![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sselii | Structured version Visualization version GIF version |
Description: Membership inference from subclass relationship. (Contributed by NM, 31-May-1999.) |
Ref | Expression |
---|---|
sseli.1 | ⊢ 𝐴 ⊆ 𝐵 |
sselii.2 | ⊢ 𝐶 ∈ 𝐴 |
Ref | Expression |
---|---|
sselii | ⊢ 𝐶 ∈ 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sselii.2 | . 2 ⊢ 𝐶 ∈ 𝐴 | |
2 | sseli.1 | . . 3 ⊢ 𝐴 ⊆ 𝐵 | |
3 | 2 | sseli 3990 | . 2 ⊢ (𝐶 ∈ 𝐴 → 𝐶 ∈ 𝐵) |
4 | 1, 3 | ax-mp 5 | 1 ⊢ 𝐶 ∈ 𝐵 |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2105 ⊆ wss 3962 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1776 df-clel 2813 df-ss 3979 |
This theorem is referenced by: sseliALT 5314 fvrn0 6936 ovima0 7611 brtpos0 8256 frrlem14 8322 wfrlem16OLD 8362 rdg0 8459 iunfi 9380 rankdmr1 9838 rankeq0b 9897 cardprclem 10016 alephfp2 10146 dfac2b 10168 sdom2en01 10339 fin56 10430 fin1a2lem10 10446 hsmexlem4 10466 canthp1lem2 10690 ax1cn 11186 recni 11272 0xr 11305 pnfxr 11312 nn0rei 12534 nn0cni 12535 0xnn0 12602 nnzi 12638 nn0zi 12639 seqexw 14054 mulgfval 19099 lbsextlem4 21180 qsubdrg 21454 leordtval2 23235 iooordt 23240 hauspwdom 23524 comppfsc 23555 dfac14 23641 filconn 23906 isufil2 23931 iooretop 24801 ovolfiniun 25549 volfiniun 25595 iblabslem 25877 iblabs 25878 bddmulibl 25888 mdegcl 26122 logcn 26703 logccv 26719 leibpi 26999 xrlimcnp 27025 jensen 27046 emre 27063 lgsdir2lem3 27385 shelii 31243 chelii 31261 omlsilem 31430 nonbooli 31679 pjssmii 31709 riesz4 32092 riesz1 32093 cnlnadjeu 32106 nmopadjlei 32116 adjeq0 32119 dp2clq 32847 rpdp2cl 32848 dp2lt10 32850 dp2lt 32851 dp2ltc 32853 dplti 32871 zringfrac 33561 qqh0 33946 qqh1 33947 qqhcn 33953 rrh0 33977 esumcst 34043 esumrnmpt2 34048 volmeas 34211 hgt750lem 34644 tgoldbachgtde 34653 kur14lem7 35196 kur14lem9 35198 iinllyconn 35238 bj-rdg0gALT 37053 bj-pinftyccb 37203 bj-minftyccb 37207 bj-rrdrg 37272 finixpnum 37591 poimirlem32 37638 ftc1cnnclem 37677 ftc2nc 37688 areacirclem2 37695 prdsbnd 37779 reheibor 37825 rmxyadd 42909 rmxy1 42910 rmxy0 42911 rmydioph 43002 rmxdioph 43004 expdiophlem2 43010 expdioph 43011 mpaaeu 43138 0iscard 43530 1iscard 43531 wfaxrep 44949 fourierdlem85 46146 fourierdlem102 46163 fourierdlem114 46175 iooborel 46306 hoicvrrex 46511 |
Copyright terms: Public domain | W3C validator |