| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sselii | Structured version Visualization version GIF version | ||
| Description: Membership inference from subclass relationship. (Contributed by NM, 31-May-1999.) |
| Ref | Expression |
|---|---|
| sseli.1 | ⊢ 𝐴 ⊆ 𝐵 |
| sselii.2 | ⊢ 𝐶 ∈ 𝐴 |
| Ref | Expression |
|---|---|
| sselii | ⊢ 𝐶 ∈ 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sselii.2 | . 2 ⊢ 𝐶 ∈ 𝐴 | |
| 2 | sseli.1 | . . 3 ⊢ 𝐴 ⊆ 𝐵 | |
| 3 | 2 | sseli 3959 | . 2 ⊢ (𝐶 ∈ 𝐴 → 𝐶 ∈ 𝐵) |
| 4 | 1, 3 | ax-mp 5 | 1 ⊢ 𝐶 ∈ 𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 ⊆ wss 3931 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-clel 2810 df-ss 3948 |
| This theorem is referenced by: sseliALT 5284 fvrn0 6911 ovima0 7591 brtpos0 8237 frrlem14 8303 wfrlem16OLD 8343 rdg0 8440 iunfi 9360 rankdmr1 9820 rankeq0b 9879 cardprclem 9998 alephfp2 10128 dfac2b 10150 sdom2en01 10321 fin56 10412 fin1a2lem10 10428 hsmexlem4 10448 canthp1lem2 10672 ax1cn 11168 recni 11254 0xr 11287 pnfxr 11294 nn0rei 12517 nn0cni 12518 0xnn0 12585 nnzi 12621 nn0zi 12622 seqexw 14040 mulgfval 19057 lbsextlem4 21127 qsubdrg 21392 leordtval2 23155 iooordt 23160 hauspwdom 23444 comppfsc 23475 dfac14 23561 filconn 23826 isufil2 23851 iooretop 24709 ovolfiniun 25459 volfiniun 25505 iblabslem 25786 iblabs 25787 bddmulibl 25797 mdegcl 26031 logcn 26613 logccv 26629 leibpi 26909 xrlimcnp 26935 jensen 26956 emre 26973 lgsdir2lem3 27295 shelii 31201 chelii 31219 omlsilem 31388 nonbooli 31637 pjssmii 31667 riesz4 32050 riesz1 32051 cnlnadjeu 32064 nmopadjlei 32074 adjeq0 32077 dp2clq 32860 rpdp2cl 32861 dp2lt10 32863 dp2lt 32864 dp2ltc 32866 dplti 32884 zringfrac 33574 qqh0 34020 qqh1 34021 qqhcn 34027 rrh0 34051 esumcst 34099 esumrnmpt2 34104 volmeas 34267 hgt750lem 34688 tgoldbachgtde 34697 kur14lem7 35239 kur14lem9 35241 iinllyconn 35281 bj-rdg0gALT 37094 bj-pinftyccb 37244 bj-minftyccb 37248 bj-rrdrg 37313 finixpnum 37634 poimirlem32 37681 ftc1cnnclem 37720 ftc2nc 37731 areacirclem2 37738 prdsbnd 37822 reheibor 37868 rmxyadd 42912 rmxy1 42913 rmxy0 42914 rmydioph 43005 rmxdioph 43007 expdiophlem2 43013 expdioph 43014 mpaaeu 43141 0iscard 43532 1iscard 43533 wfaxrep 44986 wfaxnul 44988 wfaxinf2 44993 fourierdlem85 46187 fourierdlem102 46204 fourierdlem114 46216 iooborel 46347 hoicvrrex 46552 lamberte 46887 |
| Copyright terms: Public domain | W3C validator |