MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prdsxmslem2 Structured version   Visualization version   GIF version

Theorem prdsxmslem2 24259
Description: Lemma for prdsxms 24260. The topology generated by the supremum metric is the same as the product topology, when the index set is finite. (Contributed by Mario Carneiro, 28-Aug-2015.)
Hypotheses
Ref Expression
prdsxms.y 𝑌 = (𝑆Xs𝑅)
prdsxms.s (𝜑𝑆𝑊)
prdsxms.i (𝜑𝐼 ∈ Fin)
prdsxms.d 𝐷 = (dist‘𝑌)
prdsxms.b 𝐵 = (Base‘𝑌)
prdsxms.r (𝜑𝑅:𝐼⟶∞MetSp)
prdsxms.j 𝐽 = (TopOpen‘𝑌)
prdsxms.v 𝑉 = (Base‘(𝑅𝑘))
prdsxms.e 𝐸 = ((dist‘(𝑅𝑘)) ↾ (𝑉 × 𝑉))
prdsxms.k 𝐾 = (TopOpen‘(𝑅𝑘))
prdsxms.c 𝐶 = {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑔𝑘) ∈ ((TopOpen ∘ 𝑅)‘𝑘) ∧ ∃𝑧 ∈ Fin ∀𝑘 ∈ (𝐼𝑧)(𝑔𝑘) = ((TopOpen ∘ 𝑅)‘𝑘)) ∧ 𝑥 = X𝑘𝐼 (𝑔𝑘))}
Assertion
Ref Expression
prdsxmslem2 (𝜑𝐽 = (MetOpen‘𝐷))
Distinct variable groups:   𝑔,𝑘,𝐵   𝑥,𝑔,𝐷,𝑘   𝑧,𝑔,𝐼,𝑘,𝑥   𝑔,𝐸   𝑆,𝑔,𝑘,𝑥   𝑔,𝑊,𝑘,𝑥   𝑔,𝑌,𝑘,𝑥   𝜑,𝑔,𝑘,𝑥   𝑅,𝑔,𝑘,𝑥,𝑧
Allowed substitution hints:   𝜑(𝑧)   𝐵(𝑥,𝑧)   𝐶(𝑥,𝑧,𝑔,𝑘)   𝐷(𝑧)   𝑆(𝑧)   𝐸(𝑥,𝑧,𝑘)   𝐽(𝑥,𝑧,𝑔,𝑘)   𝐾(𝑥,𝑧,𝑔,𝑘)   𝑉(𝑥,𝑧,𝑔,𝑘)   𝑊(𝑧)   𝑌(𝑧)

Proof of Theorem prdsxmslem2
Dummy variables 𝑝 𝑟 𝑤 𝑦 𝑚 𝑢 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prdsxms.i . . . 4 (𝜑𝐼 ∈ Fin)
2 topnfn 17376 . . . . 5 TopOpen Fn V
3 prdsxms.r . . . . . . 7 (𝜑𝑅:𝐼⟶∞MetSp)
43ffnd 6718 . . . . . 6 (𝜑𝑅 Fn 𝐼)
5 dffn2 6719 . . . . . 6 (𝑅 Fn 𝐼𝑅:𝐼⟶V)
64, 5sylib 217 . . . . 5 (𝜑𝑅:𝐼⟶V)
7 fnfco 6756 . . . . 5 ((TopOpen Fn V ∧ 𝑅:𝐼⟶V) → (TopOpen ∘ 𝑅) Fn 𝐼)
82, 6, 7sylancr 586 . . . 4 (𝜑 → (TopOpen ∘ 𝑅) Fn 𝐼)
9 prdsxms.c . . . . 5 𝐶 = {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑔𝑘) ∈ ((TopOpen ∘ 𝑅)‘𝑘) ∧ ∃𝑧 ∈ Fin ∀𝑘 ∈ (𝐼𝑧)(𝑔𝑘) = ((TopOpen ∘ 𝑅)‘𝑘)) ∧ 𝑥 = X𝑘𝐼 (𝑔𝑘))}
109ptval 23295 . . . 4 ((𝐼 ∈ Fin ∧ (TopOpen ∘ 𝑅) Fn 𝐼) → (∏t‘(TopOpen ∘ 𝑅)) = (topGen‘𝐶))
111, 8, 10syl2anc 583 . . 3 (𝜑 → (∏t‘(TopOpen ∘ 𝑅)) = (topGen‘𝐶))
12 eldifsn 4790 . . . . . . . 8 (𝑥 ∈ (ran (ball‘𝐷) ∖ {∅}) ↔ (𝑥 ∈ ran (ball‘𝐷) ∧ 𝑥 ≠ ∅))
13 prdsxms.y . . . . . . . . . . . 12 𝑌 = (𝑆Xs𝑅)
14 prdsxms.s . . . . . . . . . . . 12 (𝜑𝑆𝑊)
15 prdsxms.d . . . . . . . . . . . 12 𝐷 = (dist‘𝑌)
16 prdsxms.b . . . . . . . . . . . 12 𝐵 = (Base‘𝑌)
1713, 14, 1, 15, 16, 3prdsxmslem1 24258 . . . . . . . . . . 11 (𝜑𝐷 ∈ (∞Met‘𝐵))
18 blrn 24136 . . . . . . . . . . 11 (𝐷 ∈ (∞Met‘𝐵) → (𝑥 ∈ ran (ball‘𝐷) ↔ ∃𝑝𝐵𝑟 ∈ ℝ* 𝑥 = (𝑝(ball‘𝐷)𝑟)))
1917, 18syl 17 . . . . . . . . . 10 (𝜑 → (𝑥 ∈ ran (ball‘𝐷) ↔ ∃𝑝𝐵𝑟 ∈ ℝ* 𝑥 = (𝑝(ball‘𝐷)𝑟)))
2017adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑝𝐵𝑟 ∈ ℝ*)) → 𝐷 ∈ (∞Met‘𝐵))
21 simprl 768 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑝𝐵𝑟 ∈ ℝ*)) → 𝑝𝐵)
22 simprr 770 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑝𝐵𝑟 ∈ ℝ*)) → 𝑟 ∈ ℝ*)
23 xbln0 24141 . . . . . . . . . . . . . . . 16 ((𝐷 ∈ (∞Met‘𝐵) ∧ 𝑝𝐵𝑟 ∈ ℝ*) → ((𝑝(ball‘𝐷)𝑟) ≠ ∅ ↔ 0 < 𝑟))
2420, 21, 22, 23syl3anc 1370 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑝𝐵𝑟 ∈ ℝ*)) → ((𝑝(ball‘𝐷)𝑟) ≠ ∅ ↔ 0 < 𝑟))
2513ad2ant1 1132 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑝𝐵𝑟 ∈ ℝ*) ∧ 0 < 𝑟) → 𝐼 ∈ Fin)
2625mptexd 7228 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑝𝐵𝑟 ∈ ℝ*) ∧ 0 < 𝑟) → (𝑛𝐼 ↦ ((𝑝𝑛)(ball‘((dist‘(𝑅𝑛)) ↾ ((Base‘(𝑅𝑛)) × (Base‘(𝑅𝑛)))))𝑟)) ∈ V)
27 ovex 7445 . . . . . . . . . . . . . . . . . . 19 ((𝑝𝑛)(ball‘((dist‘(𝑅𝑛)) ↾ ((Base‘(𝑅𝑛)) × (Base‘(𝑅𝑛)))))𝑟) ∈ V
2827rgenw 3064 . . . . . . . . . . . . . . . . . 18 𝑛𝐼 ((𝑝𝑛)(ball‘((dist‘(𝑅𝑛)) ↾ ((Base‘(𝑅𝑛)) × (Base‘(𝑅𝑛)))))𝑟) ∈ V
29 eqid 2731 . . . . . . . . . . . . . . . . . . 19 (𝑛𝐼 ↦ ((𝑝𝑛)(ball‘((dist‘(𝑅𝑛)) ↾ ((Base‘(𝑅𝑛)) × (Base‘(𝑅𝑛)))))𝑟)) = (𝑛𝐼 ↦ ((𝑝𝑛)(ball‘((dist‘(𝑅𝑛)) ↾ ((Base‘(𝑅𝑛)) × (Base‘(𝑅𝑛)))))𝑟))
3029fnmpt 6690 . . . . . . . . . . . . . . . . . 18 (∀𝑛𝐼 ((𝑝𝑛)(ball‘((dist‘(𝑅𝑛)) ↾ ((Base‘(𝑅𝑛)) × (Base‘(𝑅𝑛)))))𝑟) ∈ V → (𝑛𝐼 ↦ ((𝑝𝑛)(ball‘((dist‘(𝑅𝑛)) ↾ ((Base‘(𝑅𝑛)) × (Base‘(𝑅𝑛)))))𝑟)) Fn 𝐼)
3128, 30mp1i 13 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑝𝐵𝑟 ∈ ℝ*) ∧ 0 < 𝑟) → (𝑛𝐼 ↦ ((𝑝𝑛)(ball‘((dist‘(𝑅𝑛)) ↾ ((Base‘(𝑅𝑛)) × (Base‘(𝑅𝑛)))))𝑟)) Fn 𝐼)
3233ad2ant1 1132 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑝𝐵𝑟 ∈ ℝ*) ∧ 0 < 𝑟) → 𝑅:𝐼⟶∞MetSp)
3332ffvelcdmda 7086 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑝𝐵𝑟 ∈ ℝ*) ∧ 0 < 𝑟) ∧ 𝑘𝐼) → (𝑅𝑘) ∈ ∞MetSp)
34 prdsxms.v . . . . . . . . . . . . . . . . . . . . . 22 𝑉 = (Base‘(𝑅𝑘))
35 prdsxms.e . . . . . . . . . . . . . . . . . . . . . 22 𝐸 = ((dist‘(𝑅𝑘)) ↾ (𝑉 × 𝑉))
3634, 35xmsxmet 24183 . . . . . . . . . . . . . . . . . . . . 21 ((𝑅𝑘) ∈ ∞MetSp → 𝐸 ∈ (∞Met‘𝑉))
3733, 36syl 17 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑝𝐵𝑟 ∈ ℝ*) ∧ 0 < 𝑟) ∧ 𝑘𝐼) → 𝐸 ∈ (∞Met‘𝑉))
38 eqid 2731 . . . . . . . . . . . . . . . . . . . . . 22 (𝑆Xs(𝑘𝐼 ↦ (𝑅𝑘))) = (𝑆Xs(𝑘𝐼 ↦ (𝑅𝑘)))
39 eqid 2731 . . . . . . . . . . . . . . . . . . . . . 22 (Base‘(𝑆Xs(𝑘𝐼 ↦ (𝑅𝑘)))) = (Base‘(𝑆Xs(𝑘𝐼 ↦ (𝑅𝑘))))
40143ad2ant1 1132 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑝𝐵𝑟 ∈ ℝ*) ∧ 0 < 𝑟) → 𝑆𝑊)
4133ralrimiva 3145 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑝𝐵𝑟 ∈ ℝ*) ∧ 0 < 𝑟) → ∀𝑘𝐼 (𝑅𝑘) ∈ ∞MetSp)
42 simp2l 1198 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ (𝑝𝐵𝑟 ∈ ℝ*) ∧ 0 < 𝑟) → 𝑝𝐵)
4332feqmptd 6960 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑 ∧ (𝑝𝐵𝑟 ∈ ℝ*) ∧ 0 < 𝑟) → 𝑅 = (𝑘𝐼 ↦ (𝑅𝑘)))
4443oveq2d 7428 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑 ∧ (𝑝𝐵𝑟 ∈ ℝ*) ∧ 0 < 𝑟) → (𝑆Xs𝑅) = (𝑆Xs(𝑘𝐼 ↦ (𝑅𝑘))))
4513, 44eqtrid 2783 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑 ∧ (𝑝𝐵𝑟 ∈ ℝ*) ∧ 0 < 𝑟) → 𝑌 = (𝑆Xs(𝑘𝐼 ↦ (𝑅𝑘))))
4645fveq2d 6895 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑 ∧ (𝑝𝐵𝑟 ∈ ℝ*) ∧ 0 < 𝑟) → (Base‘𝑌) = (Base‘(𝑆Xs(𝑘𝐼 ↦ (𝑅𝑘)))))
4716, 46eqtrid 2783 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ (𝑝𝐵𝑟 ∈ ℝ*) ∧ 0 < 𝑟) → 𝐵 = (Base‘(𝑆Xs(𝑘𝐼 ↦ (𝑅𝑘)))))
4842, 47eleqtrd 2834 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑝𝐵𝑟 ∈ ℝ*) ∧ 0 < 𝑟) → 𝑝 ∈ (Base‘(𝑆Xs(𝑘𝐼 ↦ (𝑅𝑘)))))
4938, 39, 40, 25, 41, 34, 48prdsbascl 17434 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑝𝐵𝑟 ∈ ℝ*) ∧ 0 < 𝑟) → ∀𝑘𝐼 (𝑝𝑘) ∈ 𝑉)
5049r19.21bi 3247 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑝𝐵𝑟 ∈ ℝ*) ∧ 0 < 𝑟) ∧ 𝑘𝐼) → (𝑝𝑘) ∈ 𝑉)
51 simp2r 1199 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑝𝐵𝑟 ∈ ℝ*) ∧ 0 < 𝑟) → 𝑟 ∈ ℝ*)
5251adantr 480 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑝𝐵𝑟 ∈ ℝ*) ∧ 0 < 𝑟) ∧ 𝑘𝐼) → 𝑟 ∈ ℝ*)
53 eqid 2731 . . . . . . . . . . . . . . . . . . . . 21 (MetOpen‘𝐸) = (MetOpen‘𝐸)
5453blopn 24230 . . . . . . . . . . . . . . . . . . . 20 ((𝐸 ∈ (∞Met‘𝑉) ∧ (𝑝𝑘) ∈ 𝑉𝑟 ∈ ℝ*) → ((𝑝𝑘)(ball‘𝐸)𝑟) ∈ (MetOpen‘𝐸))
5537, 50, 52, 54syl3anc 1370 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑝𝐵𝑟 ∈ ℝ*) ∧ 0 < 𝑟) ∧ 𝑘𝐼) → ((𝑝𝑘)(ball‘𝐸)𝑟) ∈ (MetOpen‘𝐸))
56 2fveq3 6896 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑛 = 𝑘 → (dist‘(𝑅𝑛)) = (dist‘(𝑅𝑘)))
57 2fveq3 6896 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑛 = 𝑘 → (Base‘(𝑅𝑛)) = (Base‘(𝑅𝑘)))
5857, 34eqtr4di 2789 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑛 = 𝑘 → (Base‘(𝑅𝑛)) = 𝑉)
5958sqxpeqd 5708 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑛 = 𝑘 → ((Base‘(𝑅𝑛)) × (Base‘(𝑅𝑛))) = (𝑉 × 𝑉))
6056, 59reseq12d 5982 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑛 = 𝑘 → ((dist‘(𝑅𝑛)) ↾ ((Base‘(𝑅𝑛)) × (Base‘(𝑅𝑛)))) = ((dist‘(𝑅𝑘)) ↾ (𝑉 × 𝑉)))
6160, 35eqtr4di 2789 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑛 = 𝑘 → ((dist‘(𝑅𝑛)) ↾ ((Base‘(𝑅𝑛)) × (Base‘(𝑅𝑛)))) = 𝐸)
6261fveq2d 6895 . . . . . . . . . . . . . . . . . . . . . 22 (𝑛 = 𝑘 → (ball‘((dist‘(𝑅𝑛)) ↾ ((Base‘(𝑅𝑛)) × (Base‘(𝑅𝑛))))) = (ball‘𝐸))
63 fveq2 6891 . . . . . . . . . . . . . . . . . . . . . 22 (𝑛 = 𝑘 → (𝑝𝑛) = (𝑝𝑘))
64 eqidd 2732 . . . . . . . . . . . . . . . . . . . . . 22 (𝑛 = 𝑘𝑟 = 𝑟)
6562, 63, 64oveq123d 7433 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 = 𝑘 → ((𝑝𝑛)(ball‘((dist‘(𝑅𝑛)) ↾ ((Base‘(𝑅𝑛)) × (Base‘(𝑅𝑛)))))𝑟) = ((𝑝𝑘)(ball‘𝐸)𝑟))
66 ovex 7445 . . . . . . . . . . . . . . . . . . . . 21 ((𝑝𝑘)(ball‘𝐸)𝑟) ∈ V
6765, 29, 66fvmpt 6998 . . . . . . . . . . . . . . . . . . . 20 (𝑘𝐼 → ((𝑛𝐼 ↦ ((𝑝𝑛)(ball‘((dist‘(𝑅𝑛)) ↾ ((Base‘(𝑅𝑛)) × (Base‘(𝑅𝑛)))))𝑟))‘𝑘) = ((𝑝𝑘)(ball‘𝐸)𝑟))
6867adantl 481 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑝𝐵𝑟 ∈ ℝ*) ∧ 0 < 𝑟) ∧ 𝑘𝐼) → ((𝑛𝐼 ↦ ((𝑝𝑛)(ball‘((dist‘(𝑅𝑛)) ↾ ((Base‘(𝑅𝑛)) × (Base‘(𝑅𝑛)))))𝑟))‘𝑘) = ((𝑝𝑘)(ball‘𝐸)𝑟))
69 fvco3 6990 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑅:𝐼⟶∞MetSp ∧ 𝑘𝐼) → ((TopOpen ∘ 𝑅)‘𝑘) = (TopOpen‘(𝑅𝑘)))
70 prdsxms.k . . . . . . . . . . . . . . . . . . . . . 22 𝐾 = (TopOpen‘(𝑅𝑘))
7169, 70eqtr4di 2789 . . . . . . . . . . . . . . . . . . . . 21 ((𝑅:𝐼⟶∞MetSp ∧ 𝑘𝐼) → ((TopOpen ∘ 𝑅)‘𝑘) = 𝐾)
7232, 71sylan 579 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑝𝐵𝑟 ∈ ℝ*) ∧ 0 < 𝑟) ∧ 𝑘𝐼) → ((TopOpen ∘ 𝑅)‘𝑘) = 𝐾)
7370, 34, 35xmstopn 24178 . . . . . . . . . . . . . . . . . . . . 21 ((𝑅𝑘) ∈ ∞MetSp → 𝐾 = (MetOpen‘𝐸))
7433, 73syl 17 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑝𝐵𝑟 ∈ ℝ*) ∧ 0 < 𝑟) ∧ 𝑘𝐼) → 𝐾 = (MetOpen‘𝐸))
7572, 74eqtrd 2771 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑝𝐵𝑟 ∈ ℝ*) ∧ 0 < 𝑟) ∧ 𝑘𝐼) → ((TopOpen ∘ 𝑅)‘𝑘) = (MetOpen‘𝐸))
7655, 68, 753eltr4d 2847 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑝𝐵𝑟 ∈ ℝ*) ∧ 0 < 𝑟) ∧ 𝑘𝐼) → ((𝑛𝐼 ↦ ((𝑝𝑛)(ball‘((dist‘(𝑅𝑛)) ↾ ((Base‘(𝑅𝑛)) × (Base‘(𝑅𝑛)))))𝑟))‘𝑘) ∈ ((TopOpen ∘ 𝑅)‘𝑘))
7776ralrimiva 3145 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑝𝐵𝑟 ∈ ℝ*) ∧ 0 < 𝑟) → ∀𝑘𝐼 ((𝑛𝐼 ↦ ((𝑝𝑛)(ball‘((dist‘(𝑅𝑛)) ↾ ((Base‘(𝑅𝑛)) × (Base‘(𝑅𝑛)))))𝑟))‘𝑘) ∈ ((TopOpen ∘ 𝑅)‘𝑘))
7832feqmptd 6960 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑 ∧ (𝑝𝐵𝑟 ∈ ℝ*) ∧ 0 < 𝑟) → 𝑅 = (𝑛𝐼 ↦ (𝑅𝑛)))
7978oveq2d 7428 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ (𝑝𝐵𝑟 ∈ ℝ*) ∧ 0 < 𝑟) → (𝑆Xs𝑅) = (𝑆Xs(𝑛𝐼 ↦ (𝑅𝑛))))
8013, 79eqtrid 2783 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑝𝐵𝑟 ∈ ℝ*) ∧ 0 < 𝑟) → 𝑌 = (𝑆Xs(𝑛𝐼 ↦ (𝑅𝑛))))
8180fveq2d 6895 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑝𝐵𝑟 ∈ ℝ*) ∧ 0 < 𝑟) → (dist‘𝑌) = (dist‘(𝑆Xs(𝑛𝐼 ↦ (𝑅𝑛)))))
8215, 81eqtrid 2783 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑝𝐵𝑟 ∈ ℝ*) ∧ 0 < 𝑟) → 𝐷 = (dist‘(𝑆Xs(𝑛𝐼 ↦ (𝑅𝑛)))))
8382fveq2d 6895 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑝𝐵𝑟 ∈ ℝ*) ∧ 0 < 𝑟) → (ball‘𝐷) = (ball‘(dist‘(𝑆Xs(𝑛𝐼 ↦ (𝑅𝑛))))))
8483oveqd 7429 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑝𝐵𝑟 ∈ ℝ*) ∧ 0 < 𝑟) → (𝑝(ball‘𝐷)𝑟) = (𝑝(ball‘(dist‘(𝑆Xs(𝑛𝐼 ↦ (𝑅𝑛)))))𝑟))
85 fveq2 6891 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 = 𝑘 → (𝑅𝑛) = (𝑅𝑘))
8685cbvmptv 5261 . . . . . . . . . . . . . . . . . . . 20 (𝑛𝐼 ↦ (𝑅𝑛)) = (𝑘𝐼 ↦ (𝑅𝑘))
8786oveq2i 7423 . . . . . . . . . . . . . . . . . . 19 (𝑆Xs(𝑛𝐼 ↦ (𝑅𝑛))) = (𝑆Xs(𝑘𝐼 ↦ (𝑅𝑘)))
88 eqid 2731 . . . . . . . . . . . . . . . . . . 19 (Base‘(𝑆Xs(𝑛𝐼 ↦ (𝑅𝑛)))) = (Base‘(𝑆Xs(𝑛𝐼 ↦ (𝑅𝑛))))
89 eqid 2731 . . . . . . . . . . . . . . . . . . 19 (dist‘(𝑆Xs(𝑛𝐼 ↦ (𝑅𝑛)))) = (dist‘(𝑆Xs(𝑛𝐼 ↦ (𝑅𝑛))))
9080fveq2d 6895 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑝𝐵𝑟 ∈ ℝ*) ∧ 0 < 𝑟) → (Base‘𝑌) = (Base‘(𝑆Xs(𝑛𝐼 ↦ (𝑅𝑛)))))
9116, 90eqtrid 2783 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑝𝐵𝑟 ∈ ℝ*) ∧ 0 < 𝑟) → 𝐵 = (Base‘(𝑆Xs(𝑛𝐼 ↦ (𝑅𝑛)))))
9242, 91eleqtrd 2834 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑝𝐵𝑟 ∈ ℝ*) ∧ 0 < 𝑟) → 𝑝 ∈ (Base‘(𝑆Xs(𝑛𝐼 ↦ (𝑅𝑛)))))
93 simp3 1137 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑝𝐵𝑟 ∈ ℝ*) ∧ 0 < 𝑟) → 0 < 𝑟)
9487, 88, 34, 35, 89, 40, 25, 33, 37, 92, 51, 93prdsbl 24221 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑝𝐵𝑟 ∈ ℝ*) ∧ 0 < 𝑟) → (𝑝(ball‘(dist‘(𝑆Xs(𝑛𝐼 ↦ (𝑅𝑛)))))𝑟) = X𝑘𝐼 ((𝑝𝑘)(ball‘𝐸)𝑟))
9584, 94eqtrd 2771 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑝𝐵𝑟 ∈ ℝ*) ∧ 0 < 𝑟) → (𝑝(ball‘𝐷)𝑟) = X𝑘𝐼 ((𝑝𝑘)(ball‘𝐸)𝑟))
96 fneq1 6640 . . . . . . . . . . . . . . . . . . . . 21 (𝑔 = (𝑛𝐼 ↦ ((𝑝𝑛)(ball‘((dist‘(𝑅𝑛)) ↾ ((Base‘(𝑅𝑛)) × (Base‘(𝑅𝑛)))))𝑟)) → (𝑔 Fn 𝐼 ↔ (𝑛𝐼 ↦ ((𝑝𝑛)(ball‘((dist‘(𝑅𝑛)) ↾ ((Base‘(𝑅𝑛)) × (Base‘(𝑅𝑛)))))𝑟)) Fn 𝐼))
97 fveq1 6890 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑔 = (𝑛𝐼 ↦ ((𝑝𝑛)(ball‘((dist‘(𝑅𝑛)) ↾ ((Base‘(𝑅𝑛)) × (Base‘(𝑅𝑛)))))𝑟)) → (𝑔𝑘) = ((𝑛𝐼 ↦ ((𝑝𝑛)(ball‘((dist‘(𝑅𝑛)) ↾ ((Base‘(𝑅𝑛)) × (Base‘(𝑅𝑛)))))𝑟))‘𝑘))
9897eleq1d 2817 . . . . . . . . . . . . . . . . . . . . . 22 (𝑔 = (𝑛𝐼 ↦ ((𝑝𝑛)(ball‘((dist‘(𝑅𝑛)) ↾ ((Base‘(𝑅𝑛)) × (Base‘(𝑅𝑛)))))𝑟)) → ((𝑔𝑘) ∈ ((TopOpen ∘ 𝑅)‘𝑘) ↔ ((𝑛𝐼 ↦ ((𝑝𝑛)(ball‘((dist‘(𝑅𝑛)) ↾ ((Base‘(𝑅𝑛)) × (Base‘(𝑅𝑛)))))𝑟))‘𝑘) ∈ ((TopOpen ∘ 𝑅)‘𝑘)))
9998ralbidv 3176 . . . . . . . . . . . . . . . . . . . . 21 (𝑔 = (𝑛𝐼 ↦ ((𝑝𝑛)(ball‘((dist‘(𝑅𝑛)) ↾ ((Base‘(𝑅𝑛)) × (Base‘(𝑅𝑛)))))𝑟)) → (∀𝑘𝐼 (𝑔𝑘) ∈ ((TopOpen ∘ 𝑅)‘𝑘) ↔ ∀𝑘𝐼 ((𝑛𝐼 ↦ ((𝑝𝑛)(ball‘((dist‘(𝑅𝑛)) ↾ ((Base‘(𝑅𝑛)) × (Base‘(𝑅𝑛)))))𝑟))‘𝑘) ∈ ((TopOpen ∘ 𝑅)‘𝑘)))
10096, 99anbi12d 630 . . . . . . . . . . . . . . . . . . . 20 (𝑔 = (𝑛𝐼 ↦ ((𝑝𝑛)(ball‘((dist‘(𝑅𝑛)) ↾ ((Base‘(𝑅𝑛)) × (Base‘(𝑅𝑛)))))𝑟)) → ((𝑔 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑔𝑘) ∈ ((TopOpen ∘ 𝑅)‘𝑘)) ↔ ((𝑛𝐼 ↦ ((𝑝𝑛)(ball‘((dist‘(𝑅𝑛)) ↾ ((Base‘(𝑅𝑛)) × (Base‘(𝑅𝑛)))))𝑟)) Fn 𝐼 ∧ ∀𝑘𝐼 ((𝑛𝐼 ↦ ((𝑝𝑛)(ball‘((dist‘(𝑅𝑛)) ↾ ((Base‘(𝑅𝑛)) × (Base‘(𝑅𝑛)))))𝑟))‘𝑘) ∈ ((TopOpen ∘ 𝑅)‘𝑘))))
10197, 67sylan9eq 2791 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑔 = (𝑛𝐼 ↦ ((𝑝𝑛)(ball‘((dist‘(𝑅𝑛)) ↾ ((Base‘(𝑅𝑛)) × (Base‘(𝑅𝑛)))))𝑟)) ∧ 𝑘𝐼) → (𝑔𝑘) = ((𝑝𝑘)(ball‘𝐸)𝑟))
102101ixpeq2dva 8910 . . . . . . . . . . . . . . . . . . . . 21 (𝑔 = (𝑛𝐼 ↦ ((𝑝𝑛)(ball‘((dist‘(𝑅𝑛)) ↾ ((Base‘(𝑅𝑛)) × (Base‘(𝑅𝑛)))))𝑟)) → X𝑘𝐼 (𝑔𝑘) = X𝑘𝐼 ((𝑝𝑘)(ball‘𝐸)𝑟))
103102eqeq2d 2742 . . . . . . . . . . . . . . . . . . . 20 (𝑔 = (𝑛𝐼 ↦ ((𝑝𝑛)(ball‘((dist‘(𝑅𝑛)) ↾ ((Base‘(𝑅𝑛)) × (Base‘(𝑅𝑛)))))𝑟)) → ((𝑝(ball‘𝐷)𝑟) = X𝑘𝐼 (𝑔𝑘) ↔ (𝑝(ball‘𝐷)𝑟) = X𝑘𝐼 ((𝑝𝑘)(ball‘𝐸)𝑟)))
104100, 103anbi12d 630 . . . . . . . . . . . . . . . . . . 19 (𝑔 = (𝑛𝐼 ↦ ((𝑝𝑛)(ball‘((dist‘(𝑅𝑛)) ↾ ((Base‘(𝑅𝑛)) × (Base‘(𝑅𝑛)))))𝑟)) → (((𝑔 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑔𝑘) ∈ ((TopOpen ∘ 𝑅)‘𝑘)) ∧ (𝑝(ball‘𝐷)𝑟) = X𝑘𝐼 (𝑔𝑘)) ↔ (((𝑛𝐼 ↦ ((𝑝𝑛)(ball‘((dist‘(𝑅𝑛)) ↾ ((Base‘(𝑅𝑛)) × (Base‘(𝑅𝑛)))))𝑟)) Fn 𝐼 ∧ ∀𝑘𝐼 ((𝑛𝐼 ↦ ((𝑝𝑛)(ball‘((dist‘(𝑅𝑛)) ↾ ((Base‘(𝑅𝑛)) × (Base‘(𝑅𝑛)))))𝑟))‘𝑘) ∈ ((TopOpen ∘ 𝑅)‘𝑘)) ∧ (𝑝(ball‘𝐷)𝑟) = X𝑘𝐼 ((𝑝𝑘)(ball‘𝐸)𝑟))))
105104spcegv 3587 . . . . . . . . . . . . . . . . . 18 ((𝑛𝐼 ↦ ((𝑝𝑛)(ball‘((dist‘(𝑅𝑛)) ↾ ((Base‘(𝑅𝑛)) × (Base‘(𝑅𝑛)))))𝑟)) ∈ V → ((((𝑛𝐼 ↦ ((𝑝𝑛)(ball‘((dist‘(𝑅𝑛)) ↾ ((Base‘(𝑅𝑛)) × (Base‘(𝑅𝑛)))))𝑟)) Fn 𝐼 ∧ ∀𝑘𝐼 ((𝑛𝐼 ↦ ((𝑝𝑛)(ball‘((dist‘(𝑅𝑛)) ↾ ((Base‘(𝑅𝑛)) × (Base‘(𝑅𝑛)))))𝑟))‘𝑘) ∈ ((TopOpen ∘ 𝑅)‘𝑘)) ∧ (𝑝(ball‘𝐷)𝑟) = X𝑘𝐼 ((𝑝𝑘)(ball‘𝐸)𝑟)) → ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑔𝑘) ∈ ((TopOpen ∘ 𝑅)‘𝑘)) ∧ (𝑝(ball‘𝐷)𝑟) = X𝑘𝐼 (𝑔𝑘))))
1061053impib 1115 . . . . . . . . . . . . . . . . 17 (((𝑛𝐼 ↦ ((𝑝𝑛)(ball‘((dist‘(𝑅𝑛)) ↾ ((Base‘(𝑅𝑛)) × (Base‘(𝑅𝑛)))))𝑟)) ∈ V ∧ ((𝑛𝐼 ↦ ((𝑝𝑛)(ball‘((dist‘(𝑅𝑛)) ↾ ((Base‘(𝑅𝑛)) × (Base‘(𝑅𝑛)))))𝑟)) Fn 𝐼 ∧ ∀𝑘𝐼 ((𝑛𝐼 ↦ ((𝑝𝑛)(ball‘((dist‘(𝑅𝑛)) ↾ ((Base‘(𝑅𝑛)) × (Base‘(𝑅𝑛)))))𝑟))‘𝑘) ∈ ((TopOpen ∘ 𝑅)‘𝑘)) ∧ (𝑝(ball‘𝐷)𝑟) = X𝑘𝐼 ((𝑝𝑘)(ball‘𝐸)𝑟)) → ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑔𝑘) ∈ ((TopOpen ∘ 𝑅)‘𝑘)) ∧ (𝑝(ball‘𝐷)𝑟) = X𝑘𝐼 (𝑔𝑘)))
10726, 31, 77, 95, 106syl121anc 1374 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑝𝐵𝑟 ∈ ℝ*) ∧ 0 < 𝑟) → ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑔𝑘) ∈ ((TopOpen ∘ 𝑅)‘𝑘)) ∧ (𝑝(ball‘𝐷)𝑟) = X𝑘𝐼 (𝑔𝑘)))
1081073expia 1120 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑝𝐵𝑟 ∈ ℝ*)) → (0 < 𝑟 → ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑔𝑘) ∈ ((TopOpen ∘ 𝑅)‘𝑘)) ∧ (𝑝(ball‘𝐷)𝑟) = X𝑘𝐼 (𝑔𝑘))))
10924, 108sylbid 239 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑝𝐵𝑟 ∈ ℝ*)) → ((𝑝(ball‘𝐷)𝑟) ≠ ∅ → ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑔𝑘) ∈ ((TopOpen ∘ 𝑅)‘𝑘)) ∧ (𝑝(ball‘𝐷)𝑟) = X𝑘𝐼 (𝑔𝑘))))
110109adantr 480 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑝𝐵𝑟 ∈ ℝ*)) ∧ 𝑥 = (𝑝(ball‘𝐷)𝑟)) → ((𝑝(ball‘𝐷)𝑟) ≠ ∅ → ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑔𝑘) ∈ ((TopOpen ∘ 𝑅)‘𝑘)) ∧ (𝑝(ball‘𝐷)𝑟) = X𝑘𝐼 (𝑔𝑘))))
111 simpr 484 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑝𝐵𝑟 ∈ ℝ*)) ∧ 𝑥 = (𝑝(ball‘𝐷)𝑟)) → 𝑥 = (𝑝(ball‘𝐷)𝑟))
112111neeq1d 2999 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑝𝐵𝑟 ∈ ℝ*)) ∧ 𝑥 = (𝑝(ball‘𝐷)𝑟)) → (𝑥 ≠ ∅ ↔ (𝑝(ball‘𝐷)𝑟) ≠ ∅))
113 df-3an 1088 . . . . . . . . . . . . . . . 16 ((𝑔 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑔𝑘) ∈ ((TopOpen ∘ 𝑅)‘𝑘) ∧ ∃𝑧 ∈ Fin ∀𝑘 ∈ (𝐼𝑧)(𝑔𝑘) = ((TopOpen ∘ 𝑅)‘𝑘)) ↔ ((𝑔 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑔𝑘) ∈ ((TopOpen ∘ 𝑅)‘𝑘)) ∧ ∃𝑧 ∈ Fin ∀𝑘 ∈ (𝐼𝑧)(𝑔𝑘) = ((TopOpen ∘ 𝑅)‘𝑘)))
114 ral0 4512 . . . . . . . . . . . . . . . . . . 19 𝑘 ∈ ∅ (𝑔𝑘) = ((TopOpen ∘ 𝑅)‘𝑘)
115 difeq2 4116 . . . . . . . . . . . . . . . . . . . . . 22 (𝑧 = 𝐼 → (𝐼𝑧) = (𝐼𝐼))
116 difid 4370 . . . . . . . . . . . . . . . . . . . . . 22 (𝐼𝐼) = ∅
117115, 116eqtrdi 2787 . . . . . . . . . . . . . . . . . . . . 21 (𝑧 = 𝐼 → (𝐼𝑧) = ∅)
118117raleqdv 3324 . . . . . . . . . . . . . . . . . . . 20 (𝑧 = 𝐼 → (∀𝑘 ∈ (𝐼𝑧)(𝑔𝑘) = ((TopOpen ∘ 𝑅)‘𝑘) ↔ ∀𝑘 ∈ ∅ (𝑔𝑘) = ((TopOpen ∘ 𝑅)‘𝑘)))
119118rspcev 3612 . . . . . . . . . . . . . . . . . . 19 ((𝐼 ∈ Fin ∧ ∀𝑘 ∈ ∅ (𝑔𝑘) = ((TopOpen ∘ 𝑅)‘𝑘)) → ∃𝑧 ∈ Fin ∀𝑘 ∈ (𝐼𝑧)(𝑔𝑘) = ((TopOpen ∘ 𝑅)‘𝑘))
1201, 114, 119sylancl 585 . . . . . . . . . . . . . . . . . 18 (𝜑 → ∃𝑧 ∈ Fin ∀𝑘 ∈ (𝐼𝑧)(𝑔𝑘) = ((TopOpen ∘ 𝑅)‘𝑘))
121120adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑝𝐵𝑟 ∈ ℝ*)) → ∃𝑧 ∈ Fin ∀𝑘 ∈ (𝐼𝑧)(𝑔𝑘) = ((TopOpen ∘ 𝑅)‘𝑘))
122121biantrud 531 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑝𝐵𝑟 ∈ ℝ*)) → ((𝑔 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑔𝑘) ∈ ((TopOpen ∘ 𝑅)‘𝑘)) ↔ ((𝑔 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑔𝑘) ∈ ((TopOpen ∘ 𝑅)‘𝑘)) ∧ ∃𝑧 ∈ Fin ∀𝑘 ∈ (𝐼𝑧)(𝑔𝑘) = ((TopOpen ∘ 𝑅)‘𝑘))))
123113, 122bitr4id 290 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑝𝐵𝑟 ∈ ℝ*)) → ((𝑔 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑔𝑘) ∈ ((TopOpen ∘ 𝑅)‘𝑘) ∧ ∃𝑧 ∈ Fin ∀𝑘 ∈ (𝐼𝑧)(𝑔𝑘) = ((TopOpen ∘ 𝑅)‘𝑘)) ↔ (𝑔 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑔𝑘) ∈ ((TopOpen ∘ 𝑅)‘𝑘))))
124 eqeq1 2735 . . . . . . . . . . . . . . 15 (𝑥 = (𝑝(ball‘𝐷)𝑟) → (𝑥 = X𝑘𝐼 (𝑔𝑘) ↔ (𝑝(ball‘𝐷)𝑟) = X𝑘𝐼 (𝑔𝑘)))
125123, 124bi2anan9 636 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑝𝐵𝑟 ∈ ℝ*)) ∧ 𝑥 = (𝑝(ball‘𝐷)𝑟)) → (((𝑔 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑔𝑘) ∈ ((TopOpen ∘ 𝑅)‘𝑘) ∧ ∃𝑧 ∈ Fin ∀𝑘 ∈ (𝐼𝑧)(𝑔𝑘) = ((TopOpen ∘ 𝑅)‘𝑘)) ∧ 𝑥 = X𝑘𝐼 (𝑔𝑘)) ↔ ((𝑔 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑔𝑘) ∈ ((TopOpen ∘ 𝑅)‘𝑘)) ∧ (𝑝(ball‘𝐷)𝑟) = X𝑘𝐼 (𝑔𝑘))))
126125exbidv 1923 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑝𝐵𝑟 ∈ ℝ*)) ∧ 𝑥 = (𝑝(ball‘𝐷)𝑟)) → (∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑔𝑘) ∈ ((TopOpen ∘ 𝑅)‘𝑘) ∧ ∃𝑧 ∈ Fin ∀𝑘 ∈ (𝐼𝑧)(𝑔𝑘) = ((TopOpen ∘ 𝑅)‘𝑘)) ∧ 𝑥 = X𝑘𝐼 (𝑔𝑘)) ↔ ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑔𝑘) ∈ ((TopOpen ∘ 𝑅)‘𝑘)) ∧ (𝑝(ball‘𝐷)𝑟) = X𝑘𝐼 (𝑔𝑘))))
127110, 112, 1263imtr4d 294 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑝𝐵𝑟 ∈ ℝ*)) ∧ 𝑥 = (𝑝(ball‘𝐷)𝑟)) → (𝑥 ≠ ∅ → ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑔𝑘) ∈ ((TopOpen ∘ 𝑅)‘𝑘) ∧ ∃𝑧 ∈ Fin ∀𝑘 ∈ (𝐼𝑧)(𝑔𝑘) = ((TopOpen ∘ 𝑅)‘𝑘)) ∧ 𝑥 = X𝑘𝐼 (𝑔𝑘))))
128127ex 412 . . . . . . . . . . 11 ((𝜑 ∧ (𝑝𝐵𝑟 ∈ ℝ*)) → (𝑥 = (𝑝(ball‘𝐷)𝑟) → (𝑥 ≠ ∅ → ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑔𝑘) ∈ ((TopOpen ∘ 𝑅)‘𝑘) ∧ ∃𝑧 ∈ Fin ∀𝑘 ∈ (𝐼𝑧)(𝑔𝑘) = ((TopOpen ∘ 𝑅)‘𝑘)) ∧ 𝑥 = X𝑘𝐼 (𝑔𝑘)))))
129128rexlimdvva 3210 . . . . . . . . . 10 (𝜑 → (∃𝑝𝐵𝑟 ∈ ℝ* 𝑥 = (𝑝(ball‘𝐷)𝑟) → (𝑥 ≠ ∅ → ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑔𝑘) ∈ ((TopOpen ∘ 𝑅)‘𝑘) ∧ ∃𝑧 ∈ Fin ∀𝑘 ∈ (𝐼𝑧)(𝑔𝑘) = ((TopOpen ∘ 𝑅)‘𝑘)) ∧ 𝑥 = X𝑘𝐼 (𝑔𝑘)))))
13019, 129sylbid 239 . . . . . . . . 9 (𝜑 → (𝑥 ∈ ran (ball‘𝐷) → (𝑥 ≠ ∅ → ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑔𝑘) ∈ ((TopOpen ∘ 𝑅)‘𝑘) ∧ ∃𝑧 ∈ Fin ∀𝑘 ∈ (𝐼𝑧)(𝑔𝑘) = ((TopOpen ∘ 𝑅)‘𝑘)) ∧ 𝑥 = X𝑘𝐼 (𝑔𝑘)))))
131130impd 410 . . . . . . . 8 (𝜑 → ((𝑥 ∈ ran (ball‘𝐷) ∧ 𝑥 ≠ ∅) → ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑔𝑘) ∈ ((TopOpen ∘ 𝑅)‘𝑘) ∧ ∃𝑧 ∈ Fin ∀𝑘 ∈ (𝐼𝑧)(𝑔𝑘) = ((TopOpen ∘ 𝑅)‘𝑘)) ∧ 𝑥 = X𝑘𝐼 (𝑔𝑘))))
13212, 131biimtrid 241 . . . . . . 7 (𝜑 → (𝑥 ∈ (ran (ball‘𝐷) ∖ {∅}) → ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑔𝑘) ∈ ((TopOpen ∘ 𝑅)‘𝑘) ∧ ∃𝑧 ∈ Fin ∀𝑘 ∈ (𝐼𝑧)(𝑔𝑘) = ((TopOpen ∘ 𝑅)‘𝑘)) ∧ 𝑥 = X𝑘𝐼 (𝑔𝑘))))
133132alrimiv 1929 . . . . . 6 (𝜑 → ∀𝑥(𝑥 ∈ (ran (ball‘𝐷) ∖ {∅}) → ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑔𝑘) ∈ ((TopOpen ∘ 𝑅)‘𝑘) ∧ ∃𝑧 ∈ Fin ∀𝑘 ∈ (𝐼𝑧)(𝑔𝑘) = ((TopOpen ∘ 𝑅)‘𝑘)) ∧ 𝑥 = X𝑘𝐼 (𝑔𝑘))))
134 ssab 4058 . . . . . 6 ((ran (ball‘𝐷) ∖ {∅}) ⊆ {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑔𝑘) ∈ ((TopOpen ∘ 𝑅)‘𝑘) ∧ ∃𝑧 ∈ Fin ∀𝑘 ∈ (𝐼𝑧)(𝑔𝑘) = ((TopOpen ∘ 𝑅)‘𝑘)) ∧ 𝑥 = X𝑘𝐼 (𝑔𝑘))} ↔ ∀𝑥(𝑥 ∈ (ran (ball‘𝐷) ∖ {∅}) → ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑔𝑘) ∈ ((TopOpen ∘ 𝑅)‘𝑘) ∧ ∃𝑧 ∈ Fin ∀𝑘 ∈ (𝐼𝑧)(𝑔𝑘) = ((TopOpen ∘ 𝑅)‘𝑘)) ∧ 𝑥 = X𝑘𝐼 (𝑔𝑘))))
135133, 134sylibr 233 . . . . 5 (𝜑 → (ran (ball‘𝐷) ∖ {∅}) ⊆ {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑔𝑘) ∈ ((TopOpen ∘ 𝑅)‘𝑘) ∧ ∃𝑧 ∈ Fin ∀𝑘 ∈ (𝐼𝑧)(𝑔𝑘) = ((TopOpen ∘ 𝑅)‘𝑘)) ∧ 𝑥 = X𝑘𝐼 (𝑔𝑘))})
136135, 9sseqtrrdi 4033 . . . 4 (𝜑 → (ran (ball‘𝐷) ∖ {∅}) ⊆ 𝐶)
137 ssv 4006 . . . . . . . . . 10 ∞MetSp ⊆ V
138 fnssres 6673 . . . . . . . . . 10 ((TopOpen Fn V ∧ ∞MetSp ⊆ V) → (TopOpen ↾ ∞MetSp) Fn ∞MetSp)
1392, 137, 138mp2an 689 . . . . . . . . 9 (TopOpen ↾ ∞MetSp) Fn ∞MetSp
140 fvres 6910 . . . . . . . . . . 11 (𝑥 ∈ ∞MetSp → ((TopOpen ↾ ∞MetSp)‘𝑥) = (TopOpen‘𝑥))
141 xmstps 24180 . . . . . . . . . . . 12 (𝑥 ∈ ∞MetSp → 𝑥 ∈ TopSp)
142 eqid 2731 . . . . . . . . . . . . 13 (TopOpen‘𝑥) = (TopOpen‘𝑥)
143142tpstop 22660 . . . . . . . . . . . 12 (𝑥 ∈ TopSp → (TopOpen‘𝑥) ∈ Top)
144141, 143syl 17 . . . . . . . . . . 11 (𝑥 ∈ ∞MetSp → (TopOpen‘𝑥) ∈ Top)
145140, 144eqeltrd 2832 . . . . . . . . . 10 (𝑥 ∈ ∞MetSp → ((TopOpen ↾ ∞MetSp)‘𝑥) ∈ Top)
146145rgen 3062 . . . . . . . . 9 𝑥 ∈ ∞MetSp ((TopOpen ↾ ∞MetSp)‘𝑥) ∈ Top
147 ffnfv 7120 . . . . . . . . 9 ((TopOpen ↾ ∞MetSp):∞MetSp⟶Top ↔ ((TopOpen ↾ ∞MetSp) Fn ∞MetSp ∧ ∀𝑥 ∈ ∞MetSp ((TopOpen ↾ ∞MetSp)‘𝑥) ∈ Top))
148139, 146, 147mpbir2an 708 . . . . . . . 8 (TopOpen ↾ ∞MetSp):∞MetSp⟶Top
149 fco2 6744 . . . . . . . 8 (((TopOpen ↾ ∞MetSp):∞MetSp⟶Top ∧ 𝑅:𝐼⟶∞MetSp) → (TopOpen ∘ 𝑅):𝐼⟶Top)
150148, 3, 149sylancr 586 . . . . . . 7 (𝜑 → (TopOpen ∘ 𝑅):𝐼⟶Top)
151 eqid 2731 . . . . . . . 8 X𝑛𝐼 ((TopOpen ∘ 𝑅)‘𝑛) = X𝑛𝐼 ((TopOpen ∘ 𝑅)‘𝑛)
1529, 151ptbasfi 23306 . . . . . . 7 ((𝐼 ∈ Fin ∧ (TopOpen ∘ 𝑅):𝐼⟶Top) → 𝐶 = (fi‘({X𝑛𝐼 ((TopOpen ∘ 𝑅)‘𝑛)} ∪ ran (𝑚𝐼, 𝑢 ∈ ((TopOpen ∘ 𝑅)‘𝑚) ↦ ((𝑤X𝑛𝐼 ((TopOpen ∘ 𝑅)‘𝑛) ↦ (𝑤𝑚)) “ 𝑢)))))
1531, 150, 152syl2anc 583 . . . . . 6 (𝜑𝐶 = (fi‘({X𝑛𝐼 ((TopOpen ∘ 𝑅)‘𝑛)} ∪ ran (𝑚𝐼, 𝑢 ∈ ((TopOpen ∘ 𝑅)‘𝑚) ↦ ((𝑤X𝑛𝐼 ((TopOpen ∘ 𝑅)‘𝑛) ↦ (𝑤𝑚)) “ 𝑢)))))
154 eqid 2731 . . . . . . . . 9 (MetOpen‘𝐷) = (MetOpen‘𝐷)
155154mopntop 24167 . . . . . . . 8 (𝐷 ∈ (∞Met‘𝐵) → (MetOpen‘𝐷) ∈ Top)
15617, 155syl 17 . . . . . . 7 (𝜑 → (MetOpen‘𝐷) ∈ Top)
15713, 16, 14, 1, 4prdsbas2 17420 . . . . . . . . . . . 12 (𝜑𝐵 = X𝑘𝐼 (Base‘(𝑅𝑘)))
1583, 71sylan 579 . . . . . . . . . . . . . . . 16 ((𝜑𝑘𝐼) → ((TopOpen ∘ 𝑅)‘𝑘) = 𝐾)
1593ffvelcdmda 7086 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘𝐼) → (𝑅𝑘) ∈ ∞MetSp)
160 xmstps 24180 . . . . . . . . . . . . . . . . . 18 ((𝑅𝑘) ∈ ∞MetSp → (𝑅𝑘) ∈ TopSp)
161159, 160syl 17 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘𝐼) → (𝑅𝑘) ∈ TopSp)
16234, 70istps 22657 . . . . . . . . . . . . . . . . 17 ((𝑅𝑘) ∈ TopSp ↔ 𝐾 ∈ (TopOn‘𝑉))
163161, 162sylib 217 . . . . . . . . . . . . . . . 16 ((𝜑𝑘𝐼) → 𝐾 ∈ (TopOn‘𝑉))
164158, 163eqeltrd 2832 . . . . . . . . . . . . . . 15 ((𝜑𝑘𝐼) → ((TopOpen ∘ 𝑅)‘𝑘) ∈ (TopOn‘𝑉))
165 toponuni 22637 . . . . . . . . . . . . . . 15 (((TopOpen ∘ 𝑅)‘𝑘) ∈ (TopOn‘𝑉) → 𝑉 = ((TopOpen ∘ 𝑅)‘𝑘))
166164, 165syl 17 . . . . . . . . . . . . . 14 ((𝜑𝑘𝐼) → 𝑉 = ((TopOpen ∘ 𝑅)‘𝑘))
16734, 166eqtr3id 2785 . . . . . . . . . . . . 13 ((𝜑𝑘𝐼) → (Base‘(𝑅𝑘)) = ((TopOpen ∘ 𝑅)‘𝑘))
168167ixpeq2dva 8910 . . . . . . . . . . . 12 (𝜑X𝑘𝐼 (Base‘(𝑅𝑘)) = X𝑘𝐼 ((TopOpen ∘ 𝑅)‘𝑘))
169157, 168eqtrd 2771 . . . . . . . . . . 11 (𝜑𝐵 = X𝑘𝐼 ((TopOpen ∘ 𝑅)‘𝑘))
170 fveq2 6891 . . . . . . . . . . . . 13 (𝑘 = 𝑛 → ((TopOpen ∘ 𝑅)‘𝑘) = ((TopOpen ∘ 𝑅)‘𝑛))
171170unieqd 4922 . . . . . . . . . . . 12 (𝑘 = 𝑛 ((TopOpen ∘ 𝑅)‘𝑘) = ((TopOpen ∘ 𝑅)‘𝑛))
172171cbvixpv 8913 . . . . . . . . . . 11 X𝑘𝐼 ((TopOpen ∘ 𝑅)‘𝑘) = X𝑛𝐼 ((TopOpen ∘ 𝑅)‘𝑛)
173169, 172eqtrdi 2787 . . . . . . . . . 10 (𝜑𝐵 = X𝑛𝐼 ((TopOpen ∘ 𝑅)‘𝑛))
174154mopntopon 24166 . . . . . . . . . . . 12 (𝐷 ∈ (∞Met‘𝐵) → (MetOpen‘𝐷) ∈ (TopOn‘𝐵))
17517, 174syl 17 . . . . . . . . . . 11 (𝜑 → (MetOpen‘𝐷) ∈ (TopOn‘𝐵))
176 toponmax 22649 . . . . . . . . . . 11 ((MetOpen‘𝐷) ∈ (TopOn‘𝐵) → 𝐵 ∈ (MetOpen‘𝐷))
177175, 176syl 17 . . . . . . . . . 10 (𝜑𝐵 ∈ (MetOpen‘𝐷))
178173, 177eqeltrrd 2833 . . . . . . . . 9 (𝜑X𝑛𝐼 ((TopOpen ∘ 𝑅)‘𝑛) ∈ (MetOpen‘𝐷))
179178snssd 4812 . . . . . . . 8 (𝜑 → {X𝑛𝐼 ((TopOpen ∘ 𝑅)‘𝑛)} ⊆ (MetOpen‘𝐷))
180173mpteq1d 5243 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑤𝐵 ↦ (𝑤𝑘)) = (𝑤X𝑛𝐼 ((TopOpen ∘ 𝑅)‘𝑛) ↦ (𝑤𝑘)))
181180ad2antrr 723 . . . . . . . . . . . . . . . . 17 (((𝜑𝑘𝐼) ∧ 𝑢𝐾) → (𝑤𝐵 ↦ (𝑤𝑘)) = (𝑤X𝑛𝐼 ((TopOpen ∘ 𝑅)‘𝑛) ↦ (𝑤𝑘)))
182181cnveqd 5875 . . . . . . . . . . . . . . . 16 (((𝜑𝑘𝐼) ∧ 𝑢𝐾) → (𝑤𝐵 ↦ (𝑤𝑘)) = (𝑤X𝑛𝐼 ((TopOpen ∘ 𝑅)‘𝑛) ↦ (𝑤𝑘)))
183182imaeq1d 6058 . . . . . . . . . . . . . . 15 (((𝜑𝑘𝐼) ∧ 𝑢𝐾) → ((𝑤𝐵 ↦ (𝑤𝑘)) “ 𝑢) = ((𝑤X𝑛𝐼 ((TopOpen ∘ 𝑅)‘𝑛) ↦ (𝑤𝑘)) “ 𝑢))
184 fveq1 6890 . . . . . . . . . . . . . . . . . . . 20 (𝑤 = 𝑝 → (𝑤𝑘) = (𝑝𝑘))
185184eleq1d 2817 . . . . . . . . . . . . . . . . . . 19 (𝑤 = 𝑝 → ((𝑤𝑘) ∈ 𝑢 ↔ (𝑝𝑘) ∈ 𝑢))
186 eqid 2731 . . . . . . . . . . . . . . . . . . . 20 (𝑤𝐵 ↦ (𝑤𝑘)) = (𝑤𝐵 ↦ (𝑤𝑘))
187186mptpreima 6237 . . . . . . . . . . . . . . . . . . 19 ((𝑤𝐵 ↦ (𝑤𝑘)) “ 𝑢) = {𝑤𝐵 ∣ (𝑤𝑘) ∈ 𝑢}
188185, 187elrab2 3686 . . . . . . . . . . . . . . . . . 18 (𝑝 ∈ ((𝑤𝐵 ↦ (𝑤𝑘)) “ 𝑢) ↔ (𝑝𝐵 ∧ (𝑝𝑘) ∈ 𝑢))
189159, 36syl 17 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑘𝐼) → 𝐸 ∈ (∞Met‘𝑉))
190189adantr 480 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑘𝐼) ∧ (𝑢𝐾 ∧ (𝑝𝐵 ∧ (𝑝𝑘) ∈ 𝑢))) → 𝐸 ∈ (∞Met‘𝑉))
191 simprl 768 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑘𝐼) ∧ (𝑢𝐾 ∧ (𝑝𝐵 ∧ (𝑝𝑘) ∈ 𝑢))) → 𝑢𝐾)
192159, 73syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑘𝐼) → 𝐾 = (MetOpen‘𝐸))
193192adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑘𝐼) ∧ (𝑢𝐾 ∧ (𝑝𝐵 ∧ (𝑝𝑘) ∈ 𝑢))) → 𝐾 = (MetOpen‘𝐸))
194191, 193eleqtrd 2834 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑘𝐼) ∧ (𝑢𝐾 ∧ (𝑝𝐵 ∧ (𝑝𝑘) ∈ 𝑢))) → 𝑢 ∈ (MetOpen‘𝐸))
195 simprrr 779 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑘𝐼) ∧ (𝑢𝐾 ∧ (𝑝𝐵 ∧ (𝑝𝑘) ∈ 𝑢))) → (𝑝𝑘) ∈ 𝑢)
19653mopni2 24223 . . . . . . . . . . . . . . . . . . . . 21 ((𝐸 ∈ (∞Met‘𝑉) ∧ 𝑢 ∈ (MetOpen‘𝐸) ∧ (𝑝𝑘) ∈ 𝑢) → ∃𝑟 ∈ ℝ+ ((𝑝𝑘)(ball‘𝐸)𝑟) ⊆ 𝑢)
197190, 194, 195, 196syl3anc 1370 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑘𝐼) ∧ (𝑢𝐾 ∧ (𝑝𝐵 ∧ (𝑝𝑘) ∈ 𝑢))) → ∃𝑟 ∈ ℝ+ ((𝑝𝑘)(ball‘𝐸)𝑟) ⊆ 𝑢)
19817ad3antrrr 727 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑘𝐼) ∧ (𝑢𝐾 ∧ (𝑝𝐵 ∧ (𝑝𝑘) ∈ 𝑢))) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑝𝑘)(ball‘𝐸)𝑟) ⊆ 𝑢)) → 𝐷 ∈ (∞Met‘𝐵))
199 simprrl 778 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑘𝐼) ∧ (𝑢𝐾 ∧ (𝑝𝐵 ∧ (𝑝𝑘) ∈ 𝑢))) → 𝑝𝐵)
200199adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑘𝐼) ∧ (𝑢𝐾 ∧ (𝑝𝐵 ∧ (𝑝𝑘) ∈ 𝑢))) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑝𝑘)(ball‘𝐸)𝑟) ⊆ 𝑢)) → 𝑝𝐵)
201 rpxr 12988 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑟 ∈ ℝ+𝑟 ∈ ℝ*)
202201ad2antrl 725 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑘𝐼) ∧ (𝑢𝐾 ∧ (𝑝𝐵 ∧ (𝑝𝑘) ∈ 𝑢))) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑝𝑘)(ball‘𝐸)𝑟) ⊆ 𝑢)) → 𝑟 ∈ ℝ*)
203154blopn 24230 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐷 ∈ (∞Met‘𝐵) ∧ 𝑝𝐵𝑟 ∈ ℝ*) → (𝑝(ball‘𝐷)𝑟) ∈ (MetOpen‘𝐷))
204198, 200, 202, 203syl3anc 1370 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑘𝐼) ∧ (𝑢𝐾 ∧ (𝑝𝐵 ∧ (𝑝𝑘) ∈ 𝑢))) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑝𝑘)(ball‘𝐸)𝑟) ⊆ 𝑢)) → (𝑝(ball‘𝐷)𝑟) ∈ (MetOpen‘𝐷))
205 simprl 768 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑘𝐼) ∧ (𝑢𝐾 ∧ (𝑝𝐵 ∧ (𝑝𝑘) ∈ 𝑢))) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑝𝑘)(ball‘𝐸)𝑟) ⊆ 𝑢)) → 𝑟 ∈ ℝ+)
206 blcntr 24140 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐷 ∈ (∞Met‘𝐵) ∧ 𝑝𝐵𝑟 ∈ ℝ+) → 𝑝 ∈ (𝑝(ball‘𝐷)𝑟))
207198, 200, 205, 206syl3anc 1370 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑘𝐼) ∧ (𝑢𝐾 ∧ (𝑝𝐵 ∧ (𝑝𝑘) ∈ 𝑢))) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑝𝑘)(ball‘𝐸)𝑟) ⊆ 𝑢)) → 𝑝 ∈ (𝑝(ball‘𝐷)𝑟))
208 blssm 24145 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐷 ∈ (∞Met‘𝐵) ∧ 𝑝𝐵𝑟 ∈ ℝ*) → (𝑝(ball‘𝐷)𝑟) ⊆ 𝐵)
209198, 200, 202, 208syl3anc 1370 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑘𝐼) ∧ (𝑢𝐾 ∧ (𝑝𝐵 ∧ (𝑝𝑘) ∈ 𝑢))) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑝𝑘)(ball‘𝐸)𝑟) ⊆ 𝑢)) → (𝑝(ball‘𝐷)𝑟) ⊆ 𝐵)
210 simplrr 775 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝜑𝑘𝐼) ∧ (𝑢𝐾 ∧ (𝑝𝐵 ∧ (𝑝𝑘) ∈ 𝑢))) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑝𝑘)(ball‘𝐸)𝑟) ⊆ 𝑢)) ∧ 𝑤 ∈ (𝑝(ball‘𝐷)𝑟)) → ((𝑝𝑘)(ball‘𝐸)𝑟) ⊆ 𝑢)
211 simplll 772 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝜑𝑘𝐼) ∧ (𝑢𝐾 ∧ (𝑝𝐵 ∧ (𝑝𝑘) ∈ 𝑢))) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑝𝑘)(ball‘𝐸)𝑟) ⊆ 𝑢)) → 𝜑)
212 rpgt0 12991 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑟 ∈ ℝ+ → 0 < 𝑟)
213212ad2antrl 725 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝜑𝑘𝐼) ∧ (𝑢𝐾 ∧ (𝑝𝐵 ∧ (𝑝𝑘) ∈ 𝑢))) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑝𝑘)(ball‘𝐸)𝑟) ⊆ 𝑢)) → 0 < 𝑟)
214211, 200, 202, 213, 95syl121anc 1374 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑𝑘𝐼) ∧ (𝑢𝐾 ∧ (𝑝𝐵 ∧ (𝑝𝑘) ∈ 𝑢))) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑝𝑘)(ball‘𝐸)𝑟) ⊆ 𝑢)) → (𝑝(ball‘𝐷)𝑟) = X𝑘𝐼 ((𝑝𝑘)(ball‘𝐸)𝑟))
215214eleq2d 2818 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑘𝐼) ∧ (𝑢𝐾 ∧ (𝑝𝐵 ∧ (𝑝𝑘) ∈ 𝑢))) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑝𝑘)(ball‘𝐸)𝑟) ⊆ 𝑢)) → (𝑤 ∈ (𝑝(ball‘𝐷)𝑟) ↔ 𝑤X𝑘𝐼 ((𝑝𝑘)(ball‘𝐸)𝑟)))
216215biimpa 476 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝜑𝑘𝐼) ∧ (𝑢𝐾 ∧ (𝑝𝐵 ∧ (𝑝𝑘) ∈ 𝑢))) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑝𝑘)(ball‘𝐸)𝑟) ⊆ 𝑢)) ∧ 𝑤 ∈ (𝑝(ball‘𝐷)𝑟)) → 𝑤X𝑘𝐼 ((𝑝𝑘)(ball‘𝐸)𝑟))
217 vex 3477 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 𝑤 ∈ V
218217elixp 8902 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑤X𝑘𝐼 ((𝑝𝑘)(ball‘𝐸)𝑟) ↔ (𝑤 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑤𝑘) ∈ ((𝑝𝑘)(ball‘𝐸)𝑟)))
219218simprbi 496 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑤X𝑘𝐼 ((𝑝𝑘)(ball‘𝐸)𝑟) → ∀𝑘𝐼 (𝑤𝑘) ∈ ((𝑝𝑘)(ball‘𝐸)𝑟))
220216, 219syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝜑𝑘𝐼) ∧ (𝑢𝐾 ∧ (𝑝𝐵 ∧ (𝑝𝑘) ∈ 𝑢))) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑝𝑘)(ball‘𝐸)𝑟) ⊆ 𝑢)) ∧ 𝑤 ∈ (𝑝(ball‘𝐷)𝑟)) → ∀𝑘𝐼 (𝑤𝑘) ∈ ((𝑝𝑘)(ball‘𝐸)𝑟))
221 simp-4r 781 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝜑𝑘𝐼) ∧ (𝑢𝐾 ∧ (𝑝𝐵 ∧ (𝑝𝑘) ∈ 𝑢))) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑝𝑘)(ball‘𝐸)𝑟) ⊆ 𝑢)) ∧ 𝑤 ∈ (𝑝(ball‘𝐷)𝑟)) → 𝑘𝐼)
222 rsp 3243 . . . . . . . . . . . . . . . . . . . . . . . . 25 (∀𝑘𝐼 (𝑤𝑘) ∈ ((𝑝𝑘)(ball‘𝐸)𝑟) → (𝑘𝐼 → (𝑤𝑘) ∈ ((𝑝𝑘)(ball‘𝐸)𝑟)))
223220, 221, 222sylc 65 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝜑𝑘𝐼) ∧ (𝑢𝐾 ∧ (𝑝𝐵 ∧ (𝑝𝑘) ∈ 𝑢))) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑝𝑘)(ball‘𝐸)𝑟) ⊆ 𝑢)) ∧ 𝑤 ∈ (𝑝(ball‘𝐷)𝑟)) → (𝑤𝑘) ∈ ((𝑝𝑘)(ball‘𝐸)𝑟))
224210, 223sseldd 3983 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑𝑘𝐼) ∧ (𝑢𝐾 ∧ (𝑝𝐵 ∧ (𝑝𝑘) ∈ 𝑢))) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑝𝑘)(ball‘𝐸)𝑟) ⊆ 𝑢)) ∧ 𝑤 ∈ (𝑝(ball‘𝐷)𝑟)) → (𝑤𝑘) ∈ 𝑢)
225209, 224ssrabdv 4071 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑘𝐼) ∧ (𝑢𝐾 ∧ (𝑝𝐵 ∧ (𝑝𝑘) ∈ 𝑢))) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑝𝑘)(ball‘𝐸)𝑟) ⊆ 𝑢)) → (𝑝(ball‘𝐷)𝑟) ⊆ {𝑤𝐵 ∣ (𝑤𝑘) ∈ 𝑢})
226225, 187sseqtrrdi 4033 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑘𝐼) ∧ (𝑢𝐾 ∧ (𝑝𝐵 ∧ (𝑝𝑘) ∈ 𝑢))) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑝𝑘)(ball‘𝐸)𝑟) ⊆ 𝑢)) → (𝑝(ball‘𝐷)𝑟) ⊆ ((𝑤𝐵 ↦ (𝑤𝑘)) “ 𝑢))
227 eleq2 2821 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦 = (𝑝(ball‘𝐷)𝑟) → (𝑝𝑦𝑝 ∈ (𝑝(ball‘𝐷)𝑟)))
228 sseq1 4007 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦 = (𝑝(ball‘𝐷)𝑟) → (𝑦 ⊆ ((𝑤𝐵 ↦ (𝑤𝑘)) “ 𝑢) ↔ (𝑝(ball‘𝐷)𝑟) ⊆ ((𝑤𝐵 ↦ (𝑤𝑘)) “ 𝑢)))
229227, 228anbi12d 630 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 = (𝑝(ball‘𝐷)𝑟) → ((𝑝𝑦𝑦 ⊆ ((𝑤𝐵 ↦ (𝑤𝑘)) “ 𝑢)) ↔ (𝑝 ∈ (𝑝(ball‘𝐷)𝑟) ∧ (𝑝(ball‘𝐷)𝑟) ⊆ ((𝑤𝐵 ↦ (𝑤𝑘)) “ 𝑢))))
230229rspcev 3612 . . . . . . . . . . . . . . . . . . . . 21 (((𝑝(ball‘𝐷)𝑟) ∈ (MetOpen‘𝐷) ∧ (𝑝 ∈ (𝑝(ball‘𝐷)𝑟) ∧ (𝑝(ball‘𝐷)𝑟) ⊆ ((𝑤𝐵 ↦ (𝑤𝑘)) “ 𝑢))) → ∃𝑦 ∈ (MetOpen‘𝐷)(𝑝𝑦𝑦 ⊆ ((𝑤𝐵 ↦ (𝑤𝑘)) “ 𝑢)))
231204, 207, 226, 230syl12anc 834 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑘𝐼) ∧ (𝑢𝐾 ∧ (𝑝𝐵 ∧ (𝑝𝑘) ∈ 𝑢))) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑝𝑘)(ball‘𝐸)𝑟) ⊆ 𝑢)) → ∃𝑦 ∈ (MetOpen‘𝐷)(𝑝𝑦𝑦 ⊆ ((𝑤𝐵 ↦ (𝑤𝑘)) “ 𝑢)))
232197, 231rexlimddv 3160 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑘𝐼) ∧ (𝑢𝐾 ∧ (𝑝𝐵 ∧ (𝑝𝑘) ∈ 𝑢))) → ∃𝑦 ∈ (MetOpen‘𝐷)(𝑝𝑦𝑦 ⊆ ((𝑤𝐵 ↦ (𝑤𝑘)) “ 𝑢)))
233232expr 456 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑘𝐼) ∧ 𝑢𝐾) → ((𝑝𝐵 ∧ (𝑝𝑘) ∈ 𝑢) → ∃𝑦 ∈ (MetOpen‘𝐷)(𝑝𝑦𝑦 ⊆ ((𝑤𝐵 ↦ (𝑤𝑘)) “ 𝑢))))
234188, 233biimtrid 241 . . . . . . . . . . . . . . . . 17 (((𝜑𝑘𝐼) ∧ 𝑢𝐾) → (𝑝 ∈ ((𝑤𝐵 ↦ (𝑤𝑘)) “ 𝑢) → ∃𝑦 ∈ (MetOpen‘𝐷)(𝑝𝑦𝑦 ⊆ ((𝑤𝐵 ↦ (𝑤𝑘)) “ 𝑢))))
235234ralrimiv 3144 . . . . . . . . . . . . . . . 16 (((𝜑𝑘𝐼) ∧ 𝑢𝐾) → ∀𝑝 ∈ ((𝑤𝐵 ↦ (𝑤𝑘)) “ 𝑢)∃𝑦 ∈ (MetOpen‘𝐷)(𝑝𝑦𝑦 ⊆ ((𝑤𝐵 ↦ (𝑤𝑘)) “ 𝑢)))
236156ad2antrr 723 . . . . . . . . . . . . . . . . 17 (((𝜑𝑘𝐼) ∧ 𝑢𝐾) → (MetOpen‘𝐷) ∈ Top)
237 eltop2 22699 . . . . . . . . . . . . . . . . 17 ((MetOpen‘𝐷) ∈ Top → (((𝑤𝐵 ↦ (𝑤𝑘)) “ 𝑢) ∈ (MetOpen‘𝐷) ↔ ∀𝑝 ∈ ((𝑤𝐵 ↦ (𝑤𝑘)) “ 𝑢)∃𝑦 ∈ (MetOpen‘𝐷)(𝑝𝑦𝑦 ⊆ ((𝑤𝐵 ↦ (𝑤𝑘)) “ 𝑢))))
238236, 237syl 17 . . . . . . . . . . . . . . . 16 (((𝜑𝑘𝐼) ∧ 𝑢𝐾) → (((𝑤𝐵 ↦ (𝑤𝑘)) “ 𝑢) ∈ (MetOpen‘𝐷) ↔ ∀𝑝 ∈ ((𝑤𝐵 ↦ (𝑤𝑘)) “ 𝑢)∃𝑦 ∈ (MetOpen‘𝐷)(𝑝𝑦𝑦 ⊆ ((𝑤𝐵 ↦ (𝑤𝑘)) “ 𝑢))))
239235, 238mpbird 257 . . . . . . . . . . . . . . 15 (((𝜑𝑘𝐼) ∧ 𝑢𝐾) → ((𝑤𝐵 ↦ (𝑤𝑘)) “ 𝑢) ∈ (MetOpen‘𝐷))
240183, 239eqeltrrd 2833 . . . . . . . . . . . . . 14 (((𝜑𝑘𝐼) ∧ 𝑢𝐾) → ((𝑤X𝑛𝐼 ((TopOpen ∘ 𝑅)‘𝑛) ↦ (𝑤𝑘)) “ 𝑢) ∈ (MetOpen‘𝐷))
241240ralrimiva 3145 . . . . . . . . . . . . 13 ((𝜑𝑘𝐼) → ∀𝑢𝐾 ((𝑤X𝑛𝐼 ((TopOpen ∘ 𝑅)‘𝑛) ↦ (𝑤𝑘)) “ 𝑢) ∈ (MetOpen‘𝐷))
242158raleqdv 3324 . . . . . . . . . . . . 13 ((𝜑𝑘𝐼) → (∀𝑢 ∈ ((TopOpen ∘ 𝑅)‘𝑘)((𝑤X𝑛𝐼 ((TopOpen ∘ 𝑅)‘𝑛) ↦ (𝑤𝑘)) “ 𝑢) ∈ (MetOpen‘𝐷) ↔ ∀𝑢𝐾 ((𝑤X𝑛𝐼 ((TopOpen ∘ 𝑅)‘𝑛) ↦ (𝑤𝑘)) “ 𝑢) ∈ (MetOpen‘𝐷)))
243241, 242mpbird 257 . . . . . . . . . . . 12 ((𝜑𝑘𝐼) → ∀𝑢 ∈ ((TopOpen ∘ 𝑅)‘𝑘)((𝑤X𝑛𝐼 ((TopOpen ∘ 𝑅)‘𝑛) ↦ (𝑤𝑘)) “ 𝑢) ∈ (MetOpen‘𝐷))
244243ralrimiva 3145 . . . . . . . . . . 11 (𝜑 → ∀𝑘𝐼𝑢 ∈ ((TopOpen ∘ 𝑅)‘𝑘)((𝑤X𝑛𝐼 ((TopOpen ∘ 𝑅)‘𝑛) ↦ (𝑤𝑘)) “ 𝑢) ∈ (MetOpen‘𝐷))
245 fveq2 6891 . . . . . . . . . . . . 13 (𝑘 = 𝑚 → ((TopOpen ∘ 𝑅)‘𝑘) = ((TopOpen ∘ 𝑅)‘𝑚))
246 fveq2 6891 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑚 → (𝑤𝑘) = (𝑤𝑚))
247246mpteq2dv 5250 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑚 → (𝑤X𝑛𝐼 ((TopOpen ∘ 𝑅)‘𝑛) ↦ (𝑤𝑘)) = (𝑤X𝑛𝐼 ((TopOpen ∘ 𝑅)‘𝑛) ↦ (𝑤𝑚)))
248247cnveqd 5875 . . . . . . . . . . . . . . 15 (𝑘 = 𝑚(𝑤X𝑛𝐼 ((TopOpen ∘ 𝑅)‘𝑛) ↦ (𝑤𝑘)) = (𝑤X𝑛𝐼 ((TopOpen ∘ 𝑅)‘𝑛) ↦ (𝑤𝑚)))
249248imaeq1d 6058 . . . . . . . . . . . . . 14 (𝑘 = 𝑚 → ((𝑤X𝑛𝐼 ((TopOpen ∘ 𝑅)‘𝑛) ↦ (𝑤𝑘)) “ 𝑢) = ((𝑤X𝑛𝐼 ((TopOpen ∘ 𝑅)‘𝑛) ↦ (𝑤𝑚)) “ 𝑢))
250249eleq1d 2817 . . . . . . . . . . . . 13 (𝑘 = 𝑚 → (((𝑤X𝑛𝐼 ((TopOpen ∘ 𝑅)‘𝑛) ↦ (𝑤𝑘)) “ 𝑢) ∈ (MetOpen‘𝐷) ↔ ((𝑤X𝑛𝐼 ((TopOpen ∘ 𝑅)‘𝑛) ↦ (𝑤𝑚)) “ 𝑢) ∈ (MetOpen‘𝐷)))
251245, 250raleqbidv 3341 . . . . . . . . . . . 12 (𝑘 = 𝑚 → (∀𝑢 ∈ ((TopOpen ∘ 𝑅)‘𝑘)((𝑤X𝑛𝐼 ((TopOpen ∘ 𝑅)‘𝑛) ↦ (𝑤𝑘)) “ 𝑢) ∈ (MetOpen‘𝐷) ↔ ∀𝑢 ∈ ((TopOpen ∘ 𝑅)‘𝑚)((𝑤X𝑛𝐼 ((TopOpen ∘ 𝑅)‘𝑛) ↦ (𝑤𝑚)) “ 𝑢) ∈ (MetOpen‘𝐷)))
252251cbvralvw 3233 . . . . . . . . . . 11 (∀𝑘𝐼𝑢 ∈ ((TopOpen ∘ 𝑅)‘𝑘)((𝑤X𝑛𝐼 ((TopOpen ∘ 𝑅)‘𝑛) ↦ (𝑤𝑘)) “ 𝑢) ∈ (MetOpen‘𝐷) ↔ ∀𝑚𝐼𝑢 ∈ ((TopOpen ∘ 𝑅)‘𝑚)((𝑤X𝑛𝐼 ((TopOpen ∘ 𝑅)‘𝑛) ↦ (𝑤𝑚)) “ 𝑢) ∈ (MetOpen‘𝐷))
253244, 252sylib 217 . . . . . . . . . 10 (𝜑 → ∀𝑚𝐼𝑢 ∈ ((TopOpen ∘ 𝑅)‘𝑚)((𝑤X𝑛𝐼 ((TopOpen ∘ 𝑅)‘𝑛) ↦ (𝑤𝑚)) “ 𝑢) ∈ (MetOpen‘𝐷))
254 eqid 2731 . . . . . . . . . . 11 (𝑚𝐼, 𝑢 ∈ ((TopOpen ∘ 𝑅)‘𝑚) ↦ ((𝑤X𝑛𝐼 ((TopOpen ∘ 𝑅)‘𝑛) ↦ (𝑤𝑚)) “ 𝑢)) = (𝑚𝐼, 𝑢 ∈ ((TopOpen ∘ 𝑅)‘𝑚) ↦ ((𝑤X𝑛𝐼 ((TopOpen ∘ 𝑅)‘𝑛) ↦ (𝑤𝑚)) “ 𝑢))
255254fmpox 8057 . . . . . . . . . 10 (∀𝑚𝐼𝑢 ∈ ((TopOpen ∘ 𝑅)‘𝑚)((𝑤X𝑛𝐼 ((TopOpen ∘ 𝑅)‘𝑛) ↦ (𝑤𝑚)) “ 𝑢) ∈ (MetOpen‘𝐷) ↔ (𝑚𝐼, 𝑢 ∈ ((TopOpen ∘ 𝑅)‘𝑚) ↦ ((𝑤X𝑛𝐼 ((TopOpen ∘ 𝑅)‘𝑛) ↦ (𝑤𝑚)) “ 𝑢)): 𝑚𝐼 ({𝑚} × ((TopOpen ∘ 𝑅)‘𝑚))⟶(MetOpen‘𝐷))
256253, 255sylib 217 . . . . . . . . 9 (𝜑 → (𝑚𝐼, 𝑢 ∈ ((TopOpen ∘ 𝑅)‘𝑚) ↦ ((𝑤X𝑛𝐼 ((TopOpen ∘ 𝑅)‘𝑛) ↦ (𝑤𝑚)) “ 𝑢)): 𝑚𝐼 ({𝑚} × ((TopOpen ∘ 𝑅)‘𝑚))⟶(MetOpen‘𝐷))
257256frnd 6725 . . . . . . . 8 (𝜑 → ran (𝑚𝐼, 𝑢 ∈ ((TopOpen ∘ 𝑅)‘𝑚) ↦ ((𝑤X𝑛𝐼 ((TopOpen ∘ 𝑅)‘𝑛) ↦ (𝑤𝑚)) “ 𝑢)) ⊆ (MetOpen‘𝐷))
258179, 257unssd 4186 . . . . . . 7 (𝜑 → ({X𝑛𝐼 ((TopOpen ∘ 𝑅)‘𝑛)} ∪ ran (𝑚𝐼, 𝑢 ∈ ((TopOpen ∘ 𝑅)‘𝑚) ↦ ((𝑤X𝑛𝐼 ((TopOpen ∘ 𝑅)‘𝑛) ↦ (𝑤𝑚)) “ 𝑢))) ⊆ (MetOpen‘𝐷))
259 fiss 9423 . . . . . . 7 (((MetOpen‘𝐷) ∈ Top ∧ ({X𝑛𝐼 ((TopOpen ∘ 𝑅)‘𝑛)} ∪ ran (𝑚𝐼, 𝑢 ∈ ((TopOpen ∘ 𝑅)‘𝑚) ↦ ((𝑤X𝑛𝐼 ((TopOpen ∘ 𝑅)‘𝑛) ↦ (𝑤𝑚)) “ 𝑢))) ⊆ (MetOpen‘𝐷)) → (fi‘({X𝑛𝐼 ((TopOpen ∘ 𝑅)‘𝑛)} ∪ ran (𝑚𝐼, 𝑢 ∈ ((TopOpen ∘ 𝑅)‘𝑚) ↦ ((𝑤X𝑛𝐼 ((TopOpen ∘ 𝑅)‘𝑛) ↦ (𝑤𝑚)) “ 𝑢)))) ⊆ (fi‘(MetOpen‘𝐷)))
260156, 258, 259syl2anc 583 . . . . . 6 (𝜑 → (fi‘({X𝑛𝐼 ((TopOpen ∘ 𝑅)‘𝑛)} ∪ ran (𝑚𝐼, 𝑢 ∈ ((TopOpen ∘ 𝑅)‘𝑚) ↦ ((𝑤X𝑛𝐼 ((TopOpen ∘ 𝑅)‘𝑛) ↦ (𝑤𝑚)) “ 𝑢)))) ⊆ (fi‘(MetOpen‘𝐷)))
261153, 260eqsstrd 4020 . . . . 5 (𝜑𝐶 ⊆ (fi‘(MetOpen‘𝐷)))
262 fitop 22623 . . . . . . 7 ((MetOpen‘𝐷) ∈ Top → (fi‘(MetOpen‘𝐷)) = (MetOpen‘𝐷))
263156, 262syl 17 . . . . . 6 (𝜑 → (fi‘(MetOpen‘𝐷)) = (MetOpen‘𝐷))
264154mopnval 24165 . . . . . . . 8 (𝐷 ∈ (∞Met‘𝐵) → (MetOpen‘𝐷) = (topGen‘ran (ball‘𝐷)))
26517, 264syl 17 . . . . . . 7 (𝜑 → (MetOpen‘𝐷) = (topGen‘ran (ball‘𝐷)))
266 tgdif0 22716 . . . . . . 7 (topGen‘(ran (ball‘𝐷) ∖ {∅})) = (topGen‘ran (ball‘𝐷))
267265, 266eqtr4di 2789 . . . . . 6 (𝜑 → (MetOpen‘𝐷) = (topGen‘(ran (ball‘𝐷) ∖ {∅})))
268263, 267eqtrd 2771 . . . . 5 (𝜑 → (fi‘(MetOpen‘𝐷)) = (topGen‘(ran (ball‘𝐷) ∖ {∅})))
269261, 268sseqtrd 4022 . . . 4 (𝜑𝐶 ⊆ (topGen‘(ran (ball‘𝐷) ∖ {∅})))
270 2basgen 22714 . . . 4 (((ran (ball‘𝐷) ∖ {∅}) ⊆ 𝐶𝐶 ⊆ (topGen‘(ran (ball‘𝐷) ∖ {∅}))) → (topGen‘(ran (ball‘𝐷) ∖ {∅})) = (topGen‘𝐶))
271136, 269, 270syl2anc 583 . . 3 (𝜑 → (topGen‘(ran (ball‘𝐷) ∖ {∅})) = (topGen‘𝐶))
27211, 271eqtr4d 2774 . 2 (𝜑 → (∏t‘(TopOpen ∘ 𝑅)) = (topGen‘(ran (ball‘𝐷) ∖ {∅})))
273 prdsxms.j . . 3 𝐽 = (TopOpen‘𝑌)
27413, 14, 1, 4, 273prdstopn 23353 . 2 (𝜑𝐽 = (∏t‘(TopOpen ∘ 𝑅)))
275272, 274, 2673eqtr4d 2781 1 (𝜑𝐽 = (MetOpen‘𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1086  wal 1538   = wceq 1540  wex 1780  wcel 2105  {cab 2708  wne 2939  wral 3060  wrex 3069  {crab 3431  Vcvv 3473  cdif 3945  cun 3946  wss 3948  c0 4322  {csn 4628   cuni 4908   ciun 4997   class class class wbr 5148  cmpt 5231   × cxp 5674  ccnv 5675  ran crn 5677  cres 5678  cima 5679  ccom 5680   Fn wfn 6538  wf 6539  cfv 6543  (class class class)co 7412  cmpo 7414  Xcixp 8895  Fincfn 8943  ficfi 9409  0cc0 11114  *cxr 11252   < clt 11253  +crp 12979  Basecbs 17149  distcds 17211  TopOpenctopn 17372  topGenctg 17388  tcpt 17389  Xscprds 17396  ∞Metcxmet 21130  ballcbl 21132  MetOpencmopn 21135  Topctop 22616  TopOnctopon 22633  TopSpctps 22655  ∞MetSpcxms 24044
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729  ax-cnex 11170  ax-resscn 11171  ax-1cn 11172  ax-icn 11173  ax-addcl 11174  ax-addrcl 11175  ax-mulcl 11176  ax-mulrcl 11177  ax-mulcom 11178  ax-addass 11179  ax-mulass 11180  ax-distr 11181  ax-i2m1 11182  ax-1ne0 11183  ax-1rid 11184  ax-rnegex 11185  ax-rrecex 11186  ax-cnre 11187  ax-pre-lttri 11188  ax-pre-lttrn 11189  ax-pre-ltadd 11190  ax-pre-mulgt0 11191  ax-pre-sup 11192
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-tp 4633  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-iin 5000  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-om 7860  df-1st 7979  df-2nd 7980  df-frecs 8270  df-wrecs 8301  df-recs 8375  df-rdg 8414  df-1o 8470  df-er 8707  df-map 8826  df-ixp 8896  df-en 8944  df-dom 8945  df-sdom 8946  df-fin 8947  df-fi 9410  df-sup 9441  df-inf 9442  df-pnf 11255  df-mnf 11256  df-xr 11257  df-ltxr 11258  df-le 11259  df-sub 11451  df-neg 11452  df-div 11877  df-nn 12218  df-2 12280  df-3 12281  df-4 12282  df-5 12283  df-6 12284  df-7 12285  df-8 12286  df-9 12287  df-n0 12478  df-z 12564  df-dec 12683  df-uz 12828  df-q 12938  df-rp 12980  df-xneg 13097  df-xadd 13098  df-xmul 13099  df-icc 13336  df-fz 13490  df-struct 17085  df-slot 17120  df-ndx 17132  df-base 17150  df-plusg 17215  df-mulr 17216  df-sca 17218  df-vsca 17219  df-ip 17220  df-tset 17221  df-ple 17222  df-ds 17224  df-hom 17226  df-cco 17227  df-rest 17373  df-topn 17374  df-topgen 17394  df-pt 17395  df-prds 17398  df-psmet 21137  df-xmet 21138  df-bl 21140  df-mopn 21141  df-top 22617  df-topon 22634  df-topsp 22656  df-bases 22670  df-xms 24047
This theorem is referenced by:  prdsxms  24260
  Copyright terms: Public domain W3C validator