Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sselii | Structured version Visualization version GIF version |
Description: Membership inference from subclass relationship. (Contributed by NM, 31-May-1999.) |
Ref | Expression |
---|---|
sseli.1 | ⊢ 𝐴 ⊆ 𝐵 |
sselii.2 | ⊢ 𝐶 ∈ 𝐴 |
Ref | Expression |
---|---|
sselii | ⊢ 𝐶 ∈ 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sselii.2 | . 2 ⊢ 𝐶 ∈ 𝐴 | |
2 | sseli.1 | . . 3 ⊢ 𝐴 ⊆ 𝐵 | |
3 | 2 | sseli 3926 | . 2 ⊢ (𝐶 ∈ 𝐴 → 𝐶 ∈ 𝐵) |
4 | 1, 3 | ax-mp 5 | 1 ⊢ 𝐶 ∈ 𝐵 |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2105 ⊆ wss 3896 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2708 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1543 df-ex 1781 df-sb 2067 df-clab 2715 df-cleq 2729 df-clel 2815 df-v 3443 df-in 3903 df-ss 3913 |
This theorem is referenced by: sseliALT 5246 fvrn0 6839 ovima0 7489 brtpos0 8094 frrlem14 8160 wfrlem16OLD 8200 rdg0 8297 iunfi 9175 rankdmr1 9627 rankeq0b 9686 cardprclem 9805 alephfp2 9935 dfac2b 9956 sdom2en01 10128 fin56 10219 fin1a2lem10 10235 hsmexlem4 10255 canthp1lem2 10479 ax1cn 10975 recni 11059 0xr 11092 pnfxr 11099 nn0rei 12314 nn0cni 12315 0xnn0 12381 nnzi 12414 nn0zi 12415 seqexw 13807 mulgfval 18769 lbsextlem4 20494 qsubdrg 20721 leordtval2 22434 iooordt 22439 hauspwdom 22723 comppfsc 22754 dfac14 22840 filconn 23105 isufil2 23130 iooretop 24000 ovolfiniun 24736 volfiniun 24782 iblabslem 25063 iblabs 25064 bddmulibl 25074 mdegcl 25305 logcn 25873 logccv 25889 leibpi 26163 xrlimcnp 26189 jensen 26209 emre 26226 lgsdir2lem3 26546 shelii 29685 chelii 29703 omlsilem 29872 nonbooli 30121 pjssmii 30151 riesz4 30534 riesz1 30535 cnlnadjeu 30548 nmopadjlei 30558 adjeq0 30561 dp2clq 31263 rpdp2cl 31264 dp2lt10 31266 dp2lt 31267 dp2ltc 31269 dplti 31287 qqh0 32040 qqh1 32041 qqhcn 32047 rrh0 32071 esumcst 32137 esumrnmpt2 32142 volmeas 32305 hgt750lem 32737 tgoldbachgtde 32746 kur14lem7 33280 kur14lem9 33282 iinllyconn 33322 bj-rdg0gALT 35302 bj-pinftyccb 35452 bj-minftyccb 35456 bj-rrdrg 35521 finixpnum 35822 poimirlem32 35869 ftc1cnnclem 35908 ftc2nc 35919 areacirclem2 35926 prdsbnd 36011 reheibor 36057 rmxyadd 40954 rmxy1 40955 rmxy0 40956 rmydioph 41047 rmxdioph 41049 expdiophlem2 41055 expdioph 41056 mpaaeu 41186 0iscard 41376 1iscard 41377 fourierdlem85 43976 fourierdlem102 43993 fourierdlem114 44005 iooborel 44134 hoicvrrex 44339 |
Copyright terms: Public domain | W3C validator |