| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sselii | Structured version Visualization version GIF version | ||
| Description: Membership inference from subclass relationship. (Contributed by NM, 31-May-1999.) |
| Ref | Expression |
|---|---|
| sseli.1 | ⊢ 𝐴 ⊆ 𝐵 |
| sselii.2 | ⊢ 𝐶 ∈ 𝐴 |
| Ref | Expression |
|---|---|
| sselii | ⊢ 𝐶 ∈ 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sselii.2 | . 2 ⊢ 𝐶 ∈ 𝐴 | |
| 2 | sseli.1 | . . 3 ⊢ 𝐴 ⊆ 𝐵 | |
| 3 | 2 | sseli 3942 | . 2 ⊢ (𝐶 ∈ 𝐴 → 𝐶 ∈ 𝐵) |
| 4 | 1, 3 | ax-mp 5 | 1 ⊢ 𝐶 ∈ 𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 ⊆ wss 3914 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-clel 2803 df-ss 3931 |
| This theorem is referenced by: sseliALT 5264 fvrn0 6888 ovima0 7568 brtpos0 8212 frrlem14 8278 rdg0 8389 iunfi 9294 rankdmr1 9754 rankeq0b 9813 cardprclem 9932 alephfp2 10062 dfac2b 10084 sdom2en01 10255 fin56 10346 fin1a2lem10 10362 hsmexlem4 10382 canthp1lem2 10606 ax1cn 11102 recni 11188 0xr 11221 pnfxr 11228 nn0rei 12453 nn0cni 12454 0xnn0 12521 nnzi 12557 nn0zi 12558 seqexw 13982 mulgfval 19001 lbsextlem4 21071 qsubdrg 21336 leordtval2 23099 iooordt 23104 hauspwdom 23388 comppfsc 23419 dfac14 23505 filconn 23770 isufil2 23795 iooretop 24653 ovolfiniun 25402 volfiniun 25448 iblabslem 25729 iblabs 25730 bddmulibl 25740 mdegcl 25974 logcn 26556 logccv 26572 leibpi 26852 xrlimcnp 26878 jensen 26899 emre 26916 lgsdir2lem3 27238 shelii 31144 chelii 31162 omlsilem 31331 nonbooli 31580 pjssmii 31610 riesz4 31993 riesz1 31994 cnlnadjeu 32007 nmopadjlei 32017 adjeq0 32020 dp2clq 32801 rpdp2cl 32802 dp2lt10 32804 dp2lt 32805 dp2ltc 32807 dplti 32825 zringfrac 33525 qqh0 33974 qqh1 33975 qqhcn 33981 rrh0 34005 esumcst 34053 esumrnmpt2 34058 volmeas 34221 hgt750lem 34642 tgoldbachgtde 34651 kur14lem7 35199 kur14lem9 35201 iinllyconn 35241 bj-rdg0gALT 37059 bj-pinftyccb 37209 bj-minftyccb 37213 bj-rrdrg 37278 finixpnum 37599 poimirlem32 37646 ftc1cnnclem 37685 ftc2nc 37696 areacirclem2 37703 prdsbnd 37787 reheibor 37833 rmxyadd 42910 rmxy1 42911 rmxy0 42912 rmydioph 43003 rmxdioph 43005 expdiophlem2 43011 expdioph 43012 mpaaeu 43139 0iscard 43530 1iscard 43531 wfaxrep 44984 wfaxnul 44986 wfaxinf2 44991 fourierdlem85 46189 fourierdlem102 46206 fourierdlem114 46218 iooborel 46349 hoicvrrex 46554 lamberte 46889 |
| Copyright terms: Public domain | W3C validator |