐼 (𝑔𝑘)))
10726, 31, 77, 95, 106syl121anc 1373 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑝𝐵𝑟 ∈ ℝ*) ∧ 0 < 𝑟) → ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑔𝑘) ∈ ((TopOpen ∘ 𝑅)‘𝑘)) ∧ (𝑝(ball‘𝐷)𝑟) = X𝑘𝐼 (𝑔𝑘)))
1081073expia 1119 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑝𝐵𝑟 ∈ ℝ*)) → (0 < 𝑟 → ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑔𝑘) ∈ ((TopOpen ∘ 𝑅)‘𝑘)) ∧ (𝑝(ball‘𝐷)𝑟) = X𝑘𝐼 (𝑔𝑘))))
10924, 108sylbid 239 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑝𝐵𝑟 ∈ ℝ*)) → ((𝑝(ball‘𝐷)𝑟) ≠ ∅ → ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑔𝑘) ∈ ((TopOpen ∘ 𝑅)‘𝑘)) ∧ (𝑝(ball‘𝐷)𝑟) = X𝑘𝐼 (𝑔𝑘))))
110109adantr 480 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑝𝐵𝑟 ∈ ℝ*)) ∧ 𝑥 = (𝑝(ball‘𝐷)𝑟)) → ((𝑝(ball‘𝐷)𝑟) ≠ ∅ → ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑔𝑘) ∈ ((TopOpen ∘ 𝑅)‘𝑘)) ∧ (𝑝(ball‘𝐷)𝑟) = X𝑘𝐼 (𝑔𝑘))))
111 simpr 484 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑝𝐵𝑟 ∈ ℝ*)) ∧ 𝑥 = (𝑝(ball‘𝐷)𝑟)) → 𝑥 = (𝑝(ball‘𝐷)𝑟))
112111neeq1d 3002 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑝𝐵𝑟 ∈ ℝ*)) ∧ 𝑥 = (𝑝(ball‘𝐷)𝑟)) → (𝑥 ≠ ∅ ↔ (𝑝(ball‘𝐷)𝑟) ≠ ∅))
113 df-3an 1087 . . . . . . . . . . . . . . . 16 ((𝑔 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑔𝑘) ∈ ((TopOpen ∘ 𝑅)‘𝑘) ∧ ∃𝑧 ∈ Fin ∀𝑘 ∈ (𝐼𝑧)(𝑔𝑘) = ((TopOpen ∘ 𝑅)‘𝑘)) ↔ ((𝑔 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑔𝑘) ∈ ((TopOpen ∘ 𝑅)‘𝑘)) ∧ ∃𝑧 ∈ Fin ∀𝑘 ∈ (𝐼𝑧)(𝑔𝑘) = ((TopOpen ∘ 𝑅)‘𝑘)))
114 ral0 4440 . . . . . . . . . . . . . . . . . . 19 𝑘 ∈ ∅ (𝑔𝑘) = ((TopOpen ∘ 𝑅)‘𝑘)
115 difeq2 4047 . . . . . . . . . . . . . . . . . . . . . 22 (𝑧 = 𝐼 → (𝐼𝑧) = (𝐼𝐼))
116 difid 4301 . . . . . . . . . . . . . . . . . . . . . 22 (𝐼𝐼) = ∅
117115, 116eqtrdi 2795 . . . . . . . . . . . . . . . . . . . . 21 (𝑧 = 𝐼 → (𝐼𝑧) = ∅)
118117raleqdv 3339 . . . . . . . . . . . . . . . . . . . 20 (𝑧 = 𝐼 → (∀𝑘 ∈ (𝐼𝑧)(𝑔𝑘) = ((TopOpen ∘ 𝑅)‘𝑘) ↔ ∀𝑘 ∈ ∅ (𝑔𝑘) = ((TopOpen ∘ 𝑅)‘𝑘)))
119118rspcev 3552 . . . . . . . . . . . . . . . . . . 19 ((𝐼 ∈ Fin ∧ ∀𝑘 ∈ ∅ (𝑔𝑘) = ((TopOpen ∘ 𝑅)‘𝑘)) → ∃𝑧 ∈ Fin ∀𝑘 ∈ (𝐼𝑧)(𝑔𝑘) = ((TopOpen ∘ 𝑅)‘𝑘))
1201, 114, 119sylancl 585 . . . . . . . . . . . . . . . . . 18 (𝜑 → ∃𝑧 ∈ Fin ∀𝑘 ∈ (𝐼𝑧)(𝑔𝑘) = ((TopOpen ∘ 𝑅)‘𝑘))
121120adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑝𝐵𝑟 ∈ ℝ*)) → ∃𝑧 ∈ Fin ∀𝑘 ∈ (𝐼𝑧)(𝑔𝑘) = ((TopOpen ∘ 𝑅)‘𝑘))
122121biantrud 531 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑝𝐵𝑟 ∈ ℝ*)) → ((𝑔 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑔𝑘) ∈ ((TopOpen ∘ 𝑅)‘𝑘)) ↔ ((𝑔 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑔𝑘) ∈ ((TopOpen ∘ 𝑅)‘𝑘)) ∧ ∃𝑧 ∈ Fin ∀𝑘 ∈ (𝐼𝑧)(𝑔𝑘) = ((TopOpen ∘ 𝑅)‘𝑘))))
123113, 122bitr4id 289 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑝𝐵𝑟 ∈ ℝ*)) → ((𝑔 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑔𝑘) ∈ ((TopOpen ∘ 𝑅)‘𝑘) ∧ ∃𝑧 ∈ Fin ∀𝑘 ∈ (𝐼𝑧)(𝑔𝑘) = ((TopOpen ∘ 𝑅)‘𝑘)) ↔ (𝑔 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑔𝑘) ∈ ((TopOpen ∘ 𝑅)‘𝑘))))
124 eqeq1 2742 . . . . . . . . . . . . . . 15 (𝑥 = (𝑝(ball‘𝐷)𝑟) → (𝑥 = X𝑘𝐼 (𝑔𝑘) ↔ (𝑝(ball‘𝐷)𝑟) = X𝑘𝐼 (𝑔𝑘)))
125123, 124bi2anan9 635 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑝𝐵𝑟 ∈ ℝ*)) ∧ 𝑥 = (𝑝(ball‘𝐷)𝑟)) → (((𝑔 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑔𝑘) ∈ ((TopOpen ∘ 𝑅)‘𝑘) ∧ ∃𝑧 ∈ Fin ∀𝑘 ∈ (𝐼𝑧)(𝑔𝑘) = ((TopOpen ∘ 𝑅)‘𝑘)) ∧ 𝑥 = X𝑘𝐼 (𝑔𝑘)) ↔ ((𝑔 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑔𝑘) ∈ ((TopOpen ∘ 𝑅)‘𝑘)) ∧ (𝑝(ball‘𝐷)𝑟) = X𝑘𝐼 (𝑔𝑘))))
126125exbidv 1925 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑝𝐵𝑟 ∈ ℝ*)) ∧ 𝑥 = (𝑝(ball‘𝐷)𝑟)) → (∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑔𝑘) ∈ ((TopOpen ∘ 𝑅)‘𝑘) ∧ ∃𝑧 ∈ Fin ∀𝑘 ∈ (𝐼𝑧)(𝑔𝑘) = ((TopOpen ∘ 𝑅)‘𝑘)) ∧ 𝑥 = X𝑘𝐼 (𝑔𝑘)) ↔ ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑔𝑘) ∈ ((TopOpen ∘ 𝑅)‘𝑘)) ∧ (𝑝(ball‘𝐷)𝑟) = X𝑘𝐼 (𝑔𝑘))))
127110, 112, 1263imtr4d 293 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑝𝐵𝑟 ∈ ℝ*)) ∧ 𝑥 = (𝑝(ball‘𝐷)𝑟)) → (𝑥 ≠ ∅ → ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑔𝑘) ∈ ((TopOpen ∘ 𝑅)‘𝑘) ∧ ∃𝑧 ∈ Fin ∀𝑘 ∈ (𝐼𝑧)(𝑔𝑘) = ((TopOpen ∘ 𝑅)‘𝑘)) ∧ 𝑥 = X𝑘𝐼 (𝑔𝑘))))
128127ex 412 . . . . . . . . . . 11 ((𝜑 ∧ (𝑝𝐵𝑟 ∈ ℝ*)) → (𝑥 = (𝑝(ball‘𝐷)𝑟) → (𝑥 ≠ ∅ → ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑔𝑘) ∈ ((TopOpen ∘ 𝑅)‘𝑘) ∧ ∃𝑧 ∈ Fin ∀𝑘 ∈ (𝐼𝑧)(𝑔𝑘) = ((TopOpen ∘ 𝑅)‘𝑘)) ∧ 𝑥 = X𝑘𝐼 (𝑔𝑘)))))
129128rexlimdvva 3222 . . . . . . . . . 10 (𝜑 → (∃𝑝𝐵𝑟 ∈ ℝ* 𝑥 = (𝑝(ball‘𝐷)𝑟) → (𝑥 ≠ ∅ → ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑔𝑘) ∈ ((TopOpen ∘ 𝑅)‘𝑘) ∧ ∃𝑧 ∈ Fin ∀𝑘 ∈ (𝐼𝑧)(𝑔𝑘) = ((TopOpen ∘ 𝑅)‘𝑘)) ∧ 𝑥 = X𝑘𝐼 (𝑔𝑘)))))
13019, 129sylbid 239 . . . . . . . . 9 (𝜑 → (𝑥 ∈ ran (ball‘𝐷) → (𝑥 ≠ ∅ → ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑔𝑘) ∈ ((TopOpen ∘ 𝑅)‘𝑘) ∧ ∃𝑧 ∈ Fin ∀𝑘 ∈ (𝐼𝑧)(𝑔𝑘) = ((TopOpen ∘ 𝑅)‘𝑘)) ∧ 𝑥 = X𝑘𝐼 (𝑔𝑘)))))
131130impd 410 . . . . . . . 8 (𝜑 → ((𝑥 ∈ ran (ball‘𝐷) ∧ 𝑥 ≠ ∅) → ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑔𝑘) ∈ ((TopOpen ∘ 𝑅)‘𝑘) ∧ ∃𝑧 ∈ Fin ∀𝑘 ∈ (𝐼𝑧)(𝑔𝑘) = ((TopOpen ∘ 𝑅)‘𝑘)) ∧ 𝑥 = X𝑘𝐼 (𝑔𝑘))))
13212, 131syl5bi 241 . . . . . . 7 (𝜑 → (𝑥 ∈ (ran (ball‘𝐷) ∖ {∅}) → ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑔𝑘) ∈ ((TopOpen ∘ 𝑅)‘𝑘) ∧ ∃𝑧 ∈ Fin ∀𝑘 ∈ (𝐼𝑧)(𝑔𝑘) = ((TopOpen ∘ 𝑅)‘𝑘)) ∧ 𝑥 = X𝑘𝐼 (𝑔𝑘))))
133132alrimiv 1931 . . . . . 6 (𝜑 → ∀𝑥(𝑥 ∈ (ran (ball‘𝐷) ∖ {∅}) → ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑔𝑘) ∈ ((TopOpen ∘ 𝑅)‘𝑘) ∧ ∃𝑧 ∈ Fin ∀𝑘 ∈ (𝐼𝑧)(𝑔𝑘) = ((TopOpen ∘ 𝑅)‘𝑘)) ∧ 𝑥 = X𝑘𝐼 (𝑔𝑘))))
134 ssab 3991 . . . . . 6 ((ran (ball‘𝐷) ∖ {∅}) ⊆ {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑔𝑘) ∈ ((TopOpen ∘ 𝑅)‘𝑘) ∧ ∃𝑧 ∈ Fin ∀𝑘 ∈ (𝐼𝑧)(𝑔𝑘) = ((TopOpen ∘ 𝑅)‘𝑘)) ∧ 𝑥 = X𝑘𝐼 (𝑔𝑘))} ↔ ∀𝑥(𝑥 ∈ (ran (ball‘𝐷) ∖ {∅}) → ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑔𝑘) ∈ ((TopOpen ∘ 𝑅)‘𝑘) ∧ ∃𝑧 ∈ Fin ∀𝑘 ∈ (𝐼𝑧)(𝑔𝑘) = ((TopOpen ∘ 𝑅)‘𝑘)) ∧ 𝑥 = X𝑘𝐼 (𝑔𝑘))))
135133, 134sylibr 233 . . . . 5 (𝜑 → (ran (ball‘𝐷) ∖ {∅}) ⊆ {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑔𝑘) ∈ ((TopOpen ∘ 𝑅)‘𝑘) ∧ ∃𝑧 ∈ Fin ∀𝑘 ∈ (𝐼𝑧)(𝑔𝑘) = ((TopOpen ∘ 𝑅)‘𝑘)) ∧ 𝑥 = X𝑘𝐼 (𝑔𝑘))})
136135, 9sseqtrrdi 3968 . . . 4 (𝜑 → (ran (ball‘𝐷) ∖ {∅}) ⊆ 𝐶)
137 ssv 3941 . . . . . . . . . 10 ∞MetSp ⊆ V
138 fnssres 6539 . . . . . . . . . 10 ((TopOpen Fn V ∧ ∞MetSp ⊆ V) → (TopOpen ↾ ∞MetSp) Fn ∞MetSp)
1392, 137, 138mp2an 688 . . . . . . . . 9 (TopOpen ↾ ∞MetSp) Fn ∞MetSp
140 fvres 6775 . . . . . . . . . . 11 (𝑥 ∈ ∞MetSp → ((TopOpen ↾ ∞MetSp)‘𝑥) = (TopOpen‘𝑥))
141 xmstps 23514 . . . . . . . . . . . 12 (𝑥 ∈ ∞MetSp → 𝑥 ∈ TopSp)
142 eqid 2738 . . . . . . . . . . . . 13 (TopOpen‘𝑥) = (TopOpen‘𝑥)
143142tpstop 21994 . . . . . . . . . . . 12 (𝑥 ∈ TopSp → (TopOpen‘𝑥) ∈ Top)
144141, 143syl 17 . . . . . . . . . . 11 (𝑥 ∈ ∞MetSp → (TopOpen‘𝑥) ∈ Top)
145140, 144eqeltrd 2839 . . . . . . . . . 10 (𝑥 ∈ ∞MetSp → ((TopOpen ↾ ∞MetSp)‘𝑥) ∈ Top)
146145rgen 3073 . . . . . . . . 9 𝑥 ∈ ∞MetSp ((TopOpen ↾ ∞MetSp)‘𝑥) ∈ Top
147 ffnfv 6974 . . . . . . . . 9 ((TopOpen ↾ ∞MetSp):∞MetSp⟶Top ↔ ((TopOpen ↾ ∞MetSp) Fn ∞MetSp ∧ ∀𝑥 ∈ ∞MetSp ((TopOpen ↾ ∞MetSp)‘𝑥) ∈ Top))
148139, 146, 147mpbir2an 707 . . . . . . . 8 (TopOpen ↾ ∞MetSp):∞MetSp⟶Top
149 fco2 6611 . . . . . . . 8 (((TopOpen ↾ ∞MetSp):∞MetSp⟶Top ∧ 𝑅:𝐼⟶∞MetSp) → (TopOpen ∘ 𝑅):𝐼⟶Top)
150148, 3, 149sylancr 586 . . . . . . 7 (𝜑 → (TopOpen ∘ 𝑅):𝐼⟶Top)
151 eqid 2738 . . . . . . . 8 X𝑛𝐼 ((TopOpen ∘ 𝑅)‘𝑛) = X𝑛𝐼 ((TopOpen ∘ 𝑅)‘𝑛)
1529, 151ptbasfi 22640 . . . . . . 7 ((𝐼 ∈ Fin ∧ (TopOpen ∘ 𝑅):𝐼⟶Top) → 𝐶 = (fi‘({X𝑛𝐼 ((TopOpen ∘ 𝑅)‘𝑛)} ∪ ran (𝑚𝐼, 𝑢 ∈ ((TopOpen ∘ 𝑅)‘𝑚) ↦ ((𝑤X𝑛𝐼 ((TopOpen ∘ 𝑅)‘𝑛) ↦ (𝑤𝑚)) “ 𝑢)))))
1531, 150, 152syl2anc 583 . . . . . 6 (𝜑𝐶 = (fi‘({X𝑛𝐼 ((TopOpen ∘ 𝑅)‘𝑛)} ∪ ran (𝑚𝐼, 𝑢 ∈ ((TopOpen ∘ 𝑅)‘𝑚) ↦ ((𝑤X𝑛𝐼 ((TopOpen ∘ 𝑅)‘𝑛) ↦ (𝑤𝑚)) “ 𝑢)))))
154 eqid 2738 . . . . . . . . 9 (MetOpen‘𝐷) = (MetOpen‘𝐷)
155154mopntop 23501 . . . . . . . 8 (𝐷 ∈ (∞Met‘𝐵) → (MetOpen‘𝐷) ∈ Top)
15617, 155syl 17 . . . . . . 7 (𝜑 → (MetOpen‘𝐷) ∈ Top)
15713, 16, 14, 1, 4prdsbas2 17097 . . . . . . . . . . . 12 (𝜑𝐵 = X𝑘𝐼 (Base‘(𝑅𝑘)))
1583, 71sylan 579 . . . . . . . . . . . . . . . 16 ((𝜑𝑘𝐼) → ((TopOpen ∘ 𝑅)‘𝑘) = 𝐾)
1593ffvelrnda 6943 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘𝐼) → (𝑅𝑘) ∈ ∞MetSp)
160 xmstps 23514 . . . . . . . . . . . . . . . . . 18 ((𝑅𝑘) ∈ ∞MetSp → (𝑅𝑘) ∈ TopSp)
161159, 160syl 17 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘𝐼) → (𝑅𝑘) ∈ TopSp)
16234, 70istps 21991 . . . . . . . . . . . . . . . . 17 ((𝑅𝑘) ∈ TopSp ↔ 𝐾 ∈ (TopOn‘𝑉))
163161, 162sylib 217 . . . . . . . . . . . . . . . 16 ((𝜑𝑘𝐼) → 𝐾 ∈ (TopOn‘𝑉))
164158, 163eqeltrd 2839 . . . . . . . . . . . . . . 15 ((𝜑𝑘𝐼) → ((TopOpen ∘ 𝑅)‘𝑘) ∈ (TopOn‘𝑉))
165 toponuni 21971 . . . . . . . . . . . . . . 15 (((TopOpen ∘ 𝑅)‘𝑘) ∈ (TopOn‘𝑉) → 𝑉 = ((TopOpen ∘ 𝑅)‘𝑘))
166164, 165syl 17 . . . . . . . . . . . . . 14 ((𝜑𝑘𝐼) → 𝑉 = ((TopOpen ∘ 𝑅)‘𝑘))
16734, 166eqtr3id 2793 . . . . . . . . . . . . 13 ((𝜑𝑘𝐼) → (Base‘(𝑅𝑘)) = ((TopOpen ∘ 𝑅)‘𝑘))
168167ixpeq2dva 8658 . . . . . . . . . . . 12 (𝜑X𝑘𝐼 (Base‘(𝑅𝑘)) = X𝑘𝐼 ((TopOpen ∘ 𝑅)‘𝑘))
169157, 168eqtrd 2778 . . . . . . . . . . 11 (𝜑𝐵 = X𝑘𝐼 ((TopOpen ∘ 𝑅)‘𝑘))
170 fveq2 6756 . . . . . . . . . . . . 13 (𝑘 = 𝑛 → ((TopOpen ∘ 𝑅)‘𝑘) = ((TopOpen ∘ 𝑅)‘𝑛))
171170unieqd 4850 . . . . . . . . . . . 12 (𝑘 = 𝑛 ((TopOpen ∘ 𝑅)‘𝑘) = ((TopOpen ∘ 𝑅)‘𝑛))
172171cbvixpv 8661 . . . . . . . . . . 11 X𝑘𝐼 ((TopOpen ∘ 𝑅)‘𝑘) = X𝑛𝐼 ((TopOpen ∘ 𝑅)‘𝑛)
173169, 172eqtrdi 2795 . . . . . . . . . 10 (𝜑𝐵 = X𝑛𝐼 ((TopOpen ∘ 𝑅)‘𝑛))
174154mopntopon 23500 . . . . . . . . . . . 12 (𝐷 ∈ (∞Met‘𝐵) → (MetOpen‘𝐷) ∈ (TopOn‘𝐵))
17517, 174syl 17 . . . . . . . . . . 11 (𝜑 → (MetOpen‘𝐷) ∈ (TopOn‘𝐵))
176 toponmax 21983 . . . . . . . . . . 11 ((MetOpen‘𝐷) ∈ (TopOn‘𝐵) → 𝐵 ∈ (MetOpen‘𝐷))
177175, 176syl 17 . . . . . . . . . 10 (𝜑𝐵 ∈ (MetOpen‘𝐷))
178173, 177eqeltrrd 2840 . . . . . . . . 9 (𝜑X𝑛𝐼 ((TopOpen ∘ 𝑅)‘𝑛) ∈ (MetOpen‘𝐷))
179178snssd 4739 . . . . . . . 8 (𝜑 → {X𝑛𝐼 ((TopOpen ∘ 𝑅)‘𝑛)} ⊆ (MetOpen‘𝐷))
180173mpteq1d 5165 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑤𝐵 ↦ (𝑤𝑘)) = (𝑤X𝑛𝐼 ((TopOpen ∘ 𝑅)‘𝑛) ↦ (𝑤𝑘)))
181180ad2antrr 722 . . . . . . . . . . . . . . . . 17 (((𝜑𝑘𝐼) ∧ 𝑢𝐾) → (𝑤𝐵 ↦ (𝑤𝑘)) = (𝑤X𝑛𝐼 ((TopOpen ∘ 𝑅)‘𝑛) ↦ (𝑤𝑘)))
182181cnveqd 5773 . . . . . . . . . . . . . . . 16 (((𝜑𝑘𝐼) ∧ 𝑢𝐾) → (𝑤𝐵 ↦ (𝑤𝑘)) = (𝑤X𝑛𝐼 ((TopOpen ∘ 𝑅)‘𝑛) ↦ (𝑤𝑘)))
183182imaeq1d 5957 . . . . . . . . . . . . . . 15 (((𝜑𝑘𝐼) ∧ 𝑢𝐾) → ((𝑤𝐵 ↦ (𝑤𝑘)) “ 𝑢) = ((𝑤X𝑛𝐼 ((TopOpen ∘ 𝑅)‘𝑛) ↦ (𝑤𝑘)) “ 𝑢))
184 fveq1 6755 . . . . . . . . . . . . . . . . . . . 20 (𝑤 = 𝑝 → (𝑤𝑘) = (𝑝𝑘))
185184eleq1d 2823 . . . . . . . . . . . . . . . . . . 19 (𝑤 = 𝑝 → ((𝑤𝑘) ∈ 𝑢 ↔ (𝑝𝑘) ∈ 𝑢))
186 eqid 2738 . . . . . . . . . . . . . . . . . . . 20 (𝑤𝐵 ↦ (𝑤𝑘)) = (𝑤𝐵 ↦ (𝑤𝑘))
187186mptpreima 6130 . . . . . . . . . . . . . . . . . . 19 ((𝑤𝐵 ↦ (𝑤𝑘)) “ 𝑢) = {𝑤𝐵 ∣ (𝑤𝑘) ∈ 𝑢}
188185, 187elrab2 3620 . . . . . . . . . . . . . . . . . 18 (𝑝 ∈ ((𝑤𝐵 ↦ (𝑤𝑘)) “ 𝑢) ↔ (𝑝𝐵 ∧ (𝑝𝑘) ∈ 𝑢))
189159, 36syl 17 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑘𝐼) → 𝐸 ∈ (∞Met‘𝑉))
190189adantr 480 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑘𝐼) ∧ (𝑢𝐾 ∧ (𝑝𝐵 ∧ (𝑝𝑘) ∈ 𝑢))) → 𝐸 ∈ (∞Met‘𝑉))
191 simprl 767 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑘𝐼) ∧ (𝑢𝐾 ∧ (𝑝𝐵 ∧ (𝑝𝑘) ∈ 𝑢))) → 𝑢𝐾)
192159, 73syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑘𝐼) → 𝐾 = (MetOpen‘𝐸))
193192adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑘𝐼) ∧ (𝑢𝐾 ∧ (𝑝𝐵 ∧ (𝑝𝑘) ∈ 𝑢))) → 𝐾 = (MetOpen‘𝐸))
194191, 193eleqtrd 2841 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑘𝐼) ∧ (𝑢𝐾 ∧ (𝑝𝐵 ∧ (𝑝𝑘) ∈ 𝑢))) → 𝑢 ∈ (MetOpen‘𝐸))
195 simprrr 778 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑘𝐼) ∧ (𝑢𝐾 ∧ (𝑝𝐵 ∧ (𝑝𝑘) ∈ 𝑢))) → (𝑝𝑘) ∈ 𝑢)
19653mopni2 23555 . . . . . . . . . . . . . . . . . . . . 21 ((𝐸 ∈ (∞Met‘𝑉) ∧ 𝑢 ∈ (MetOpen‘𝐸) ∧ (𝑝𝑘) ∈ 𝑢) → ∃𝑟 ∈ ℝ+ ((𝑝𝑘)(ball‘𝐸)𝑟) ⊆ 𝑢)
197190, 194, 195, 196syl3anc 1369 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑘𝐼) ∧ (𝑢𝐾 ∧ (𝑝𝐵 ∧ (𝑝𝑘) ∈ 𝑢))) → ∃𝑟 ∈ ℝ+ ((𝑝𝑘)(ball‘𝐸)𝑟) ⊆ 𝑢)
19817ad3antrrr 726 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑘𝐼) ∧ (𝑢𝐾 ∧ (𝑝𝐵 ∧ (𝑝𝑘) ∈ 𝑢))) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑝𝑘)(ball‘𝐸)𝑟) ⊆ 𝑢)) → 𝐷 ∈ (∞Met‘𝐵))
199 simprrl 777 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑘𝐼) ∧ (𝑢𝐾 ∧ (𝑝𝐵 ∧ (𝑝𝑘) ∈ 𝑢))) → 𝑝𝐵)
200199adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑘𝐼) ∧ (𝑢𝐾 ∧ (𝑝𝐵 ∧ (𝑝𝑘) ∈ 𝑢))) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑝𝑘)(ball‘𝐸)𝑟) ⊆ 𝑢)) → 𝑝𝐵)
201 rpxr 12668 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑟 ∈ ℝ+𝑟 ∈ ℝ*)
202201ad2antrl 724 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑘𝐼) ∧ (𝑢𝐾 ∧ (𝑝𝐵 ∧ (𝑝𝑘) ∈ 𝑢))) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑝𝑘)(ball‘𝐸)𝑟) ⊆ 𝑢)) → 𝑟 ∈ ℝ*)
203154blopn 23562 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐷 ∈ (∞Met‘𝐵) ∧ 𝑝𝐵𝑟 ∈ ℝ*) → (𝑝(ball‘𝐷)𝑟) ∈ (MetOpen‘𝐷))
204198, 200, 202, 203syl3anc 1369 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑘𝐼) ∧ (𝑢𝐾 ∧ (𝑝𝐵 ∧ (𝑝𝑘) ∈ 𝑢))) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑝𝑘)(ball‘𝐸)𝑟) ⊆ 𝑢)) → (𝑝(ball‘𝐷)𝑟) ∈ (MetOpen‘𝐷))
205 simprl 767 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑘𝐼) ∧ (𝑢𝐾 ∧ (𝑝𝐵 ∧ (𝑝𝑘) ∈ 𝑢))) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑝𝑘)(ball‘𝐸)𝑟) ⊆ 𝑢)) → 𝑟 ∈ ℝ+)
206 blcntr 23474 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐷 ∈ (∞Met‘𝐵) ∧ 𝑝𝐵𝑟 ∈ ℝ+) → 𝑝 ∈ (𝑝(ball‘𝐷)𝑟))
207198, 200, 205, 206syl3anc 1369 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑘𝐼) ∧ (𝑢𝐾 ∧ (𝑝𝐵 ∧ (𝑝𝑘) ∈ 𝑢))) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑝𝑘)(ball‘𝐸)𝑟) ⊆ 𝑢)) → 𝑝 ∈ (𝑝(ball‘𝐷)𝑟))
208 blssm 23479 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐷 ∈ (∞Met‘𝐵) ∧ 𝑝𝐵𝑟 ∈ ℝ*) → (𝑝(ball‘𝐷)𝑟) ⊆ 𝐵)
209198, 200, 202, 208syl3anc 1369 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑘𝐼) ∧ (𝑢𝐾 ∧ (𝑝𝐵 ∧ (𝑝𝑘) ∈ 𝑢))) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑝𝑘)(ball‘𝐸)𝑟) ⊆ 𝑢)) → (𝑝(ball‘𝐷)𝑟) ⊆ 𝐵)
210 simplrr 774 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝜑𝑘𝐼) ∧ (𝑢𝐾 ∧ (𝑝𝐵 ∧ (𝑝𝑘) ∈ 𝑢))) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑝𝑘)(ball‘𝐸)𝑟) ⊆ 𝑢)) ∧ 𝑤 ∈ (𝑝(ball‘𝐷)𝑟)) → ((𝑝𝑘)(ball‘𝐸)𝑟) ⊆ 𝑢)
211 simplll 771 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝜑𝑘𝐼) ∧ (𝑢𝐾 ∧ (𝑝𝐵 ∧ (𝑝𝑘) ∈ 𝑢))) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑝𝑘)(ball‘𝐸)𝑟) ⊆ 𝑢)) → 𝜑)
212 rpgt0 12671 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑟 ∈ ℝ+ → 0 < 𝑟)
213212ad2antrl 724 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝜑𝑘𝐼) ∧ (𝑢𝐾 ∧ (𝑝𝐵 ∧ (𝑝𝑘) ∈ 𝑢))) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑝𝑘)(ball‘𝐸)𝑟) ⊆ 𝑢)) → 0 < 𝑟)
214211, 200, 202, 213, 95syl121anc 1373 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑𝑘𝐼) ∧ (𝑢𝐾 ∧ (𝑝𝐵 ∧ (𝑝𝑘) ∈ 𝑢))) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑝𝑘)(ball‘𝐸)𝑟) ⊆ 𝑢)) → (𝑝(ball‘𝐷)𝑟) = X𝑘𝐼 ((𝑝𝑘)(ball‘𝐸)𝑟))
215214eleq2d 2824 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑘𝐼) ∧ (𝑢𝐾 ∧ (𝑝𝐵 ∧ (𝑝𝑘) ∈ 𝑢))) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑝𝑘)(ball‘𝐸)𝑟) ⊆ 𝑢)) → (𝑤 ∈ (𝑝(ball‘𝐷)𝑟) ↔ 𝑤X𝑘𝐼 ((𝑝𝑘)(ball‘𝐸)𝑟)))
216215biimpa 476 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝜑𝑘𝐼) ∧ (𝑢𝐾 ∧ (𝑝𝐵 ∧ (𝑝𝑘) ∈ 𝑢))) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑝𝑘)(ball‘𝐸)𝑟) ⊆ 𝑢)) ∧ 𝑤 ∈ (𝑝(ball‘𝐷)𝑟)) → 𝑤X𝑘𝐼 ((𝑝𝑘)(ball‘𝐸)𝑟))
217 vex 3426 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 𝑤 ∈ V
218217elixp 8650 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑤X𝑘𝐼 ((𝑝𝑘)(ball‘𝐸)𝑟) ↔ (𝑤 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑤𝑘) ∈ ((𝑝𝑘)(ball‘𝐸)𝑟)))
219218simprbi 496 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑤X𝑘𝐼 ((𝑝𝑘)(ball‘𝐸)𝑟) → ∀𝑘𝐼 (𝑤𝑘) ∈ ((𝑝𝑘)(ball‘𝐸)𝑟))
220216, 219syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝜑𝑘𝐼) ∧ (𝑢𝐾 ∧ (𝑝𝐵 ∧ (𝑝𝑘) ∈ 𝑢))) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑝𝑘)(ball‘𝐸)𝑟) ⊆ 𝑢)) ∧ 𝑤 ∈ (𝑝(ball‘𝐷)𝑟)) → ∀𝑘𝐼 (𝑤𝑘) ∈ ((𝑝𝑘)(ball‘𝐸)𝑟))
221 simp-4r 780 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝜑𝑘𝐼) ∧ (𝑢𝐾 ∧ (𝑝𝐵 ∧ (𝑝𝑘) ∈ 𝑢))) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑝𝑘)(ball‘𝐸)𝑟) ⊆ 𝑢)) ∧ 𝑤 ∈ (𝑝(ball‘𝐷)𝑟)) → 𝑘𝐼)
222 rsp 3129 . . . . . . . . . . . . . . . . . . . . . . . . 25 (∀𝑘𝐼 (𝑤𝑘) ∈ ((𝑝𝑘)(ball‘𝐸)𝑟) → (𝑘𝐼 → (𝑤𝑘) ∈ ((𝑝𝑘)(ball‘𝐸)𝑟)))
223220, 221, 222sylc 65 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝜑𝑘𝐼) ∧ (𝑢𝐾 ∧ (𝑝𝐵 ∧ (𝑝𝑘) ∈ 𝑢))) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑝𝑘)(ball‘𝐸)𝑟) ⊆ 𝑢)) ∧ 𝑤 ∈ (𝑝(ball‘𝐷)𝑟)) → (𝑤𝑘) ∈ ((𝑝𝑘)(ball‘𝐸)𝑟))
224210, 223sseldd 3918 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑𝑘𝐼) ∧ (𝑢𝐾 ∧ (𝑝𝐵 ∧ (𝑝𝑘) ∈ 𝑢))) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑝𝑘)(ball‘𝐸)𝑟) ⊆ 𝑢)) ∧ 𝑤 ∈ (𝑝(ball‘𝐷)𝑟)) → (𝑤𝑘) ∈ 𝑢)
225209, 224ssrabdv 4003 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑘𝐼) ∧ (𝑢𝐾 ∧ (𝑝𝐵 ∧ (𝑝𝑘) ∈ 𝑢))) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑝𝑘)(ball‘𝐸)𝑟) ⊆ 𝑢)) → (𝑝(ball‘𝐷)𝑟) ⊆ {𝑤𝐵 ∣ (𝑤𝑘) ∈ 𝑢})
226225, 187sseqtrrdi 3968 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑘𝐼) ∧ (𝑢𝐾 ∧ (𝑝𝐵 ∧ (𝑝𝑘) ∈ 𝑢))) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑝𝑘)(ball‘𝐸)𝑟) ⊆ 𝑢)) → (𝑝(ball‘𝐷)𝑟) ⊆ ((𝑤𝐵 ↦ (𝑤𝑘)) “ 𝑢))
227 eleq2 2827 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦 = (𝑝(ball‘𝐷)𝑟) → (𝑝𝑦𝑝 ∈ (𝑝(ball‘𝐷)𝑟)))
228 sseq1 3942 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦 = (𝑝(ball‘𝐷)𝑟) → (𝑦 ⊆ ((𝑤𝐵 ↦ (𝑤𝑘)) “ 𝑢) ↔ (𝑝(ball‘𝐷)𝑟) ⊆ ((𝑤𝐵 ↦ (𝑤𝑘)) “ 𝑢)))
229227, 228anbi12d 630 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 = (𝑝(ball‘𝐷)𝑟) → ((𝑝𝑦𝑦 ⊆ ((𝑤𝐵 ↦ (𝑤𝑘)) “ 𝑢)) ↔ (𝑝 ∈ (𝑝(ball‘𝐷)𝑟) ∧ (𝑝(ball‘𝐷)𝑟) ⊆ ((𝑤𝐵 ↦ (𝑤𝑘)) “ 𝑢))))
230229rspcev 3552 . . . . . . . . . . . . . . . . . . . . 21 (((𝑝(ball‘𝐷)𝑟) ∈ (MetOpen‘𝐷) ∧ (𝑝 ∈ (𝑝(ball‘𝐷)𝑟) ∧ (𝑝(ball‘𝐷)𝑟) ⊆ ((𝑤𝐵 ↦ (𝑤𝑘)) “ 𝑢))) → ∃𝑦 ∈ (MetOpen‘𝐷)(𝑝𝑦𝑦 ⊆ ((𝑤𝐵 ↦ (𝑤𝑘)) “ 𝑢)))
231204, 207, 226, 230syl12anc 833 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑘𝐼) ∧ (𝑢𝐾 ∧ (𝑝𝐵 ∧ (𝑝𝑘) ∈ 𝑢))) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑝𝑘)(ball‘𝐸)𝑟) ⊆ 𝑢)) → ∃𝑦 ∈ (MetOpen‘𝐷)(𝑝𝑦𝑦 ⊆ ((𝑤𝐵 ↦ (𝑤𝑘)) “ 𝑢)))
232197, 231rexlimddv 3219 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑘𝐼) ∧ (𝑢𝐾 ∧ (𝑝𝐵 ∧ (𝑝𝑘) ∈ 𝑢))) → ∃𝑦 ∈ (MetOpen‘𝐷)(𝑝𝑦𝑦 ⊆ ((𝑤𝐵 ↦ (𝑤𝑘)) “ 𝑢)))
233232expr 456 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑘𝐼) ∧ 𝑢𝐾) → ((𝑝𝐵 ∧ (𝑝𝑘) ∈ 𝑢) → ∃𝑦 ∈ (MetOpen‘𝐷)(𝑝𝑦𝑦 ⊆ ((𝑤𝐵 ↦ (𝑤𝑘)) “ 𝑢))))
234188, 233syl5bi 241 . . . . . . . . . . . . . . . . 17 (((𝜑𝑘𝐼) ∧ 𝑢𝐾) → (𝑝 ∈ ((𝑤𝐵 ↦ (𝑤𝑘)) “ 𝑢) → ∃𝑦 ∈ (MetOpen‘𝐷)(𝑝𝑦𝑦 ⊆ ((𝑤𝐵 ↦ (𝑤𝑘)) “ 𝑢))))
235234ralrimiv 3106 . . . . . . . . . . . . . . . 16 (((𝜑𝑘𝐼) ∧ 𝑢𝐾) → ∀𝑝 ∈ ((𝑤𝐵 ↦ (𝑤𝑘)) “ 𝑢)∃𝑦 ∈ (MetOpen‘𝐷)(𝑝𝑦𝑦 ⊆ ((𝑤𝐵 ↦ (𝑤𝑘)) “ 𝑢)))
236156ad2antrr 722 . . . . . . . . . . . . . . . . 17 (((𝜑𝑘𝐼) ∧ 𝑢𝐾) → (MetOpen‘𝐷) ∈ Top)
237 eltop2 22033 . . . . . . . . . . . . . . . . 17 ((MetOpen‘𝐷) ∈ Top → (((𝑤𝐵 ↦ (𝑤𝑘)) “ 𝑢) ∈ (MetOpen‘𝐷) ↔ ∀𝑝 ∈ ((𝑤𝐵 ↦ (𝑤𝑘)) “ 𝑢)∃𝑦 ∈ (MetOpen‘𝐷)(𝑝𝑦𝑦 ⊆ ((𝑤𝐵 ↦ (𝑤𝑘)) “ 𝑢))))
238236, 237syl 17 . . . . . . . . . . . . . . . 16 (((𝜑𝑘𝐼) ∧ 𝑢𝐾) → (((𝑤𝐵 ↦ (𝑤𝑘)) “ 𝑢) ∈ (MetOpen‘𝐷) ↔ ∀𝑝 ∈ ((𝑤𝐵 ↦ (𝑤𝑘)) “ 𝑢)∃𝑦 ∈ (MetOpen‘𝐷)(𝑝𝑦𝑦 ⊆ ((𝑤𝐵 ↦ (𝑤𝑘)) “ 𝑢))))
239235, 238mpbird 256 . . . . . . . . . . . . . . 15 (((𝜑𝑘𝐼) ∧ 𝑢𝐾) → ((𝑤𝐵 ↦ (𝑤𝑘)) “ 𝑢) ∈ (MetOpen‘𝐷))
240183, 239eqeltrrd 2840 . . . . . . . . . . . . . 14 (((𝜑𝑘𝐼) ∧ 𝑢𝐾) → ((𝑤X𝑛𝐼 ((TopOpen ∘ 𝑅)‘𝑛) ↦ (𝑤𝑘)) “ 𝑢) ∈ (MetOpen‘𝐷))
241240ralrimiva 3107 . . . . . . . . . . . . 13 ((𝜑𝑘𝐼) → ∀𝑢𝐾 ((𝑤X𝑛𝐼 ((TopOpen ∘ 𝑅)‘𝑛) ↦ (𝑤𝑘)) “ 𝑢) ∈ (MetOpen‘𝐷))
242158raleqdv 3339 . . . . . . . . . . . . 13 ((𝜑𝑘𝐼) → (∀𝑢 ∈ ((TopOpen ∘ 𝑅)‘𝑘)((𝑤X𝑛𝐼 ((TopOpen ∘ 𝑅)‘𝑛) ↦ (𝑤𝑘)) “ 𝑢) ∈ (MetOpen‘𝐷) ↔ ∀𝑢𝐾 ((𝑤X𝑛𝐼 ((TopOpen ∘ 𝑅)‘𝑛) ↦ (𝑤𝑘)) “ 𝑢) ∈ (MetOpen‘𝐷)))
243241, 242mpbird 256 . . . . . . . . . . . 12 ((𝜑𝑘𝐼) → ∀𝑢 ∈ ((TopOpen ∘ 𝑅)‘𝑘)((𝑤X𝑛𝐼 ((TopOpen ∘ 𝑅)‘𝑛) ↦ (𝑤𝑘)) “ 𝑢) ∈ (MetOpen‘𝐷))
244243ralrimiva 3107 . . . . . . . . . . 11 (𝜑 → ∀𝑘𝐼𝑢 ∈ ((TopOpen ∘ 𝑅)‘𝑘)((𝑤X𝑛𝐼 ((TopOpen ∘ 𝑅)‘𝑛) ↦ (𝑤𝑘)) “ 𝑢) ∈ (MetOpen‘𝐷))
245 fveq2 6756 . . . . . . . . . . . . 13 (𝑘 = 𝑚 → ((TopOpen ∘ 𝑅)‘𝑘) = ((TopOpen ∘ 𝑅)‘𝑚))
246 fveq2 6756 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑚 → (𝑤𝑘) = (𝑤𝑚))
247246mpteq2dv 5172 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑚 → (𝑤X𝑛𝐼 ((TopOpen ∘ 𝑅)‘𝑛) ↦ (𝑤𝑘)) = (𝑤X𝑛𝐼 ((TopOpen ∘ 𝑅)‘𝑛) ↦ (𝑤𝑚)))
248247cnveqd 5773 . . . . . . . . . . . . . . 15 (𝑘 = 𝑚(𝑤X𝑛𝐼 ((TopOpen ∘ 𝑅)‘𝑛) ↦ (𝑤𝑘)) = (𝑤X𝑛𝐼 ((TopOpen ∘ 𝑅)‘𝑛) ↦ (𝑤𝑚)))
249248imaeq1d 5957 . . . . . . . . . . . . . 14 (𝑘 = 𝑚 → ((𝑤X𝑛𝐼 ((TopOpen ∘ 𝑅)‘𝑛) ↦ (𝑤𝑘)) “ 𝑢) = ((𝑤X𝑛𝐼 ((TopOpen ∘ 𝑅)‘𝑛) ↦ (𝑤𝑚)) “ 𝑢))
250249eleq1d 2823 . . . . . . . . . . . . 13 (𝑘 = 𝑚 → (((𝑤X𝑛𝐼 ((TopOpen ∘ 𝑅)‘𝑛) ↦ (𝑤𝑘)) “ 𝑢) ∈ (MetOpen‘𝐷) ↔ ((𝑤X𝑛𝐼 ((TopOpen ∘ 𝑅)‘𝑛) ↦ (𝑤𝑚)) “ 𝑢) ∈ (MetOpen‘𝐷)))
251245, 250raleqbidv 3327 . . . . . . . . . . . 12 (𝑘 = 𝑚 → (∀𝑢 ∈ ((TopOpen ∘ 𝑅)‘𝑘)((𝑤X𝑛𝐼 ((TopOpen ∘ 𝑅)‘𝑛) ↦ (𝑤𝑘)) “ 𝑢) ∈ (MetOpen‘𝐷) ↔ ∀𝑢 ∈ ((TopOpen ∘ 𝑅)‘𝑚)((𝑤X𝑛𝐼 ((TopOpen ∘ 𝑅)‘𝑛) ↦ (𝑤𝑚)) “ 𝑢) ∈ (MetOpen‘𝐷)))
252251cbvralvw 3372 . . . . . . . . . . 11 (∀𝑘𝐼𝑢 ∈ ((TopOpen ∘ 𝑅)‘𝑘)((𝑤X𝑛𝐼 ((TopOpen ∘ 𝑅)‘𝑛) ↦ (𝑤𝑘)) “ 𝑢) ∈ (MetOpen‘𝐷) ↔ ∀𝑚𝐼𝑢 ∈ ((TopOpen ∘ 𝑅)‘𝑚)((𝑤X𝑛𝐼 ((TopOpen ∘ 𝑅)‘𝑛) ↦ (𝑤𝑚)) “ 𝑢) ∈ (MetOpen‘𝐷))
253244, 252sylib 217 . . . . . . . . . 10 (𝜑 → ∀𝑚𝐼𝑢 ∈ ((TopOpen ∘ 𝑅)‘𝑚)((𝑤X𝑛𝐼 ((TopOpen ∘ 𝑅)‘𝑛) ↦ (𝑤𝑚)) “ 𝑢) ∈ (MetOpen‘𝐷))
254 eqid 2738 . . . . . . . . . . 11 (𝑚𝐼, 𝑢 ∈ ((TopOpen ∘ 𝑅)‘𝑚) ↦ ((𝑤X𝑛𝐼 ((TopOpen ∘ 𝑅)‘𝑛) ↦ (𝑤𝑚)) “ 𝑢)) = (𝑚𝐼, 𝑢 ∈ ((TopOpen ∘ 𝑅)‘𝑚) ↦ ((𝑤X𝑛𝐼 ((TopOpen ∘ 𝑅)‘𝑛) ↦ (𝑤𝑚)) “ 𝑢))
255254fmpox 7880 . . . . . . . . . 10 (∀𝑚𝐼𝑢 ∈ ((TopOpen ∘ 𝑅)‘𝑚)((𝑤X𝑛𝐼 ((TopOpen ∘ 𝑅)‘𝑛) ↦ (𝑤𝑚)) “ 𝑢) ∈ (MetOpen‘𝐷) ↔ (𝑚𝐼, 𝑢 ∈ ((TopOpen ∘ 𝑅)‘𝑚) ↦ ((𝑤X𝑛𝐼 ((TopOpen ∘ 𝑅)‘𝑛) ↦ (𝑤𝑚)) “ 𝑢)): 𝑚𝐼 ({𝑚} × ((TopOpen ∘ 𝑅)‘𝑚))⟶(MetOpen‘𝐷))
256253, 255sylib 217 . . . . . . . . 9 (𝜑 → (𝑚𝐼, 𝑢 ∈ ((TopOpen ∘ 𝑅)‘𝑚) ↦ ((𝑤X𝑛𝐼 ((TopOpen ∘ 𝑅)‘𝑛) ↦ (𝑤𝑚)) “ 𝑢)): 𝑚𝐼 ({𝑚} × ((TopOpen ∘ 𝑅)‘𝑚))⟶(MetOpen‘𝐷))
257256frnd 6592 . . . . . . . 8 (𝜑 → ran (𝑚𝐼, 𝑢 ∈ ((TopOpen ∘ 𝑅)‘𝑚) ↦ ((𝑤X𝑛𝐼 ((TopOpen ∘ 𝑅)‘𝑛) ↦ (𝑤𝑚)) “ 𝑢)) ⊆ (MetOpen‘𝐷))
258179, 257unssd 4116 . . . . . . 7 (𝜑 → ({X𝑛𝐼 ((TopOpen ∘ 𝑅)‘𝑛)} ∪ ran (𝑚𝐼, 𝑢 ∈ ((TopOpen ∘ 𝑅)‘𝑚) ↦ ((𝑤X𝑛𝐼 ((TopOpen ∘ 𝑅)‘𝑛) ↦ (𝑤𝑚)) “ 𝑢))) ⊆ (MetOpen‘𝐷))
259 fiss 9113 . . . . . . 7 (((MetOpen‘𝐷) ∈ Top ∧ ({X𝑛𝐼 ((TopOpen ∘ 𝑅)‘𝑛)} ∪ ran (𝑚𝐼, 𝑢 ∈ ((TopOpen ∘ 𝑅)‘𝑚) ↦ ((𝑤X𝑛𝐼 ((TopOpen ∘ 𝑅)‘𝑛) ↦ (𝑤𝑚)) “ 𝑢))) ⊆ (MetOpen‘𝐷)) → (fi‘({X𝑛𝐼 ((TopOpen ∘ 𝑅)‘𝑛)} ∪ ran (𝑚𝐼, 𝑢 ∈ ((TopOpen ∘ 𝑅)‘𝑚) ↦ ((𝑤X𝑛𝐼 ((TopOpen ∘ 𝑅)‘𝑛) ↦ (𝑤𝑚)) “ 𝑢)))) ⊆ (fi‘(MetOpen‘𝐷)))
260156, 258, 259syl2anc 583 . . . . . 6 (𝜑 → (fi‘({X𝑛𝐼 ((TopOpen ∘ 𝑅)‘𝑛)} ∪ ran (𝑚𝐼, 𝑢 ∈ ((TopOpen ∘ 𝑅)‘𝑚) ↦ ((𝑤X𝑛𝐼 ((TopOpen ∘ 𝑅)‘𝑛) ↦ (𝑤𝑚)) “ 𝑢)))) ⊆ (fi‘(MetOpen‘𝐷)))
261153, 260eqsstrd 3955 . . . . 5 (𝜑𝐶 ⊆ (fi‘(MetOpen‘𝐷)))
262 fitop 21957 . . . . . . 7 ((MetOpen‘𝐷) ∈ Top → (fi‘(MetOpen‘𝐷)) = (MetOpen‘𝐷))
263156, 262syl 17 . . . . . 6 (𝜑 → (fi‘(MetOpen‘𝐷)) = (MetOpen‘𝐷))
264154mopnval 23499 . . . . . . . 8 (𝐷 ∈ (∞Met‘𝐵) → (MetOpen‘𝐷) = (topGen‘ran (ball‘𝐷)))
26517, 264syl 17 . . . . . . 7 (𝜑 → (MetOpen‘𝐷) = (topGen‘ran (ball‘𝐷)))
266 tgdif0 22050 . . . . . . 7 (topGen‘(ran (ball‘𝐷) ∖ {∅})) = (topGen‘ran (ball‘𝐷))
267265, 266eqtr4di 2797 . . . . . 6 (𝜑 → (MetOpen‘𝐷) = (topGen‘(ran (ball‘𝐷) ∖ {∅})))
268263, 267eqtrd 2778 . . . . 5 (𝜑 → (fi‘(MetOpen‘𝐷)) = (topGen‘(ran (ball‘𝐷) ∖ {∅})))
269261, 268sseqtrd 3957 . . . 4 (𝜑𝐶 ⊆ (topGen‘(ran (ball‘𝐷) ∖ {∅})))
270 2basgen 22048 . . . 4 (((ran (ball‘𝐷) ∖ {∅}) ⊆ 𝐶𝐶 ⊆ (topGen‘(ran (ball‘𝐷) ∖ {∅}))) → (topGen‘(ran (ball‘𝐷) ∖ {∅})) = (topGen‘𝐶))
271136, 269, 270syl2anc 583 . . 3 (𝜑 → (topGen‘(ran (ball‘𝐷) ∖ {∅})) = (topGen‘𝐶))
27211, 271eqtr4d 2781 . 2 (𝜑 → (∏t‘(TopOpen ∘ 𝑅)) = (topGen‘(ran (ball‘𝐷) ∖ {∅})))
273 prdsxms.j . . 3 𝐽 = (TopOpen‘𝑌)
27413, 14, 1, 4, 273prdstopn 22687 . 2 (𝜑𝐽 = (∏t‘(TopOpen ∘ 𝑅)))
275272, 274, 2673eqtr4d 2788 1 (𝜑𝐽 = (MetOpen‘𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085  wal 1537   = wceq 1539  wex 1783  wcel 2108  {cab 2715  wne 2942  wral 3063  wrex 3064  {crab 3067  Vcvv 3422  cdif 3880  cun 3881  wss 3883  c0 4253  {csn 4558   cuni 4836   ciun 4921   class class class wbr 5070  cmpt 5153   × cxp 5578  ccnv 5579  ran crn 5581  cres 5582  cima 5583  ccom 5584   Fn wfn 6413  wf 6414  cfv 6418  (class class class)co 7255  cmpo 7257  Xcixp 8643  Fincfn 8691  ficfi 9099  0cc0 10802  *cxr 10939   < clt 10940  +crp 12659  Basecbs 16840  distcds 16897  TopOpenctopn 17049  topGenctg 17065  tcpt 17066  Xscprds 17073  ∞Metcxmet 20495  ballcbl 20497  MetOpencmopn 20500  Topctop 21950  TopOnctopon 21967  TopSpctps 21989  ∞MetSpcxms 23378
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-ixp 8644  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fi 9100  df-sup 9131  df-inf 9132  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-q 12618  df-rp 12660  df-xneg 12777  df-xadd 12778  df-xmul 12779  df-icc 13015  df-fz 13169  df-struct 16776  df-slot 16811  df-ndx 16823  df-base 16841  df-plusg 16901  df-mulr 16902  df-sca 16904  df-vsca 16905  df-ip 16906  df-tset 16907  df-ple 16908  df-ds 16910  df-hom 16912  df-cco 16913  df-rest 17050  df-topn 17051  df-topgen 17071  df-pt 17072  df-prds 17075  df-psmet 20502  df-xmet 20503  df-bl 20505  df-mopn 20506  df-top 21951  df-topon 21968  df-topsp 21990  df-bases 22004  df-xms 23381
This theorem is referenced by:  prdsxms  23592
  Copyright terms: Public domain W3C validator