| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sselii | Structured version Visualization version GIF version | ||
| Description: Membership inference from subclass relationship. (Contributed by NM, 31-May-1999.) |
| Ref | Expression |
|---|---|
| sseli.1 | ⊢ 𝐴 ⊆ 𝐵 |
| sselii.2 | ⊢ 𝐶 ∈ 𝐴 |
| Ref | Expression |
|---|---|
| sselii | ⊢ 𝐶 ∈ 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sselii.2 | . 2 ⊢ 𝐶 ∈ 𝐴 | |
| 2 | sseli.1 | . . 3 ⊢ 𝐴 ⊆ 𝐵 | |
| 3 | 2 | sseli 3939 | . 2 ⊢ (𝐶 ∈ 𝐴 → 𝐶 ∈ 𝐵) |
| 4 | 1, 3 | ax-mp 5 | 1 ⊢ 𝐶 ∈ 𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 ⊆ wss 3911 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-clel 2803 df-ss 3928 |
| This theorem is referenced by: sseliALT 5259 fvrn0 6870 ovima0 7548 brtpos0 8189 frrlem14 8255 rdg0 8366 iunfi 9270 rankdmr1 9730 rankeq0b 9789 cardprclem 9908 alephfp2 10038 dfac2b 10060 sdom2en01 10231 fin56 10322 fin1a2lem10 10338 hsmexlem4 10358 canthp1lem2 10582 ax1cn 11078 recni 11164 0xr 11197 pnfxr 11204 nn0rei 12429 nn0cni 12430 0xnn0 12497 nnzi 12533 nn0zi 12534 seqexw 13958 mulgfval 18977 lbsextlem4 21047 qsubdrg 21312 leordtval2 23075 iooordt 23080 hauspwdom 23364 comppfsc 23395 dfac14 23481 filconn 23746 isufil2 23771 iooretop 24629 ovolfiniun 25378 volfiniun 25424 iblabslem 25705 iblabs 25706 bddmulibl 25716 mdegcl 25950 logcn 26532 logccv 26548 leibpi 26828 xrlimcnp 26854 jensen 26875 emre 26892 lgsdir2lem3 27214 shelii 31117 chelii 31135 omlsilem 31304 nonbooli 31553 pjssmii 31583 riesz4 31966 riesz1 31967 cnlnadjeu 31980 nmopadjlei 31990 adjeq0 31993 dp2clq 32774 rpdp2cl 32775 dp2lt10 32777 dp2lt 32778 dp2ltc 32780 dplti 32798 zringfrac 33498 qqh0 33947 qqh1 33948 qqhcn 33954 rrh0 33978 esumcst 34026 esumrnmpt2 34031 volmeas 34194 hgt750lem 34615 tgoldbachgtde 34624 kur14lem7 35172 kur14lem9 35174 iinllyconn 35214 bj-rdg0gALT 37032 bj-pinftyccb 37182 bj-minftyccb 37186 bj-rrdrg 37251 finixpnum 37572 poimirlem32 37619 ftc1cnnclem 37658 ftc2nc 37669 areacirclem2 37676 prdsbnd 37760 reheibor 37806 rmxyadd 42883 rmxy1 42884 rmxy0 42885 rmydioph 42976 rmxdioph 42978 expdiophlem2 42984 expdioph 42985 mpaaeu 43112 0iscard 43503 1iscard 43504 wfaxrep 44957 wfaxnul 44959 wfaxinf2 44964 fourierdlem85 46162 fourierdlem102 46179 fourierdlem114 46191 iooborel 46322 hoicvrrex 46527 lamberte 46862 |
| Copyright terms: Public domain | W3C validator |