MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prdsxmslem2 Structured version   Visualization version   GIF version

Theorem prdsxmslem2 24473
Description: Lemma for prdsxms 24474. The topology generated by the supremum metric is the same as the product topology, when the index set is finite. (Contributed by Mario Carneiro, 28-Aug-2015.)
Hypotheses
Ref Expression
prdsxms.y 𝑌 = (𝑆Xs𝑅)
prdsxms.s (𝜑𝑆𝑊)
prdsxms.i (𝜑𝐼 ∈ Fin)
prdsxms.d 𝐷 = (dist‘𝑌)
prdsxms.b 𝐵 = (Base‘𝑌)
prdsxms.r (𝜑𝑅:𝐼⟶∞MetSp)
prdsxms.j 𝐽 = (TopOpen‘𝑌)
prdsxms.v 𝑉 = (Base‘(𝑅𝑘))
prdsxms.e 𝐸 = ((dist‘(𝑅𝑘)) ↾ (𝑉 × 𝑉))
prdsxms.k 𝐾 = (TopOpen‘(𝑅𝑘))
prdsxms.c 𝐶 = {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑔𝑘) ∈ ((TopOpen ∘ 𝑅)‘𝑘) ∧ ∃𝑧 ∈ Fin ∀𝑘 ∈ (𝐼𝑧)(𝑔𝑘) = ((TopOpen ∘ 𝑅)‘𝑘)) ∧ 𝑥 = X𝑘𝐼 (𝑔𝑘))}
Assertion
Ref Expression
prdsxmslem2 (𝜑𝐽 = (MetOpen‘𝐷))
Distinct variable groups:   𝑔,𝑘,𝐵   𝑥,𝑔,𝐷,𝑘   𝑧,𝑔,𝐼,𝑘,𝑥   𝑔,𝐸   𝑆,𝑔,𝑘,𝑥   𝑔,𝑊,𝑘,𝑥   𝑔,𝑌,𝑘,𝑥   𝜑,𝑔,𝑘,𝑥   𝑅,𝑔,𝑘,𝑥,𝑧
Allowed substitution hints:   𝜑(𝑧)   𝐵(𝑥,𝑧)   𝐶(𝑥,𝑧,𝑔,𝑘)   𝐷(𝑧)   𝑆(𝑧)   𝐸(𝑥,𝑧,𝑘)   𝐽(𝑥,𝑧,𝑔,𝑘)   𝐾(𝑥,𝑧,𝑔,𝑘)   𝑉(𝑥,𝑧,𝑔,𝑘)   𝑊(𝑧)   𝑌(𝑧)

Proof of Theorem prdsxmslem2
Dummy variables 𝑝 𝑟 𝑤 𝑦 𝑚 𝑢 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prdsxms.i . . . 4 (𝜑𝐼 ∈ Fin)
2 topnfn 17444 . . . . 5 TopOpen Fn V
3 prdsxms.r . . . . . . 7 (𝜑𝑅:𝐼⟶∞MetSp)
43ffnd 6712 . . . . . 6 (𝜑𝑅 Fn 𝐼)
5 dffn2 6713 . . . . . 6 (𝑅 Fn 𝐼𝑅:𝐼⟶V)
64, 5sylib 218 . . . . 5 (𝜑𝑅:𝐼⟶V)
7 fnfco 6748 . . . . 5 ((TopOpen Fn V ∧ 𝑅:𝐼⟶V) → (TopOpen ∘ 𝑅) Fn 𝐼)
82, 6, 7sylancr 587 . . . 4 (𝜑 → (TopOpen ∘ 𝑅) Fn 𝐼)
9 prdsxms.c . . . . 5 𝐶 = {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑔𝑘) ∈ ((TopOpen ∘ 𝑅)‘𝑘) ∧ ∃𝑧 ∈ Fin ∀𝑘 ∈ (𝐼𝑧)(𝑔𝑘) = ((TopOpen ∘ 𝑅)‘𝑘)) ∧ 𝑥 = X𝑘𝐼 (𝑔𝑘))}
109ptval 23513 . . . 4 ((𝐼 ∈ Fin ∧ (TopOpen ∘ 𝑅) Fn 𝐼) → (∏t‘(TopOpen ∘ 𝑅)) = (topGen‘𝐶))
111, 8, 10syl2anc 584 . . 3 (𝜑 → (∏t‘(TopOpen ∘ 𝑅)) = (topGen‘𝐶))
12 eldifsn 4767 . . . . . . . 8 (𝑥 ∈ (ran (ball‘𝐷) ∖ {∅}) ↔ (𝑥 ∈ ran (ball‘𝐷) ∧ 𝑥 ≠ ∅))
13 prdsxms.y . . . . . . . . . . . 12 𝑌 = (𝑆Xs𝑅)
14 prdsxms.s . . . . . . . . . . . 12 (𝜑𝑆𝑊)
15 prdsxms.d . . . . . . . . . . . 12 𝐷 = (dist‘𝑌)
16 prdsxms.b . . . . . . . . . . . 12 𝐵 = (Base‘𝑌)
1713, 14, 1, 15, 16, 3prdsxmslem1 24472 . . . . . . . . . . 11 (𝜑𝐷 ∈ (∞Met‘𝐵))
18 blrn 24353 . . . . . . . . . . 11 (𝐷 ∈ (∞Met‘𝐵) → (𝑥 ∈ ran (ball‘𝐷) ↔ ∃𝑝𝐵𝑟 ∈ ℝ* 𝑥 = (𝑝(ball‘𝐷)𝑟)))
1917, 18syl 17 . . . . . . . . . 10 (𝜑 → (𝑥 ∈ ran (ball‘𝐷) ↔ ∃𝑝𝐵𝑟 ∈ ℝ* 𝑥 = (𝑝(ball‘𝐷)𝑟)))
2017adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑝𝐵𝑟 ∈ ℝ*)) → 𝐷 ∈ (∞Met‘𝐵))
21 simprl 770 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑝𝐵𝑟 ∈ ℝ*)) → 𝑝𝐵)
22 simprr 772 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑝𝐵𝑟 ∈ ℝ*)) → 𝑟 ∈ ℝ*)
23 xbln0 24358 . . . . . . . . . . . . . . . 16 ((𝐷 ∈ (∞Met‘𝐵) ∧ 𝑝𝐵𝑟 ∈ ℝ*) → ((𝑝(ball‘𝐷)𝑟) ≠ ∅ ↔ 0 < 𝑟))
2420, 21, 22, 23syl3anc 1373 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑝𝐵𝑟 ∈ ℝ*)) → ((𝑝(ball‘𝐷)𝑟) ≠ ∅ ↔ 0 < 𝑟))
2513ad2ant1 1133 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑝𝐵𝑟 ∈ ℝ*) ∧ 0 < 𝑟) → 𝐼 ∈ Fin)
2625mptexd 7221 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑝𝐵𝑟 ∈ ℝ*) ∧ 0 < 𝑟) → (𝑛𝐼 ↦ ((𝑝𝑛)(ball‘((dist‘(𝑅𝑛)) ↾ ((Base‘(𝑅𝑛)) × (Base‘(𝑅𝑛)))))𝑟)) ∈ V)
27 ovex 7443 . . . . . . . . . . . . . . . . . . 19 ((𝑝𝑛)(ball‘((dist‘(𝑅𝑛)) ↾ ((Base‘(𝑅𝑛)) × (Base‘(𝑅𝑛)))))𝑟) ∈ V
2827rgenw 3056 . . . . . . . . . . . . . . . . . 18 𝑛𝐼 ((𝑝𝑛)(ball‘((dist‘(𝑅𝑛)) ↾ ((Base‘(𝑅𝑛)) × (Base‘(𝑅𝑛)))))𝑟) ∈ V
29 eqid 2736 . . . . . . . . . . . . . . . . . . 19 (𝑛𝐼 ↦ ((𝑝𝑛)(ball‘((dist‘(𝑅𝑛)) ↾ ((Base‘(𝑅𝑛)) × (Base‘(𝑅𝑛)))))𝑟)) = (𝑛𝐼 ↦ ((𝑝𝑛)(ball‘((dist‘(𝑅𝑛)) ↾ ((Base‘(𝑅𝑛)) × (Base‘(𝑅𝑛)))))𝑟))
3029fnmpt 6683 . . . . . . . . . . . . . . . . . 18 (∀𝑛𝐼 ((𝑝𝑛)(ball‘((dist‘(𝑅𝑛)) ↾ ((Base‘(𝑅𝑛)) × (Base‘(𝑅𝑛)))))𝑟) ∈ V → (𝑛𝐼 ↦ ((𝑝𝑛)(ball‘((dist‘(𝑅𝑛)) ↾ ((Base‘(𝑅𝑛)) × (Base‘(𝑅𝑛)))))𝑟)) Fn 𝐼)
3128, 30mp1i 13 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑝𝐵𝑟 ∈ ℝ*) ∧ 0 < 𝑟) → (𝑛𝐼 ↦ ((𝑝𝑛)(ball‘((dist‘(𝑅𝑛)) ↾ ((Base‘(𝑅𝑛)) × (Base‘(𝑅𝑛)))))𝑟)) Fn 𝐼)
3233ad2ant1 1133 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑝𝐵𝑟 ∈ ℝ*) ∧ 0 < 𝑟) → 𝑅:𝐼⟶∞MetSp)
3332ffvelcdmda 7079 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑝𝐵𝑟 ∈ ℝ*) ∧ 0 < 𝑟) ∧ 𝑘𝐼) → (𝑅𝑘) ∈ ∞MetSp)
34 prdsxms.v . . . . . . . . . . . . . . . . . . . . . 22 𝑉 = (Base‘(𝑅𝑘))
35 prdsxms.e . . . . . . . . . . . . . . . . . . . . . 22 𝐸 = ((dist‘(𝑅𝑘)) ↾ (𝑉 × 𝑉))
3634, 35xmsxmet 24400 . . . . . . . . . . . . . . . . . . . . 21 ((𝑅𝑘) ∈ ∞MetSp → 𝐸 ∈ (∞Met‘𝑉))
3733, 36syl 17 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑝𝐵𝑟 ∈ ℝ*) ∧ 0 < 𝑟) ∧ 𝑘𝐼) → 𝐸 ∈ (∞Met‘𝑉))
38 eqid 2736 . . . . . . . . . . . . . . . . . . . . . 22 (𝑆Xs(𝑘𝐼 ↦ (𝑅𝑘))) = (𝑆Xs(𝑘𝐼 ↦ (𝑅𝑘)))
39 eqid 2736 . . . . . . . . . . . . . . . . . . . . . 22 (Base‘(𝑆Xs(𝑘𝐼 ↦ (𝑅𝑘)))) = (Base‘(𝑆Xs(𝑘𝐼 ↦ (𝑅𝑘))))
40143ad2ant1 1133 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑝𝐵𝑟 ∈ ℝ*) ∧ 0 < 𝑟) → 𝑆𝑊)
4133ralrimiva 3133 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑝𝐵𝑟 ∈ ℝ*) ∧ 0 < 𝑟) → ∀𝑘𝐼 (𝑅𝑘) ∈ ∞MetSp)
42 simp2l 1200 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ (𝑝𝐵𝑟 ∈ ℝ*) ∧ 0 < 𝑟) → 𝑝𝐵)
4332feqmptd 6952 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑 ∧ (𝑝𝐵𝑟 ∈ ℝ*) ∧ 0 < 𝑟) → 𝑅 = (𝑘𝐼 ↦ (𝑅𝑘)))
4443oveq2d 7426 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑 ∧ (𝑝𝐵𝑟 ∈ ℝ*) ∧ 0 < 𝑟) → (𝑆Xs𝑅) = (𝑆Xs(𝑘𝐼 ↦ (𝑅𝑘))))
4513, 44eqtrid 2783 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑 ∧ (𝑝𝐵𝑟 ∈ ℝ*) ∧ 0 < 𝑟) → 𝑌 = (𝑆Xs(𝑘𝐼 ↦ (𝑅𝑘))))
4645fveq2d 6885 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑 ∧ (𝑝𝐵𝑟 ∈ ℝ*) ∧ 0 < 𝑟) → (Base‘𝑌) = (Base‘(𝑆Xs(𝑘𝐼 ↦ (𝑅𝑘)))))
4716, 46eqtrid 2783 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ (𝑝𝐵𝑟 ∈ ℝ*) ∧ 0 < 𝑟) → 𝐵 = (Base‘(𝑆Xs(𝑘𝐼 ↦ (𝑅𝑘)))))
4842, 47eleqtrd 2837 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑝𝐵𝑟 ∈ ℝ*) ∧ 0 < 𝑟) → 𝑝 ∈ (Base‘(𝑆Xs(𝑘𝐼 ↦ (𝑅𝑘)))))
4938, 39, 40, 25, 41, 34, 48prdsbascl 17502 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑝𝐵𝑟 ∈ ℝ*) ∧ 0 < 𝑟) → ∀𝑘𝐼 (𝑝𝑘) ∈ 𝑉)
5049r19.21bi 3238 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑝𝐵𝑟 ∈ ℝ*) ∧ 0 < 𝑟) ∧ 𝑘𝐼) → (𝑝𝑘) ∈ 𝑉)
51 simp2r 1201 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑝𝐵𝑟 ∈ ℝ*) ∧ 0 < 𝑟) → 𝑟 ∈ ℝ*)
5251adantr 480 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑝𝐵𝑟 ∈ ℝ*) ∧ 0 < 𝑟) ∧ 𝑘𝐼) → 𝑟 ∈ ℝ*)
53 eqid 2736 . . . . . . . . . . . . . . . . . . . . 21 (MetOpen‘𝐸) = (MetOpen‘𝐸)
5453blopn 24444 . . . . . . . . . . . . . . . . . . . 20 ((𝐸 ∈ (∞Met‘𝑉) ∧ (𝑝𝑘) ∈ 𝑉𝑟 ∈ ℝ*) → ((𝑝𝑘)(ball‘𝐸)𝑟) ∈ (MetOpen‘𝐸))
5537, 50, 52, 54syl3anc 1373 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑝𝐵𝑟 ∈ ℝ*) ∧ 0 < 𝑟) ∧ 𝑘𝐼) → ((𝑝𝑘)(ball‘𝐸)𝑟) ∈ (MetOpen‘𝐸))
56 2fveq3 6886 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑛 = 𝑘 → (dist‘(𝑅𝑛)) = (dist‘(𝑅𝑘)))
57 2fveq3 6886 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑛 = 𝑘 → (Base‘(𝑅𝑛)) = (Base‘(𝑅𝑘)))
5857, 34eqtr4di 2789 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑛 = 𝑘 → (Base‘(𝑅𝑛)) = 𝑉)
5958sqxpeqd 5691 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑛 = 𝑘 → ((Base‘(𝑅𝑛)) × (Base‘(𝑅𝑛))) = (𝑉 × 𝑉))
6056, 59reseq12d 5972 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑛 = 𝑘 → ((dist‘(𝑅𝑛)) ↾ ((Base‘(𝑅𝑛)) × (Base‘(𝑅𝑛)))) = ((dist‘(𝑅𝑘)) ↾ (𝑉 × 𝑉)))
6160, 35eqtr4di 2789 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑛 = 𝑘 → ((dist‘(𝑅𝑛)) ↾ ((Base‘(𝑅𝑛)) × (Base‘(𝑅𝑛)))) = 𝐸)
6261fveq2d 6885 . . . . . . . . . . . . . . . . . . . . . 22 (𝑛 = 𝑘 → (ball‘((dist‘(𝑅𝑛)) ↾ ((Base‘(𝑅𝑛)) × (Base‘(𝑅𝑛))))) = (ball‘𝐸))
63 fveq2 6881 . . . . . . . . . . . . . . . . . . . . . 22 (𝑛 = 𝑘 → (𝑝𝑛) = (𝑝𝑘))
64 eqidd 2737 . . . . . . . . . . . . . . . . . . . . . 22 (𝑛 = 𝑘𝑟 = 𝑟)
6562, 63, 64oveq123d 7431 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 = 𝑘 → ((𝑝𝑛)(ball‘((dist‘(𝑅𝑛)) ↾ ((Base‘(𝑅𝑛)) × (Base‘(𝑅𝑛)))))𝑟) = ((𝑝𝑘)(ball‘𝐸)𝑟))
66 ovex 7443 . . . . . . . . . . . . . . . . . . . . 21 ((𝑝𝑘)(ball‘𝐸)𝑟) ∈ V
6765, 29, 66fvmpt 6991 . . . . . . . . . . . . . . . . . . . 20 (𝑘𝐼 → ((𝑛𝐼 ↦ ((𝑝𝑛)(ball‘((dist‘(𝑅𝑛)) ↾ ((Base‘(𝑅𝑛)) × (Base‘(𝑅𝑛)))))𝑟))‘𝑘) = ((𝑝𝑘)(ball‘𝐸)𝑟))
6867adantl 481 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑝𝐵𝑟 ∈ ℝ*) ∧ 0 < 𝑟) ∧ 𝑘𝐼) → ((𝑛𝐼 ↦ ((𝑝𝑛)(ball‘((dist‘(𝑅𝑛)) ↾ ((Base‘(𝑅𝑛)) × (Base‘(𝑅𝑛)))))𝑟))‘𝑘) = ((𝑝𝑘)(ball‘𝐸)𝑟))
69 fvco3 6983 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑅:𝐼⟶∞MetSp ∧ 𝑘𝐼) → ((TopOpen ∘ 𝑅)‘𝑘) = (TopOpen‘(𝑅𝑘)))
70 prdsxms.k . . . . . . . . . . . . . . . . . . . . . 22 𝐾 = (TopOpen‘(𝑅𝑘))
7169, 70eqtr4di 2789 . . . . . . . . . . . . . . . . . . . . 21 ((𝑅:𝐼⟶∞MetSp ∧ 𝑘𝐼) → ((TopOpen ∘ 𝑅)‘𝑘) = 𝐾)
7232, 71sylan 580 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑝𝐵𝑟 ∈ ℝ*) ∧ 0 < 𝑟) ∧ 𝑘𝐼) → ((TopOpen ∘ 𝑅)‘𝑘) = 𝐾)
7370, 34, 35xmstopn 24395 . . . . . . . . . . . . . . . . . . . . 21 ((𝑅𝑘) ∈ ∞MetSp → 𝐾 = (MetOpen‘𝐸))
7433, 73syl 17 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑝𝐵𝑟 ∈ ℝ*) ∧ 0 < 𝑟) ∧ 𝑘𝐼) → 𝐾 = (MetOpen‘𝐸))
7572, 74eqtrd 2771 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑝𝐵𝑟 ∈ ℝ*) ∧ 0 < 𝑟) ∧ 𝑘𝐼) → ((TopOpen ∘ 𝑅)‘𝑘) = (MetOpen‘𝐸))
7655, 68, 753eltr4d 2850 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑝𝐵𝑟 ∈ ℝ*) ∧ 0 < 𝑟) ∧ 𝑘𝐼) → ((𝑛𝐼 ↦ ((𝑝𝑛)(ball‘((dist‘(𝑅𝑛)) ↾ ((Base‘(𝑅𝑛)) × (Base‘(𝑅𝑛)))))𝑟))‘𝑘) ∈ ((TopOpen ∘ 𝑅)‘𝑘))
7776ralrimiva 3133 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑝𝐵𝑟 ∈ ℝ*) ∧ 0 < 𝑟) → ∀𝑘𝐼 ((𝑛𝐼 ↦ ((𝑝𝑛)(ball‘((dist‘(𝑅𝑛)) ↾ ((Base‘(𝑅𝑛)) × (Base‘(𝑅𝑛)))))𝑟))‘𝑘) ∈ ((TopOpen ∘ 𝑅)‘𝑘))
7832feqmptd 6952 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑 ∧ (𝑝𝐵𝑟 ∈ ℝ*) ∧ 0 < 𝑟) → 𝑅 = (𝑛𝐼 ↦ (𝑅𝑛)))
7978oveq2d 7426 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ (𝑝𝐵𝑟 ∈ ℝ*) ∧ 0 < 𝑟) → (𝑆Xs𝑅) = (𝑆Xs(𝑛𝐼 ↦ (𝑅𝑛))))
8013, 79eqtrid 2783 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑝𝐵𝑟 ∈ ℝ*) ∧ 0 < 𝑟) → 𝑌 = (𝑆Xs(𝑛𝐼 ↦ (𝑅𝑛))))
8180fveq2d 6885 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑝𝐵𝑟 ∈ ℝ*) ∧ 0 < 𝑟) → (dist‘𝑌) = (dist‘(𝑆Xs(𝑛𝐼 ↦ (𝑅𝑛)))))
8215, 81eqtrid 2783 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑝𝐵𝑟 ∈ ℝ*) ∧ 0 < 𝑟) → 𝐷 = (dist‘(𝑆Xs(𝑛𝐼 ↦ (𝑅𝑛)))))
8382fveq2d 6885 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑝𝐵𝑟 ∈ ℝ*) ∧ 0 < 𝑟) → (ball‘𝐷) = (ball‘(dist‘(𝑆Xs(𝑛𝐼 ↦ (𝑅𝑛))))))
8483oveqd 7427 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑝𝐵𝑟 ∈ ℝ*) ∧ 0 < 𝑟) → (𝑝(ball‘𝐷)𝑟) = (𝑝(ball‘(dist‘(𝑆Xs(𝑛𝐼 ↦ (𝑅𝑛)))))𝑟))
85 fveq2 6881 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 = 𝑘 → (𝑅𝑛) = (𝑅𝑘))
8685cbvmptv 5230 . . . . . . . . . . . . . . . . . . . 20 (𝑛𝐼 ↦ (𝑅𝑛)) = (𝑘𝐼 ↦ (𝑅𝑘))
8786oveq2i 7421 . . . . . . . . . . . . . . . . . . 19 (𝑆Xs(𝑛𝐼 ↦ (𝑅𝑛))) = (𝑆Xs(𝑘𝐼 ↦ (𝑅𝑘)))
88 eqid 2736 . . . . . . . . . . . . . . . . . . 19 (Base‘(𝑆Xs(𝑛𝐼 ↦ (𝑅𝑛)))) = (Base‘(𝑆Xs(𝑛𝐼 ↦ (𝑅𝑛))))
89 eqid 2736 . . . . . . . . . . . . . . . . . . 19 (dist‘(𝑆Xs(𝑛𝐼 ↦ (𝑅𝑛)))) = (dist‘(𝑆Xs(𝑛𝐼 ↦ (𝑅𝑛))))
9080fveq2d 6885 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑝𝐵𝑟 ∈ ℝ*) ∧ 0 < 𝑟) → (Base‘𝑌) = (Base‘(𝑆Xs(𝑛𝐼 ↦ (𝑅𝑛)))))
9116, 90eqtrid 2783 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑝𝐵𝑟 ∈ ℝ*) ∧ 0 < 𝑟) → 𝐵 = (Base‘(𝑆Xs(𝑛𝐼 ↦ (𝑅𝑛)))))
9242, 91eleqtrd 2837 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑝𝐵𝑟 ∈ ℝ*) ∧ 0 < 𝑟) → 𝑝 ∈ (Base‘(𝑆Xs(𝑛𝐼 ↦ (𝑅𝑛)))))
93 simp3 1138 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑝𝐵𝑟 ∈ ℝ*) ∧ 0 < 𝑟) → 0 < 𝑟)
9487, 88, 34, 35, 89, 40, 25, 33, 37, 92, 51, 93prdsbl 24435 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑝𝐵𝑟 ∈ ℝ*) ∧ 0 < 𝑟) → (𝑝(ball‘(dist‘(𝑆Xs(𝑛𝐼 ↦ (𝑅𝑛)))))𝑟) = X𝑘𝐼 ((𝑝𝑘)(ball‘𝐸)𝑟))
9584, 94eqtrd 2771 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑝𝐵𝑟 ∈ ℝ*) ∧ 0 < 𝑟) → (𝑝(ball‘𝐷)𝑟) = X𝑘𝐼 ((𝑝𝑘)(ball‘𝐸)𝑟))
96 fneq1 6634 . . . . . . . . . . . . . . . . . . . . 21 (𝑔 = (𝑛𝐼 ↦ ((𝑝𝑛)(ball‘((dist‘(𝑅𝑛)) ↾ ((Base‘(𝑅𝑛)) × (Base‘(𝑅𝑛)))))𝑟)) → (𝑔 Fn 𝐼 ↔ (𝑛𝐼 ↦ ((𝑝𝑛)(ball‘((dist‘(𝑅𝑛)) ↾ ((Base‘(𝑅𝑛)) × (Base‘(𝑅𝑛)))))𝑟)) Fn 𝐼))
97 fveq1 6880 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑔 = (𝑛𝐼 ↦ ((𝑝𝑛)(ball‘((dist‘(𝑅𝑛)) ↾ ((Base‘(𝑅𝑛)) × (Base‘(𝑅𝑛)))))𝑟)) → (𝑔𝑘) = ((𝑛𝐼 ↦ ((𝑝𝑛)(ball‘((dist‘(𝑅𝑛)) ↾ ((Base‘(𝑅𝑛)) × (Base‘(𝑅𝑛)))))𝑟))‘𝑘))
9897eleq1d 2820 . . . . . . . . . . . . . . . . . . . . . 22 (𝑔 = (𝑛𝐼 ↦ ((𝑝𝑛)(ball‘((dist‘(𝑅𝑛)) ↾ ((Base‘(𝑅𝑛)) × (Base‘(𝑅𝑛)))))𝑟)) → ((𝑔𝑘) ∈ ((TopOpen ∘ 𝑅)‘𝑘) ↔ ((𝑛𝐼 ↦ ((𝑝𝑛)(ball‘((dist‘(𝑅𝑛)) ↾ ((Base‘(𝑅𝑛)) × (Base‘(𝑅𝑛)))))𝑟))‘𝑘) ∈ ((TopOpen ∘ 𝑅)‘𝑘)))
9998ralbidv 3164 . . . . . . . . . . . . . . . . . . . . 21 (𝑔 = (𝑛𝐼 ↦ ((𝑝𝑛)(ball‘((dist‘(𝑅𝑛)) ↾ ((Base‘(𝑅𝑛)) × (Base‘(𝑅𝑛)))))𝑟)) → (∀𝑘𝐼 (𝑔𝑘) ∈ ((TopOpen ∘ 𝑅)‘𝑘) ↔ ∀𝑘𝐼 ((𝑛𝐼 ↦ ((𝑝𝑛)(ball‘((dist‘(𝑅𝑛)) ↾ ((Base‘(𝑅𝑛)) × (Base‘(𝑅𝑛)))))𝑟))‘𝑘) ∈ ((TopOpen ∘ 𝑅)‘𝑘)))
10096, 99anbi12d 632 . . . . . . . . . . . . . . . . . . . 20 (𝑔 = (𝑛𝐼 ↦ ((𝑝𝑛)(ball‘((dist‘(𝑅𝑛)) ↾ ((Base‘(𝑅𝑛)) × (Base‘(𝑅𝑛)))))𝑟)) → ((𝑔 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑔𝑘) ∈ ((TopOpen ∘ 𝑅)‘𝑘)) ↔ ((𝑛𝐼 ↦ ((𝑝𝑛)(ball‘((dist‘(𝑅𝑛)) ↾ ((Base‘(𝑅𝑛)) × (Base‘(𝑅𝑛)))))𝑟)) Fn 𝐼 ∧ ∀𝑘𝐼 ((𝑛𝐼 ↦ ((𝑝𝑛)(ball‘((dist‘(𝑅𝑛)) ↾ ((Base‘(𝑅𝑛)) × (Base‘(𝑅𝑛)))))𝑟))‘𝑘) ∈ ((TopOpen ∘ 𝑅)‘𝑘))))
10197, 67sylan9eq 2791 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑔 = (𝑛𝐼 ↦ ((𝑝𝑛)(ball‘((dist‘(𝑅𝑛)) ↾ ((Base‘(𝑅𝑛)) × (Base‘(𝑅𝑛)))))𝑟)) ∧ 𝑘𝐼) → (𝑔𝑘) = ((𝑝𝑘)(ball‘𝐸)𝑟))
102101ixpeq2dva 8931 . . . . . . . . . . . . . . . . . . . . 21 (𝑔 = (𝑛𝐼 ↦ ((𝑝𝑛)(ball‘((dist‘(𝑅𝑛)) ↾ ((Base‘(𝑅𝑛)) × (Base‘(𝑅𝑛)))))𝑟)) → X𝑘𝐼 (𝑔𝑘) = X𝑘𝐼 ((𝑝𝑘)(ball‘𝐸)𝑟))
103102eqeq2d 2747 . . . . . . . . . . . . . . . . . . . 20 (𝑔 = (𝑛𝐼 ↦ ((𝑝𝑛)(ball‘((dist‘(𝑅𝑛)) ↾ ((Base‘(𝑅𝑛)) × (Base‘(𝑅𝑛)))))𝑟)) → ((𝑝(ball‘𝐷)𝑟) = X𝑘𝐼 (𝑔𝑘) ↔ (𝑝(ball‘𝐷)𝑟) = X𝑘𝐼 ((𝑝𝑘)(ball‘𝐸)𝑟)))
104100, 103anbi12d 632 . . . . . . . . . . . . . . . . . . 19 (𝑔 = (𝑛𝐼 ↦ ((𝑝𝑛)(ball‘((dist‘(𝑅𝑛)) ↾ ((Base‘(𝑅𝑛)) × (Base‘(𝑅𝑛)))))𝑟)) → (((𝑔 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑔𝑘) ∈ ((TopOpen ∘ 𝑅)‘𝑘)) ∧ (𝑝(ball‘𝐷)𝑟) = X𝑘𝐼 (𝑔𝑘)) ↔ (((𝑛𝐼 ↦ ((𝑝𝑛)(ball‘((dist‘(𝑅𝑛)) ↾ ((Base‘(𝑅𝑛)) × (Base‘(𝑅𝑛)))))𝑟)) Fn 𝐼 ∧ ∀𝑘𝐼 ((𝑛𝐼 ↦ ((𝑝𝑛)(ball‘((dist‘(𝑅𝑛)) ↾ ((Base‘(𝑅𝑛)) × (Base‘(𝑅𝑛)))))𝑟))‘𝑘) ∈ ((TopOpen ∘ 𝑅)‘𝑘)) ∧ (𝑝(ball‘𝐷)𝑟) = X𝑘𝐼 ((𝑝𝑘)(ball‘𝐸)𝑟))))
105104spcegv 3581 . . . . . . . . . . . . . . . . . 18 ((𝑛𝐼 ↦ ((𝑝𝑛)(ball‘((dist‘(𝑅𝑛)) ↾ ((Base‘(𝑅𝑛)) × (Base‘(𝑅𝑛)))))𝑟)) ∈ V → ((((𝑛𝐼 ↦ ((𝑝𝑛)(ball‘((dist‘(𝑅𝑛)) ↾ ((Base‘(𝑅𝑛)) × (Base‘(𝑅𝑛)))))𝑟)) Fn 𝐼 ∧ ∀𝑘𝐼 ((𝑛𝐼 ↦ ((𝑝𝑛)(ball‘((dist‘(𝑅𝑛)) ↾ ((Base‘(𝑅𝑛)) × (Base‘(𝑅𝑛)))))𝑟))‘𝑘) ∈ ((TopOpen ∘ 𝑅)‘𝑘)) ∧ (𝑝(ball‘𝐷)𝑟) = X𝑘𝐼 ((𝑝𝑘)(ball‘𝐸)𝑟)) → ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑔𝑘) ∈ ((TopOpen ∘ 𝑅)‘𝑘)) ∧ (𝑝(ball‘𝐷)𝑟) = X𝑘𝐼 (𝑔𝑘))))
1061053impib 1116 . . . . . . . . . . . . . . . . 17 (((𝑛𝐼 ↦ ((𝑝𝑛)(ball‘((dist‘(𝑅𝑛)) ↾ ((Base‘(𝑅𝑛)) × (Base‘(𝑅𝑛)))))𝑟)) ∈ V ∧ ((𝑛𝐼 ↦ ((𝑝𝑛)(ball‘((dist‘(𝑅𝑛)) ↾ ((Base‘(𝑅𝑛)) × (Base‘(𝑅𝑛)))))𝑟)) Fn 𝐼 ∧ ∀𝑘𝐼 ((𝑛𝐼 ↦ ((𝑝𝑛)(ball‘((dist‘(𝑅𝑛)) ↾ ((Base‘(𝑅𝑛)) × (Base‘(𝑅𝑛)))))𝑟))‘𝑘) ∈ ((TopOpen ∘ 𝑅)‘𝑘)) ∧ (𝑝(ball‘𝐷)𝑟) = X𝑘𝐼 ((𝑝𝑘)(ball‘𝐸)𝑟)) → ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑔𝑘) ∈ ((TopOpen ∘ 𝑅)‘𝑘)) ∧ (𝑝(ball‘𝐷)𝑟) = X𝑘𝐼 (𝑔𝑘)))
10726, 31, 77, 95, 106syl121anc 1377 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑝𝐵𝑟 ∈ ℝ*) ∧ 0 < 𝑟) → ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑔𝑘) ∈ ((TopOpen ∘ 𝑅)‘𝑘)) ∧ (𝑝(ball‘𝐷)𝑟) = X𝑘𝐼 (𝑔𝑘)))
1081073expia 1121 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑝𝐵𝑟 ∈ ℝ*)) → (0 < 𝑟 → ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑔𝑘) ∈ ((TopOpen ∘ 𝑅)‘𝑘)) ∧ (𝑝(ball‘𝐷)𝑟) = X𝑘𝐼 (𝑔𝑘))))
10924, 108sylbid 240 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑝𝐵𝑟 ∈ ℝ*)) → ((𝑝(ball‘𝐷)𝑟) ≠ ∅ → ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑔𝑘) ∈ ((TopOpen ∘ 𝑅)‘𝑘)) ∧ (𝑝(ball‘𝐷)𝑟) = X𝑘𝐼 (𝑔𝑘))))
110109adantr 480 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑝𝐵𝑟 ∈ ℝ*)) ∧ 𝑥 = (𝑝(ball‘𝐷)𝑟)) → ((𝑝(ball‘𝐷)𝑟) ≠ ∅ → ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑔𝑘) ∈ ((TopOpen ∘ 𝑅)‘𝑘)) ∧ (𝑝(ball‘𝐷)𝑟) = X𝑘𝐼 (𝑔𝑘))))
111 simpr 484 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑝𝐵𝑟 ∈ ℝ*)) ∧ 𝑥 = (𝑝(ball‘𝐷)𝑟)) → 𝑥 = (𝑝(ball‘𝐷)𝑟))
112111neeq1d 2992 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑝𝐵𝑟 ∈ ℝ*)) ∧ 𝑥 = (𝑝(ball‘𝐷)𝑟)) → (𝑥 ≠ ∅ ↔ (𝑝(ball‘𝐷)𝑟) ≠ ∅))
113 df-3an 1088 . . . . . . . . . . . . . . . 16 ((𝑔 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑔𝑘) ∈ ((TopOpen ∘ 𝑅)‘𝑘) ∧ ∃𝑧 ∈ Fin ∀𝑘 ∈ (𝐼𝑧)(𝑔𝑘) = ((TopOpen ∘ 𝑅)‘𝑘)) ↔ ((𝑔 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑔𝑘) ∈ ((TopOpen ∘ 𝑅)‘𝑘)) ∧ ∃𝑧 ∈ Fin ∀𝑘 ∈ (𝐼𝑧)(𝑔𝑘) = ((TopOpen ∘ 𝑅)‘𝑘)))
114 ral0 4493 . . . . . . . . . . . . . . . . . . 19 𝑘 ∈ ∅ (𝑔𝑘) = ((TopOpen ∘ 𝑅)‘𝑘)
115 difeq2 4100 . . . . . . . . . . . . . . . . . . . . . 22 (𝑧 = 𝐼 → (𝐼𝑧) = (𝐼𝐼))
116 difid 4356 . . . . . . . . . . . . . . . . . . . . . 22 (𝐼𝐼) = ∅
117115, 116eqtrdi 2787 . . . . . . . . . . . . . . . . . . . . 21 (𝑧 = 𝐼 → (𝐼𝑧) = ∅)
118117raleqdv 3309 . . . . . . . . . . . . . . . . . . . 20 (𝑧 = 𝐼 → (∀𝑘 ∈ (𝐼𝑧)(𝑔𝑘) = ((TopOpen ∘ 𝑅)‘𝑘) ↔ ∀𝑘 ∈ ∅ (𝑔𝑘) = ((TopOpen ∘ 𝑅)‘𝑘)))
119118rspcev 3606 . . . . . . . . . . . . . . . . . . 19 ((𝐼 ∈ Fin ∧ ∀𝑘 ∈ ∅ (𝑔𝑘) = ((TopOpen ∘ 𝑅)‘𝑘)) → ∃𝑧 ∈ Fin ∀𝑘 ∈ (𝐼𝑧)(𝑔𝑘) = ((TopOpen ∘ 𝑅)‘𝑘))
1201, 114, 119sylancl 586 . . . . . . . . . . . . . . . . . 18 (𝜑 → ∃𝑧 ∈ Fin ∀𝑘 ∈ (𝐼𝑧)(𝑔𝑘) = ((TopOpen ∘ 𝑅)‘𝑘))
121120adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑝𝐵𝑟 ∈ ℝ*)) → ∃𝑧 ∈ Fin ∀𝑘 ∈ (𝐼𝑧)(𝑔𝑘) = ((TopOpen ∘ 𝑅)‘𝑘))
122121biantrud 531 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑝𝐵𝑟 ∈ ℝ*)) → ((𝑔 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑔𝑘) ∈ ((TopOpen ∘ 𝑅)‘𝑘)) ↔ ((𝑔 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑔𝑘) ∈ ((TopOpen ∘ 𝑅)‘𝑘)) ∧ ∃𝑧 ∈ Fin ∀𝑘 ∈ (𝐼𝑧)(𝑔𝑘) = ((TopOpen ∘ 𝑅)‘𝑘))))
123113, 122bitr4id 290 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑝𝐵𝑟 ∈ ℝ*)) → ((𝑔 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑔𝑘) ∈ ((TopOpen ∘ 𝑅)‘𝑘) ∧ ∃𝑧 ∈ Fin ∀𝑘 ∈ (𝐼𝑧)(𝑔𝑘) = ((TopOpen ∘ 𝑅)‘𝑘)) ↔ (𝑔 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑔𝑘) ∈ ((TopOpen ∘ 𝑅)‘𝑘))))
124 eqeq1 2740 . . . . . . . . . . . . . . 15 (𝑥 = (𝑝(ball‘𝐷)𝑟) → (𝑥 = X𝑘𝐼 (𝑔𝑘) ↔ (𝑝(ball‘𝐷)𝑟) = X𝑘𝐼 (𝑔𝑘)))
125123, 124bi2anan9 638 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑝𝐵𝑟 ∈ ℝ*)) ∧ 𝑥 = (𝑝(ball‘𝐷)𝑟)) → (((𝑔 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑔𝑘) ∈ ((TopOpen ∘ 𝑅)‘𝑘) ∧ ∃𝑧 ∈ Fin ∀𝑘 ∈ (𝐼𝑧)(𝑔𝑘) = ((TopOpen ∘ 𝑅)‘𝑘)) ∧ 𝑥 = X𝑘𝐼 (𝑔𝑘)) ↔ ((𝑔 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑔𝑘) ∈ ((TopOpen ∘ 𝑅)‘𝑘)) ∧ (𝑝(ball‘𝐷)𝑟) = X𝑘𝐼 (𝑔𝑘))))
126125exbidv 1921 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑝𝐵𝑟 ∈ ℝ*)) ∧ 𝑥 = (𝑝(ball‘𝐷)𝑟)) → (∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑔𝑘) ∈ ((TopOpen ∘ 𝑅)‘𝑘) ∧ ∃𝑧 ∈ Fin ∀𝑘 ∈ (𝐼𝑧)(𝑔𝑘) = ((TopOpen ∘ 𝑅)‘𝑘)) ∧ 𝑥 = X𝑘𝐼 (𝑔𝑘)) ↔ ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑔𝑘) ∈ ((TopOpen ∘ 𝑅)‘𝑘)) ∧ (𝑝(ball‘𝐷)𝑟) = X𝑘𝐼 (𝑔𝑘))))
127110, 112, 1263imtr4d 294 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑝𝐵𝑟 ∈ ℝ*)) ∧ 𝑥 = (𝑝(ball‘𝐷)𝑟)) → (𝑥 ≠ ∅ → ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑔𝑘) ∈ ((TopOpen ∘ 𝑅)‘𝑘) ∧ ∃𝑧 ∈ Fin ∀𝑘 ∈ (𝐼𝑧)(𝑔𝑘) = ((TopOpen ∘ 𝑅)‘𝑘)) ∧ 𝑥 = X𝑘𝐼 (𝑔𝑘))))
128127ex 412 . . . . . . . . . . 11 ((𝜑 ∧ (𝑝𝐵𝑟 ∈ ℝ*)) → (𝑥 = (𝑝(ball‘𝐷)𝑟) → (𝑥 ≠ ∅ → ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑔𝑘) ∈ ((TopOpen ∘ 𝑅)‘𝑘) ∧ ∃𝑧 ∈ Fin ∀𝑘 ∈ (𝐼𝑧)(𝑔𝑘) = ((TopOpen ∘ 𝑅)‘𝑘)) ∧ 𝑥 = X𝑘𝐼 (𝑔𝑘)))))
129128rexlimdvva 3202 . . . . . . . . . 10 (𝜑 → (∃𝑝𝐵𝑟 ∈ ℝ* 𝑥 = (𝑝(ball‘𝐷)𝑟) → (𝑥 ≠ ∅ → ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑔𝑘) ∈ ((TopOpen ∘ 𝑅)‘𝑘) ∧ ∃𝑧 ∈ Fin ∀𝑘 ∈ (𝐼𝑧)(𝑔𝑘) = ((TopOpen ∘ 𝑅)‘𝑘)) ∧ 𝑥 = X𝑘𝐼 (𝑔𝑘)))))
13019, 129sylbid 240 . . . . . . . . 9 (𝜑 → (𝑥 ∈ ran (ball‘𝐷) → (𝑥 ≠ ∅ → ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑔𝑘) ∈ ((TopOpen ∘ 𝑅)‘𝑘) ∧ ∃𝑧 ∈ Fin ∀𝑘 ∈ (𝐼𝑧)(𝑔𝑘) = ((TopOpen ∘ 𝑅)‘𝑘)) ∧ 𝑥 = X𝑘𝐼 (𝑔𝑘)))))
131130impd 410 . . . . . . . 8 (𝜑 → ((𝑥 ∈ ran (ball‘𝐷) ∧ 𝑥 ≠ ∅) → ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑔𝑘) ∈ ((TopOpen ∘ 𝑅)‘𝑘) ∧ ∃𝑧 ∈ Fin ∀𝑘 ∈ (𝐼𝑧)(𝑔𝑘) = ((TopOpen ∘ 𝑅)‘𝑘)) ∧ 𝑥 = X𝑘𝐼 (𝑔𝑘))))
13212, 131biimtrid 242 . . . . . . 7 (𝜑 → (𝑥 ∈ (ran (ball‘𝐷) ∖ {∅}) → ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑔𝑘) ∈ ((TopOpen ∘ 𝑅)‘𝑘) ∧ ∃𝑧 ∈ Fin ∀𝑘 ∈ (𝐼𝑧)(𝑔𝑘) = ((TopOpen ∘ 𝑅)‘𝑘)) ∧ 𝑥 = X𝑘𝐼 (𝑔𝑘))))
133132alrimiv 1927 . . . . . 6 (𝜑 → ∀𝑥(𝑥 ∈ (ran (ball‘𝐷) ∖ {∅}) → ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑔𝑘) ∈ ((TopOpen ∘ 𝑅)‘𝑘) ∧ ∃𝑧 ∈ Fin ∀𝑘 ∈ (𝐼𝑧)(𝑔𝑘) = ((TopOpen ∘ 𝑅)‘𝑘)) ∧ 𝑥 = X𝑘𝐼 (𝑔𝑘))))
134 ssab 4044 . . . . . 6 ((ran (ball‘𝐷) ∖ {∅}) ⊆ {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑔𝑘) ∈ ((TopOpen ∘ 𝑅)‘𝑘) ∧ ∃𝑧 ∈ Fin ∀𝑘 ∈ (𝐼𝑧)(𝑔𝑘) = ((TopOpen ∘ 𝑅)‘𝑘)) ∧ 𝑥 = X𝑘𝐼 (𝑔𝑘))} ↔ ∀𝑥(𝑥 ∈ (ran (ball‘𝐷) ∖ {∅}) → ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑔𝑘) ∈ ((TopOpen ∘ 𝑅)‘𝑘) ∧ ∃𝑧 ∈ Fin ∀𝑘 ∈ (𝐼𝑧)(𝑔𝑘) = ((TopOpen ∘ 𝑅)‘𝑘)) ∧ 𝑥 = X𝑘𝐼 (𝑔𝑘))))
135133, 134sylibr 234 . . . . 5 (𝜑 → (ran (ball‘𝐷) ∖ {∅}) ⊆ {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑔𝑘) ∈ ((TopOpen ∘ 𝑅)‘𝑘) ∧ ∃𝑧 ∈ Fin ∀𝑘 ∈ (𝐼𝑧)(𝑔𝑘) = ((TopOpen ∘ 𝑅)‘𝑘)) ∧ 𝑥 = X𝑘𝐼 (𝑔𝑘))})
136135, 9sseqtrrdi 4005 . . . 4 (𝜑 → (ran (ball‘𝐷) ∖ {∅}) ⊆ 𝐶)
137 ssv 3988 . . . . . . . . . 10 ∞MetSp ⊆ V
138 fnssres 6666 . . . . . . . . . 10 ((TopOpen Fn V ∧ ∞MetSp ⊆ V) → (TopOpen ↾ ∞MetSp) Fn ∞MetSp)
1392, 137, 138mp2an 692 . . . . . . . . 9 (TopOpen ↾ ∞MetSp) Fn ∞MetSp
140 fvres 6900 . . . . . . . . . . 11 (𝑥 ∈ ∞MetSp → ((TopOpen ↾ ∞MetSp)‘𝑥) = (TopOpen‘𝑥))
141 xmstps 24397 . . . . . . . . . . . 12 (𝑥 ∈ ∞MetSp → 𝑥 ∈ TopSp)
142 eqid 2736 . . . . . . . . . . . . 13 (TopOpen‘𝑥) = (TopOpen‘𝑥)
143142tpstop 22880 . . . . . . . . . . . 12 (𝑥 ∈ TopSp → (TopOpen‘𝑥) ∈ Top)
144141, 143syl 17 . . . . . . . . . . 11 (𝑥 ∈ ∞MetSp → (TopOpen‘𝑥) ∈ Top)
145140, 144eqeltrd 2835 . . . . . . . . . 10 (𝑥 ∈ ∞MetSp → ((TopOpen ↾ ∞MetSp)‘𝑥) ∈ Top)
146145rgen 3054 . . . . . . . . 9 𝑥 ∈ ∞MetSp ((TopOpen ↾ ∞MetSp)‘𝑥) ∈ Top
147 ffnfv 7114 . . . . . . . . 9 ((TopOpen ↾ ∞MetSp):∞MetSp⟶Top ↔ ((TopOpen ↾ ∞MetSp) Fn ∞MetSp ∧ ∀𝑥 ∈ ∞MetSp ((TopOpen ↾ ∞MetSp)‘𝑥) ∈ Top))
148139, 146, 147mpbir2an 711 . . . . . . . 8 (TopOpen ↾ ∞MetSp):∞MetSp⟶Top
149 fco2 6737 . . . . . . . 8 (((TopOpen ↾ ∞MetSp):∞MetSp⟶Top ∧ 𝑅:𝐼⟶∞MetSp) → (TopOpen ∘ 𝑅):𝐼⟶Top)
150148, 3, 149sylancr 587 . . . . . . 7 (𝜑 → (TopOpen ∘ 𝑅):𝐼⟶Top)
151 eqid 2736 . . . . . . . 8 X𝑛𝐼 ((TopOpen ∘ 𝑅)‘𝑛) = X𝑛𝐼 ((TopOpen ∘ 𝑅)‘𝑛)
1529, 151ptbasfi 23524 . . . . . . 7 ((𝐼 ∈ Fin ∧ (TopOpen ∘ 𝑅):𝐼⟶Top) → 𝐶 = (fi‘({X𝑛𝐼 ((TopOpen ∘ 𝑅)‘𝑛)} ∪ ran (𝑚𝐼, 𝑢 ∈ ((TopOpen ∘ 𝑅)‘𝑚) ↦ ((𝑤X𝑛𝐼 ((TopOpen ∘ 𝑅)‘𝑛) ↦ (𝑤𝑚)) “ 𝑢)))))
1531, 150, 152syl2anc 584 . . . . . 6 (𝜑𝐶 = (fi‘({X𝑛𝐼 ((TopOpen ∘ 𝑅)‘𝑛)} ∪ ran (𝑚𝐼, 𝑢 ∈ ((TopOpen ∘ 𝑅)‘𝑚) ↦ ((𝑤X𝑛𝐼 ((TopOpen ∘ 𝑅)‘𝑛) ↦ (𝑤𝑚)) “ 𝑢)))))
154 eqid 2736 . . . . . . . . 9 (MetOpen‘𝐷) = (MetOpen‘𝐷)
155154mopntop 24384 . . . . . . . 8 (𝐷 ∈ (∞Met‘𝐵) → (MetOpen‘𝐷) ∈ Top)
15617, 155syl 17 . . . . . . 7 (𝜑 → (MetOpen‘𝐷) ∈ Top)
15713, 16, 14, 1, 4prdsbas2 17488 . . . . . . . . . . . 12 (𝜑𝐵 = X𝑘𝐼 (Base‘(𝑅𝑘)))
1583, 71sylan 580 . . . . . . . . . . . . . . . 16 ((𝜑𝑘𝐼) → ((TopOpen ∘ 𝑅)‘𝑘) = 𝐾)
1593ffvelcdmda 7079 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘𝐼) → (𝑅𝑘) ∈ ∞MetSp)
160 xmstps 24397 . . . . . . . . . . . . . . . . . 18 ((𝑅𝑘) ∈ ∞MetSp → (𝑅𝑘) ∈ TopSp)
161159, 160syl 17 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘𝐼) → (𝑅𝑘) ∈ TopSp)
16234, 70istps 22877 . . . . . . . . . . . . . . . . 17 ((𝑅𝑘) ∈ TopSp ↔ 𝐾 ∈ (TopOn‘𝑉))
163161, 162sylib 218 . . . . . . . . . . . . . . . 16 ((𝜑𝑘𝐼) → 𝐾 ∈ (TopOn‘𝑉))
164158, 163eqeltrd 2835 . . . . . . . . . . . . . . 15 ((𝜑𝑘𝐼) → ((TopOpen ∘ 𝑅)‘𝑘) ∈ (TopOn‘𝑉))
165 toponuni 22857 . . . . . . . . . . . . . . 15 (((TopOpen ∘ 𝑅)‘𝑘) ∈ (TopOn‘𝑉) → 𝑉 = ((TopOpen ∘ 𝑅)‘𝑘))
166164, 165syl 17 . . . . . . . . . . . . . 14 ((𝜑𝑘𝐼) → 𝑉 = ((TopOpen ∘ 𝑅)‘𝑘))
16734, 166eqtr3id 2785 . . . . . . . . . . . . 13 ((𝜑𝑘𝐼) → (Base‘(𝑅𝑘)) = ((TopOpen ∘ 𝑅)‘𝑘))
168167ixpeq2dva 8931 . . . . . . . . . . . 12 (𝜑X𝑘𝐼 (Base‘(𝑅𝑘)) = X𝑘𝐼 ((TopOpen ∘ 𝑅)‘𝑘))
169157, 168eqtrd 2771 . . . . . . . . . . 11 (𝜑𝐵 = X𝑘𝐼 ((TopOpen ∘ 𝑅)‘𝑘))
170 fveq2 6881 . . . . . . . . . . . . 13 (𝑘 = 𝑛 → ((TopOpen ∘ 𝑅)‘𝑘) = ((TopOpen ∘ 𝑅)‘𝑛))
171170unieqd 4901 . . . . . . . . . . . 12 (𝑘 = 𝑛 ((TopOpen ∘ 𝑅)‘𝑘) = ((TopOpen ∘ 𝑅)‘𝑛))
172171cbvixpv 8934 . . . . . . . . . . 11 X𝑘𝐼 ((TopOpen ∘ 𝑅)‘𝑘) = X𝑛𝐼 ((TopOpen ∘ 𝑅)‘𝑛)
173169, 172eqtrdi 2787 . . . . . . . . . 10 (𝜑𝐵 = X𝑛𝐼 ((TopOpen ∘ 𝑅)‘𝑛))
174154mopntopon 24383 . . . . . . . . . . . 12 (𝐷 ∈ (∞Met‘𝐵) → (MetOpen‘𝐷) ∈ (TopOn‘𝐵))
17517, 174syl 17 . . . . . . . . . . 11 (𝜑 → (MetOpen‘𝐷) ∈ (TopOn‘𝐵))
176 toponmax 22869 . . . . . . . . . . 11 ((MetOpen‘𝐷) ∈ (TopOn‘𝐵) → 𝐵 ∈ (MetOpen‘𝐷))
177175, 176syl 17 . . . . . . . . . 10 (𝜑𝐵 ∈ (MetOpen‘𝐷))
178173, 177eqeltrrd 2836 . . . . . . . . 9 (𝜑X𝑛𝐼 ((TopOpen ∘ 𝑅)‘𝑛) ∈ (MetOpen‘𝐷))
179178snssd 4790 . . . . . . . 8 (𝜑 → {X𝑛𝐼 ((TopOpen ∘ 𝑅)‘𝑛)} ⊆ (MetOpen‘𝐷))
180173mpteq1d 5215 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑤𝐵 ↦ (𝑤𝑘)) = (𝑤X𝑛𝐼 ((TopOpen ∘ 𝑅)‘𝑛) ↦ (𝑤𝑘)))
181180ad2antrr 726 . . . . . . . . . . . . . . . . 17 (((𝜑𝑘𝐼) ∧ 𝑢𝐾) → (𝑤𝐵 ↦ (𝑤𝑘)) = (𝑤X𝑛𝐼 ((TopOpen ∘ 𝑅)‘𝑛) ↦ (𝑤𝑘)))
182181cnveqd 5860 . . . . . . . . . . . . . . . 16 (((𝜑𝑘𝐼) ∧ 𝑢𝐾) → (𝑤𝐵 ↦ (𝑤𝑘)) = (𝑤X𝑛𝐼 ((TopOpen ∘ 𝑅)‘𝑛) ↦ (𝑤𝑘)))
183182imaeq1d 6051 . . . . . . . . . . . . . . 15 (((𝜑𝑘𝐼) ∧ 𝑢𝐾) → ((𝑤𝐵 ↦ (𝑤𝑘)) “ 𝑢) = ((𝑤X𝑛𝐼 ((TopOpen ∘ 𝑅)‘𝑛) ↦ (𝑤𝑘)) “ 𝑢))
184 fveq1 6880 . . . . . . . . . . . . . . . . . . . 20 (𝑤 = 𝑝 → (𝑤𝑘) = (𝑝𝑘))
185184eleq1d 2820 . . . . . . . . . . . . . . . . . . 19 (𝑤 = 𝑝 → ((𝑤𝑘) ∈ 𝑢 ↔ (𝑝𝑘) ∈ 𝑢))
186 eqid 2736 . . . . . . . . . . . . . . . . . . . 20 (𝑤𝐵 ↦ (𝑤𝑘)) = (𝑤𝐵 ↦ (𝑤𝑘))
187186mptpreima 6232 . . . . . . . . . . . . . . . . . . 19 ((𝑤𝐵 ↦ (𝑤𝑘)) “ 𝑢) = {𝑤𝐵 ∣ (𝑤𝑘) ∈ 𝑢}
188185, 187elrab2 3679 . . . . . . . . . . . . . . . . . 18 (𝑝 ∈ ((𝑤𝐵 ↦ (𝑤𝑘)) “ 𝑢) ↔ (𝑝𝐵 ∧ (𝑝𝑘) ∈ 𝑢))
189159, 36syl 17 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑘𝐼) → 𝐸 ∈ (∞Met‘𝑉))
190189adantr 480 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑘𝐼) ∧ (𝑢𝐾 ∧ (𝑝𝐵 ∧ (𝑝𝑘) ∈ 𝑢))) → 𝐸 ∈ (∞Met‘𝑉))
191 simprl 770 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑘𝐼) ∧ (𝑢𝐾 ∧ (𝑝𝐵 ∧ (𝑝𝑘) ∈ 𝑢))) → 𝑢𝐾)
192159, 73syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑘𝐼) → 𝐾 = (MetOpen‘𝐸))
193192adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑘𝐼) ∧ (𝑢𝐾 ∧ (𝑝𝐵 ∧ (𝑝𝑘) ∈ 𝑢))) → 𝐾 = (MetOpen‘𝐸))
194191, 193eleqtrd 2837 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑘𝐼) ∧ (𝑢𝐾 ∧ (𝑝𝐵 ∧ (𝑝𝑘) ∈ 𝑢))) → 𝑢 ∈ (MetOpen‘𝐸))
195 simprrr 781 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑘𝐼) ∧ (𝑢𝐾 ∧ (𝑝𝐵 ∧ (𝑝𝑘) ∈ 𝑢))) → (𝑝𝑘) ∈ 𝑢)
19653mopni2 24437 . . . . . . . . . . . . . . . . . . . . 21 ((𝐸 ∈ (∞Met‘𝑉) ∧ 𝑢 ∈ (MetOpen‘𝐸) ∧ (𝑝𝑘) ∈ 𝑢) → ∃𝑟 ∈ ℝ+ ((𝑝𝑘)(ball‘𝐸)𝑟) ⊆ 𝑢)
197190, 194, 195, 196syl3anc 1373 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑘𝐼) ∧ (𝑢𝐾 ∧ (𝑝𝐵 ∧ (𝑝𝑘) ∈ 𝑢))) → ∃𝑟 ∈ ℝ+ ((𝑝𝑘)(ball‘𝐸)𝑟) ⊆ 𝑢)
19817ad3antrrr 730 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑘𝐼) ∧ (𝑢𝐾 ∧ (𝑝𝐵 ∧ (𝑝𝑘) ∈ 𝑢))) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑝𝑘)(ball‘𝐸)𝑟) ⊆ 𝑢)) → 𝐷 ∈ (∞Met‘𝐵))
199 simprrl 780 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑘𝐼) ∧ (𝑢𝐾 ∧ (𝑝𝐵 ∧ (𝑝𝑘) ∈ 𝑢))) → 𝑝𝐵)
200199adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑘𝐼) ∧ (𝑢𝐾 ∧ (𝑝𝐵 ∧ (𝑝𝑘) ∈ 𝑢))) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑝𝑘)(ball‘𝐸)𝑟) ⊆ 𝑢)) → 𝑝𝐵)
201 rpxr 13023 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑟 ∈ ℝ+𝑟 ∈ ℝ*)
202201ad2antrl 728 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑘𝐼) ∧ (𝑢𝐾 ∧ (𝑝𝐵 ∧ (𝑝𝑘) ∈ 𝑢))) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑝𝑘)(ball‘𝐸)𝑟) ⊆ 𝑢)) → 𝑟 ∈ ℝ*)
203154blopn 24444 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐷 ∈ (∞Met‘𝐵) ∧ 𝑝𝐵𝑟 ∈ ℝ*) → (𝑝(ball‘𝐷)𝑟) ∈ (MetOpen‘𝐷))
204198, 200, 202, 203syl3anc 1373 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑘𝐼) ∧ (𝑢𝐾 ∧ (𝑝𝐵 ∧ (𝑝𝑘) ∈ 𝑢))) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑝𝑘)(ball‘𝐸)𝑟) ⊆ 𝑢)) → (𝑝(ball‘𝐷)𝑟) ∈ (MetOpen‘𝐷))
205 simprl 770 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑘𝐼) ∧ (𝑢𝐾 ∧ (𝑝𝐵 ∧ (𝑝𝑘) ∈ 𝑢))) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑝𝑘)(ball‘𝐸)𝑟) ⊆ 𝑢)) → 𝑟 ∈ ℝ+)
206 blcntr 24357 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐷 ∈ (∞Met‘𝐵) ∧ 𝑝𝐵𝑟 ∈ ℝ+) → 𝑝 ∈ (𝑝(ball‘𝐷)𝑟))
207198, 200, 205, 206syl3anc 1373 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑘𝐼) ∧ (𝑢𝐾 ∧ (𝑝𝐵 ∧ (𝑝𝑘) ∈ 𝑢))) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑝𝑘)(ball‘𝐸)𝑟) ⊆ 𝑢)) → 𝑝 ∈ (𝑝(ball‘𝐷)𝑟))
208 blssm 24362 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐷 ∈ (∞Met‘𝐵) ∧ 𝑝𝐵𝑟 ∈ ℝ*) → (𝑝(ball‘𝐷)𝑟) ⊆ 𝐵)
209198, 200, 202, 208syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑘𝐼) ∧ (𝑢𝐾 ∧ (𝑝𝐵 ∧ (𝑝𝑘) ∈ 𝑢))) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑝𝑘)(ball‘𝐸)𝑟) ⊆ 𝑢)) → (𝑝(ball‘𝐷)𝑟) ⊆ 𝐵)
210 simplrr 777 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝜑𝑘𝐼) ∧ (𝑢𝐾 ∧ (𝑝𝐵 ∧ (𝑝𝑘) ∈ 𝑢))) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑝𝑘)(ball‘𝐸)𝑟) ⊆ 𝑢)) ∧ 𝑤 ∈ (𝑝(ball‘𝐷)𝑟)) → ((𝑝𝑘)(ball‘𝐸)𝑟) ⊆ 𝑢)
211 simplll 774 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝜑𝑘𝐼) ∧ (𝑢𝐾 ∧ (𝑝𝐵 ∧ (𝑝𝑘) ∈ 𝑢))) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑝𝑘)(ball‘𝐸)𝑟) ⊆ 𝑢)) → 𝜑)
212 rpgt0 13026 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑟 ∈ ℝ+ → 0 < 𝑟)
213212ad2antrl 728 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝜑𝑘𝐼) ∧ (𝑢𝐾 ∧ (𝑝𝐵 ∧ (𝑝𝑘) ∈ 𝑢))) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑝𝑘)(ball‘𝐸)𝑟) ⊆ 𝑢)) → 0 < 𝑟)
214211, 200, 202, 213, 95syl121anc 1377 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑𝑘𝐼) ∧ (𝑢𝐾 ∧ (𝑝𝐵 ∧ (𝑝𝑘) ∈ 𝑢))) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑝𝑘)(ball‘𝐸)𝑟) ⊆ 𝑢)) → (𝑝(ball‘𝐷)𝑟) = X𝑘𝐼 ((𝑝𝑘)(ball‘𝐸)𝑟))
215214eleq2d 2821 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑘𝐼) ∧ (𝑢𝐾 ∧ (𝑝𝐵 ∧ (𝑝𝑘) ∈ 𝑢))) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑝𝑘)(ball‘𝐸)𝑟) ⊆ 𝑢)) → (𝑤 ∈ (𝑝(ball‘𝐷)𝑟) ↔ 𝑤X𝑘𝐼 ((𝑝𝑘)(ball‘𝐸)𝑟)))
216215biimpa 476 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝜑𝑘𝐼) ∧ (𝑢𝐾 ∧ (𝑝𝐵 ∧ (𝑝𝑘) ∈ 𝑢))) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑝𝑘)(ball‘𝐸)𝑟) ⊆ 𝑢)) ∧ 𝑤 ∈ (𝑝(ball‘𝐷)𝑟)) → 𝑤X𝑘𝐼 ((𝑝𝑘)(ball‘𝐸)𝑟))
217 vex 3468 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 𝑤 ∈ V
218217elixp 8923 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑤X𝑘𝐼 ((𝑝𝑘)(ball‘𝐸)𝑟) ↔ (𝑤 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑤𝑘) ∈ ((𝑝𝑘)(ball‘𝐸)𝑟)))
219218simprbi 496 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑤X𝑘𝐼 ((𝑝𝑘)(ball‘𝐸)𝑟) → ∀𝑘𝐼 (𝑤𝑘) ∈ ((𝑝𝑘)(ball‘𝐸)𝑟))
220216, 219syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝜑𝑘𝐼) ∧ (𝑢𝐾 ∧ (𝑝𝐵 ∧ (𝑝𝑘) ∈ 𝑢))) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑝𝑘)(ball‘𝐸)𝑟) ⊆ 𝑢)) ∧ 𝑤 ∈ (𝑝(ball‘𝐷)𝑟)) → ∀𝑘𝐼 (𝑤𝑘) ∈ ((𝑝𝑘)(ball‘𝐸)𝑟))
221 simp-4r 783 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝜑𝑘𝐼) ∧ (𝑢𝐾 ∧ (𝑝𝐵 ∧ (𝑝𝑘) ∈ 𝑢))) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑝𝑘)(ball‘𝐸)𝑟) ⊆ 𝑢)) ∧ 𝑤 ∈ (𝑝(ball‘𝐷)𝑟)) → 𝑘𝐼)
222 rsp 3234 . . . . . . . . . . . . . . . . . . . . . . . . 25 (∀𝑘𝐼 (𝑤𝑘) ∈ ((𝑝𝑘)(ball‘𝐸)𝑟) → (𝑘𝐼 → (𝑤𝑘) ∈ ((𝑝𝑘)(ball‘𝐸)𝑟)))
223220, 221, 222sylc 65 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝜑𝑘𝐼) ∧ (𝑢𝐾 ∧ (𝑝𝐵 ∧ (𝑝𝑘) ∈ 𝑢))) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑝𝑘)(ball‘𝐸)𝑟) ⊆ 𝑢)) ∧ 𝑤 ∈ (𝑝(ball‘𝐷)𝑟)) → (𝑤𝑘) ∈ ((𝑝𝑘)(ball‘𝐸)𝑟))
224210, 223sseldd 3964 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑𝑘𝐼) ∧ (𝑢𝐾 ∧ (𝑝𝐵 ∧ (𝑝𝑘) ∈ 𝑢))) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑝𝑘)(ball‘𝐸)𝑟) ⊆ 𝑢)) ∧ 𝑤 ∈ (𝑝(ball‘𝐷)𝑟)) → (𝑤𝑘) ∈ 𝑢)
225209, 224ssrabdv 4054 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑘𝐼) ∧ (𝑢𝐾 ∧ (𝑝𝐵 ∧ (𝑝𝑘) ∈ 𝑢))) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑝𝑘)(ball‘𝐸)𝑟) ⊆ 𝑢)) → (𝑝(ball‘𝐷)𝑟) ⊆ {𝑤𝐵 ∣ (𝑤𝑘) ∈ 𝑢})
226225, 187sseqtrrdi 4005 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑘𝐼) ∧ (𝑢𝐾 ∧ (𝑝𝐵 ∧ (𝑝𝑘) ∈ 𝑢))) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑝𝑘)(ball‘𝐸)𝑟) ⊆ 𝑢)) → (𝑝(ball‘𝐷)𝑟) ⊆ ((𝑤𝐵 ↦ (𝑤𝑘)) “ 𝑢))
227 eleq2 2824 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦 = (𝑝(ball‘𝐷)𝑟) → (𝑝𝑦𝑝 ∈ (𝑝(ball‘𝐷)𝑟)))
228 sseq1 3989 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦 = (𝑝(ball‘𝐷)𝑟) → (𝑦 ⊆ ((𝑤𝐵 ↦ (𝑤𝑘)) “ 𝑢) ↔ (𝑝(ball‘𝐷)𝑟) ⊆ ((𝑤𝐵 ↦ (𝑤𝑘)) “ 𝑢)))
229227, 228anbi12d 632 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 = (𝑝(ball‘𝐷)𝑟) → ((𝑝𝑦𝑦 ⊆ ((𝑤𝐵 ↦ (𝑤𝑘)) “ 𝑢)) ↔ (𝑝 ∈ (𝑝(ball‘𝐷)𝑟) ∧ (𝑝(ball‘𝐷)𝑟) ⊆ ((𝑤𝐵 ↦ (𝑤𝑘)) “ 𝑢))))
230229rspcev 3606 . . . . . . . . . . . . . . . . . . . . 21 (((𝑝(ball‘𝐷)𝑟) ∈ (MetOpen‘𝐷) ∧ (𝑝 ∈ (𝑝(ball‘𝐷)𝑟) ∧ (𝑝(ball‘𝐷)𝑟) ⊆ ((𝑤𝐵 ↦ (𝑤𝑘)) “ 𝑢))) → ∃𝑦 ∈ (MetOpen‘𝐷)(𝑝𝑦𝑦 ⊆ ((𝑤𝐵 ↦ (𝑤𝑘)) “ 𝑢)))
231204, 207, 226, 230syl12anc 836 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑘𝐼) ∧ (𝑢𝐾 ∧ (𝑝𝐵 ∧ (𝑝𝑘) ∈ 𝑢))) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑝𝑘)(ball‘𝐸)𝑟) ⊆ 𝑢)) → ∃𝑦 ∈ (MetOpen‘𝐷)(𝑝𝑦𝑦 ⊆ ((𝑤𝐵 ↦ (𝑤𝑘)) “ 𝑢)))
232197, 231rexlimddv 3148 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑘𝐼) ∧ (𝑢𝐾 ∧ (𝑝𝐵 ∧ (𝑝𝑘) ∈ 𝑢))) → ∃𝑦 ∈ (MetOpen‘𝐷)(𝑝𝑦𝑦 ⊆ ((𝑤𝐵 ↦ (𝑤𝑘)) “ 𝑢)))
233232expr 456 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑘𝐼) ∧ 𝑢𝐾) → ((𝑝𝐵 ∧ (𝑝𝑘) ∈ 𝑢) → ∃𝑦 ∈ (MetOpen‘𝐷)(𝑝𝑦𝑦 ⊆ ((𝑤𝐵 ↦ (𝑤𝑘)) “ 𝑢))))
234188, 233biimtrid 242 . . . . . . . . . . . . . . . . 17 (((𝜑𝑘𝐼) ∧ 𝑢𝐾) → (𝑝 ∈ ((𝑤𝐵 ↦ (𝑤𝑘)) “ 𝑢) → ∃𝑦 ∈ (MetOpen‘𝐷)(𝑝𝑦𝑦 ⊆ ((𝑤𝐵 ↦ (𝑤𝑘)) “ 𝑢))))
235234ralrimiv 3132 . . . . . . . . . . . . . . . 16 (((𝜑𝑘𝐼) ∧ 𝑢𝐾) → ∀𝑝 ∈ ((𝑤𝐵 ↦ (𝑤𝑘)) “ 𝑢)∃𝑦 ∈ (MetOpen‘𝐷)(𝑝𝑦𝑦 ⊆ ((𝑤𝐵 ↦ (𝑤𝑘)) “ 𝑢)))
236156ad2antrr 726 . . . . . . . . . . . . . . . . 17 (((𝜑𝑘𝐼) ∧ 𝑢𝐾) → (MetOpen‘𝐷) ∈ Top)
237 eltop2 22918 . . . . . . . . . . . . . . . . 17 ((MetOpen‘𝐷) ∈ Top → (((𝑤𝐵 ↦ (𝑤𝑘)) “ 𝑢) ∈ (MetOpen‘𝐷) ↔ ∀𝑝 ∈ ((𝑤𝐵 ↦ (𝑤𝑘)) “ 𝑢)∃𝑦 ∈ (MetOpen‘𝐷)(𝑝𝑦𝑦 ⊆ ((𝑤𝐵 ↦ (𝑤𝑘)) “ 𝑢))))
238236, 237syl 17 . . . . . . . . . . . . . . . 16 (((𝜑𝑘𝐼) ∧ 𝑢𝐾) → (((𝑤𝐵 ↦ (𝑤𝑘)) “ 𝑢) ∈ (MetOpen‘𝐷) ↔ ∀𝑝 ∈ ((𝑤𝐵 ↦ (𝑤𝑘)) “ 𝑢)∃𝑦 ∈ (MetOpen‘𝐷)(𝑝𝑦𝑦 ⊆ ((𝑤𝐵 ↦ (𝑤𝑘)) “ 𝑢))))
239235, 238mpbird 257 . . . . . . . . . . . . . . 15 (((𝜑𝑘𝐼) ∧ 𝑢𝐾) → ((𝑤𝐵 ↦ (𝑤𝑘)) “ 𝑢) ∈ (MetOpen‘𝐷))
240183, 239eqeltrrd 2836 . . . . . . . . . . . . . 14 (((𝜑𝑘𝐼) ∧ 𝑢𝐾) → ((𝑤X𝑛𝐼 ((TopOpen ∘ 𝑅)‘𝑛) ↦ (𝑤𝑘)) “ 𝑢) ∈ (MetOpen‘𝐷))
241240ralrimiva 3133 . . . . . . . . . . . . 13 ((𝜑𝑘𝐼) → ∀𝑢𝐾 ((𝑤X𝑛𝐼 ((TopOpen ∘ 𝑅)‘𝑛) ↦ (𝑤𝑘)) “ 𝑢) ∈ (MetOpen‘𝐷))
242241, 158raleqtrrdv 3313 . . . . . . . . . . . 12 ((𝜑𝑘𝐼) → ∀𝑢 ∈ ((TopOpen ∘ 𝑅)‘𝑘)((𝑤X𝑛𝐼 ((TopOpen ∘ 𝑅)‘𝑛) ↦ (𝑤𝑘)) “ 𝑢) ∈ (MetOpen‘𝐷))
243242ralrimiva 3133 . . . . . . . . . . 11 (𝜑 → ∀𝑘𝐼𝑢 ∈ ((TopOpen ∘ 𝑅)‘𝑘)((𝑤X𝑛𝐼 ((TopOpen ∘ 𝑅)‘𝑛) ↦ (𝑤𝑘)) “ 𝑢) ∈ (MetOpen‘𝐷))
244 fveq2 6881 . . . . . . . . . . . . 13 (𝑘 = 𝑚 → ((TopOpen ∘ 𝑅)‘𝑘) = ((TopOpen ∘ 𝑅)‘𝑚))
245 fveq2 6881 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑚 → (𝑤𝑘) = (𝑤𝑚))
246245mpteq2dv 5220 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑚 → (𝑤X𝑛𝐼 ((TopOpen ∘ 𝑅)‘𝑛) ↦ (𝑤𝑘)) = (𝑤X𝑛𝐼 ((TopOpen ∘ 𝑅)‘𝑛) ↦ (𝑤𝑚)))
247246cnveqd 5860 . . . . . . . . . . . . . . 15 (𝑘 = 𝑚(𝑤X𝑛𝐼 ((TopOpen ∘ 𝑅)‘𝑛) ↦ (𝑤𝑘)) = (𝑤X𝑛𝐼 ((TopOpen ∘ 𝑅)‘𝑛) ↦ (𝑤𝑚)))
248247imaeq1d 6051 . . . . . . . . . . . . . 14 (𝑘 = 𝑚 → ((𝑤X𝑛𝐼 ((TopOpen ∘ 𝑅)‘𝑛) ↦ (𝑤𝑘)) “ 𝑢) = ((𝑤X𝑛𝐼 ((TopOpen ∘ 𝑅)‘𝑛) ↦ (𝑤𝑚)) “ 𝑢))
249248eleq1d 2820 . . . . . . . . . . . . 13 (𝑘 = 𝑚 → (((𝑤X𝑛𝐼 ((TopOpen ∘ 𝑅)‘𝑛) ↦ (𝑤𝑘)) “ 𝑢) ∈ (MetOpen‘𝐷) ↔ ((𝑤X𝑛𝐼 ((TopOpen ∘ 𝑅)‘𝑛) ↦ (𝑤𝑚)) “ 𝑢) ∈ (MetOpen‘𝐷)))
250244, 249raleqbidv 3329 . . . . . . . . . . . 12 (𝑘 = 𝑚 → (∀𝑢 ∈ ((TopOpen ∘ 𝑅)‘𝑘)((𝑤X𝑛𝐼 ((TopOpen ∘ 𝑅)‘𝑛) ↦ (𝑤𝑘)) “ 𝑢) ∈ (MetOpen‘𝐷) ↔ ∀𝑢 ∈ ((TopOpen ∘ 𝑅)‘𝑚)((𝑤X𝑛𝐼 ((TopOpen ∘ 𝑅)‘𝑛) ↦ (𝑤𝑚)) “ 𝑢) ∈ (MetOpen‘𝐷)))
251250cbvralvw 3224 . . . . . . . . . . 11 (∀𝑘𝐼𝑢 ∈ ((TopOpen ∘ 𝑅)‘𝑘)((𝑤X𝑛𝐼 ((TopOpen ∘ 𝑅)‘𝑛) ↦ (𝑤𝑘)) “ 𝑢) ∈ (MetOpen‘𝐷) ↔ ∀𝑚𝐼𝑢 ∈ ((TopOpen ∘ 𝑅)‘𝑚)((𝑤X𝑛𝐼 ((TopOpen ∘ 𝑅)‘𝑛) ↦ (𝑤𝑚)) “ 𝑢) ∈ (MetOpen‘𝐷))
252243, 251sylib 218 . . . . . . . . . 10 (𝜑 → ∀𝑚𝐼𝑢 ∈ ((TopOpen ∘ 𝑅)‘𝑚)((𝑤X𝑛𝐼 ((TopOpen ∘ 𝑅)‘𝑛) ↦ (𝑤𝑚)) “ 𝑢) ∈ (MetOpen‘𝐷))
253 eqid 2736 . . . . . . . . . . 11 (𝑚𝐼, 𝑢 ∈ ((TopOpen ∘ 𝑅)‘𝑚) ↦ ((𝑤X𝑛𝐼 ((TopOpen ∘ 𝑅)‘𝑛) ↦ (𝑤𝑚)) “ 𝑢)) = (𝑚𝐼, 𝑢 ∈ ((TopOpen ∘ 𝑅)‘𝑚) ↦ ((𝑤X𝑛𝐼 ((TopOpen ∘ 𝑅)‘𝑛) ↦ (𝑤𝑚)) “ 𝑢))
254253fmpox 8071 . . . . . . . . . 10 (∀𝑚𝐼𝑢 ∈ ((TopOpen ∘ 𝑅)‘𝑚)((𝑤X𝑛𝐼 ((TopOpen ∘ 𝑅)‘𝑛) ↦ (𝑤𝑚)) “ 𝑢) ∈ (MetOpen‘𝐷) ↔ (𝑚𝐼, 𝑢 ∈ ((TopOpen ∘ 𝑅)‘𝑚) ↦ ((𝑤X𝑛𝐼 ((TopOpen ∘ 𝑅)‘𝑛) ↦ (𝑤𝑚)) “ 𝑢)): 𝑚𝐼 ({𝑚} × ((TopOpen ∘ 𝑅)‘𝑚))⟶(MetOpen‘𝐷))
255252, 254sylib 218 . . . . . . . . 9 (𝜑 → (𝑚𝐼, 𝑢 ∈ ((TopOpen ∘ 𝑅)‘𝑚) ↦ ((𝑤X𝑛𝐼 ((TopOpen ∘ 𝑅)‘𝑛) ↦ (𝑤𝑚)) “ 𝑢)): 𝑚𝐼 ({𝑚} × ((TopOpen ∘ 𝑅)‘𝑚))⟶(MetOpen‘𝐷))
256255frnd 6719 . . . . . . . 8 (𝜑 → ran (𝑚𝐼, 𝑢 ∈ ((TopOpen ∘ 𝑅)‘𝑚) ↦ ((𝑤X𝑛𝐼 ((TopOpen ∘ 𝑅)‘𝑛) ↦ (𝑤𝑚)) “ 𝑢)) ⊆ (MetOpen‘𝐷))
257179, 256unssd 4172 . . . . . . 7 (𝜑 → ({X𝑛𝐼 ((TopOpen ∘ 𝑅)‘𝑛)} ∪ ran (𝑚𝐼, 𝑢 ∈ ((TopOpen ∘ 𝑅)‘𝑚) ↦ ((𝑤X𝑛𝐼 ((TopOpen ∘ 𝑅)‘𝑛) ↦ (𝑤𝑚)) “ 𝑢))) ⊆ (MetOpen‘𝐷))
258 fiss 9441 . . . . . . 7 (((MetOpen‘𝐷) ∈ Top ∧ ({X𝑛𝐼 ((TopOpen ∘ 𝑅)‘𝑛)} ∪ ran (𝑚𝐼, 𝑢 ∈ ((TopOpen ∘ 𝑅)‘𝑚) ↦ ((𝑤X𝑛𝐼 ((TopOpen ∘ 𝑅)‘𝑛) ↦ (𝑤𝑚)) “ 𝑢))) ⊆ (MetOpen‘𝐷)) → (fi‘({X𝑛𝐼 ((TopOpen ∘ 𝑅)‘𝑛)} ∪ ran (𝑚𝐼, 𝑢 ∈ ((TopOpen ∘ 𝑅)‘𝑚) ↦ ((𝑤X𝑛𝐼 ((TopOpen ∘ 𝑅)‘𝑛) ↦ (𝑤𝑚)) “ 𝑢)))) ⊆ (fi‘(MetOpen‘𝐷)))
259156, 257, 258syl2anc 584 . . . . . 6 (𝜑 → (fi‘({X𝑛𝐼 ((TopOpen ∘ 𝑅)‘𝑛)} ∪ ran (𝑚𝐼, 𝑢 ∈ ((TopOpen ∘ 𝑅)‘𝑚) ↦ ((𝑤X𝑛𝐼 ((TopOpen ∘ 𝑅)‘𝑛) ↦ (𝑤𝑚)) “ 𝑢)))) ⊆ (fi‘(MetOpen‘𝐷)))
260153, 259eqsstrd 3998 . . . . 5 (𝜑𝐶 ⊆ (fi‘(MetOpen‘𝐷)))
261 fitop 22843 . . . . . . 7 ((MetOpen‘𝐷) ∈ Top → (fi‘(MetOpen‘𝐷)) = (MetOpen‘𝐷))
262156, 261syl 17 . . . . . 6 (𝜑 → (fi‘(MetOpen‘𝐷)) = (MetOpen‘𝐷))
263154mopnval 24382 . . . . . . . 8 (𝐷 ∈ (∞Met‘𝐵) → (MetOpen‘𝐷) = (topGen‘ran (ball‘𝐷)))
26417, 263syl 17 . . . . . . 7 (𝜑 → (MetOpen‘𝐷) = (topGen‘ran (ball‘𝐷)))
265 tgdif0 22935 . . . . . . 7 (topGen‘(ran (ball‘𝐷) ∖ {∅})) = (topGen‘ran (ball‘𝐷))
266264, 265eqtr4di 2789 . . . . . 6 (𝜑 → (MetOpen‘𝐷) = (topGen‘(ran (ball‘𝐷) ∖ {∅})))
267262, 266eqtrd 2771 . . . . 5 (𝜑 → (fi‘(MetOpen‘𝐷)) = (topGen‘(ran (ball‘𝐷) ∖ {∅})))
268260, 267sseqtrd 4000 . . . 4 (𝜑𝐶 ⊆ (topGen‘(ran (ball‘𝐷) ∖ {∅})))
269 2basgen 22933 . . . 4 (((ran (ball‘𝐷) ∖ {∅}) ⊆ 𝐶𝐶 ⊆ (topGen‘(ran (ball‘𝐷) ∖ {∅}))) → (topGen‘(ran (ball‘𝐷) ∖ {∅})) = (topGen‘𝐶))
270136, 268, 269syl2anc 584 . . 3 (𝜑 → (topGen‘(ran (ball‘𝐷) ∖ {∅})) = (topGen‘𝐶))
27111, 270eqtr4d 2774 . 2 (𝜑 → (∏t‘(TopOpen ∘ 𝑅)) = (topGen‘(ran (ball‘𝐷) ∖ {∅})))
272 prdsxms.j . . 3 𝐽 = (TopOpen‘𝑌)
27313, 14, 1, 4, 272prdstopn 23571 . 2 (𝜑𝐽 = (∏t‘(TopOpen ∘ 𝑅)))
274271, 273, 2663eqtr4d 2781 1 (𝜑𝐽 = (MetOpen‘𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086  wal 1538   = wceq 1540  wex 1779  wcel 2109  {cab 2714  wne 2933  wral 3052  wrex 3061  {crab 3420  Vcvv 3464  cdif 3928  cun 3929  wss 3931  c0 4313  {csn 4606   cuni 4888   ciun 4972   class class class wbr 5124  cmpt 5206   × cxp 5657  ccnv 5658  ran crn 5660  cres 5661  cima 5662  ccom 5663   Fn wfn 6531  wf 6532  cfv 6536  (class class class)co 7410  cmpo 7412  Xcixp 8916  Fincfn 8964  ficfi 9427  0cc0 11134  *cxr 11273   < clt 11274  +crp 13013  Basecbs 17233  distcds 17285  TopOpenctopn 17440  topGenctg 17456  tcpt 17457  Xscprds 17464  ∞Metcxmet 21305  ballcbl 21307  MetOpencmopn 21310  Topctop 22836  TopOnctopon 22853  TopSpctps 22875  ∞MetSpcxms 24261
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-pre-sup 11212
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-iin 4975  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-2o 8486  df-er 8724  df-map 8847  df-ixp 8917  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fi 9428  df-sup 9459  df-inf 9460  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-div 11900  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12507  df-z 12594  df-dec 12714  df-uz 12858  df-q 12970  df-rp 13014  df-xneg 13133  df-xadd 13134  df-xmul 13135  df-icc 13374  df-fz 13530  df-struct 17171  df-slot 17206  df-ndx 17218  df-base 17234  df-plusg 17289  df-mulr 17290  df-sca 17292  df-vsca 17293  df-ip 17294  df-tset 17295  df-ple 17296  df-ds 17298  df-hom 17300  df-cco 17301  df-rest 17441  df-topn 17442  df-topgen 17462  df-pt 17463  df-prds 17466  df-psmet 21312  df-xmet 21313  df-bl 21315  df-mopn 21316  df-top 22837  df-topon 22854  df-topsp 22876  df-bases 22889  df-xms 24264
This theorem is referenced by:  prdsxms  24474
  Copyright terms: Public domain W3C validator