| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sselii | Structured version Visualization version GIF version | ||
| Description: Membership inference from subclass relationship. (Contributed by NM, 31-May-1999.) |
| Ref | Expression |
|---|---|
| sseli.1 | ⊢ 𝐴 ⊆ 𝐵 |
| sselii.2 | ⊢ 𝐶 ∈ 𝐴 |
| Ref | Expression |
|---|---|
| sselii | ⊢ 𝐶 ∈ 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sselii.2 | . 2 ⊢ 𝐶 ∈ 𝐴 | |
| 2 | sseli.1 | . . 3 ⊢ 𝐴 ⊆ 𝐵 | |
| 3 | 2 | sseli 3933 | . 2 ⊢ (𝐶 ∈ 𝐴 → 𝐶 ∈ 𝐵) |
| 4 | 1, 3 | ax-mp 5 | 1 ⊢ 𝐶 ∈ 𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 ⊆ wss 3905 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-clel 2803 df-ss 3922 |
| This theorem is referenced by: sseliALT 5251 fvrn0 6854 ovima0 7532 brtpos0 8173 frrlem14 8239 rdg0 8350 iunfi 9252 rankdmr1 9716 rankeq0b 9775 cardprclem 9894 alephfp2 10022 dfac2b 10044 sdom2en01 10215 fin56 10306 fin1a2lem10 10322 hsmexlem4 10342 canthp1lem2 10566 ax1cn 11062 recni 11148 0xr 11181 pnfxr 11188 nn0rei 12414 nn0cni 12415 0xnn0 12482 nnzi 12518 nn0zi 12519 seqexw 13943 mulgfval 18967 lbsextlem4 21087 qsubdrg 21345 leordtval2 23116 iooordt 23121 hauspwdom 23405 comppfsc 23436 dfac14 23522 filconn 23787 isufil2 23812 iooretop 24670 ovolfiniun 25419 volfiniun 25465 iblabslem 25746 iblabs 25747 bddmulibl 25757 mdegcl 25991 logcn 26573 logccv 26589 leibpi 26869 xrlimcnp 26895 jensen 26916 emre 26933 lgsdir2lem3 27255 shelii 31178 chelii 31196 omlsilem 31365 nonbooli 31614 pjssmii 31644 riesz4 32027 riesz1 32028 cnlnadjeu 32041 nmopadjlei 32051 adjeq0 32054 dp2clq 32840 rpdp2cl 32841 dp2lt10 32843 dp2lt 32844 dp2ltc 32846 dplti 32864 zringfrac 33510 qqh0 33970 qqh1 33971 qqhcn 33977 rrh0 34001 esumcst 34049 esumrnmpt2 34054 volmeas 34217 hgt750lem 34638 tgoldbachgtde 34647 kur14lem7 35204 kur14lem9 35206 iinllyconn 35246 bj-rdg0gALT 37064 bj-pinftyccb 37214 bj-minftyccb 37218 bj-rrdrg 37283 finixpnum 37604 poimirlem32 37651 ftc1cnnclem 37690 ftc2nc 37701 areacirclem2 37708 prdsbnd 37792 reheibor 37838 rmxyadd 42914 rmxy1 42915 rmxy0 42916 rmydioph 43007 rmxdioph 43009 expdiophlem2 43015 expdioph 43016 mpaaeu 43143 0iscard 43534 1iscard 43535 wfaxrep 44988 wfaxnul 44990 wfaxinf2 44995 fourierdlem85 46192 fourierdlem102 46209 fourierdlem114 46221 iooborel 46352 hoicvrrex 46557 lamberte 46892 |
| Copyright terms: Public domain | W3C validator |