Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sselii | Structured version Visualization version GIF version |
Description: Membership inference from subclass relationship. (Contributed by NM, 31-May-1999.) |
Ref | Expression |
---|---|
sseli.1 | ⊢ 𝐴 ⊆ 𝐵 |
sselii.2 | ⊢ 𝐶 ∈ 𝐴 |
Ref | Expression |
---|---|
sselii | ⊢ 𝐶 ∈ 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sselii.2 | . 2 ⊢ 𝐶 ∈ 𝐴 | |
2 | sseli.1 | . . 3 ⊢ 𝐴 ⊆ 𝐵 | |
3 | 2 | sseli 3921 | . 2 ⊢ (𝐶 ∈ 𝐴 → 𝐶 ∈ 𝐵) |
4 | 1, 3 | ax-mp 5 | 1 ⊢ 𝐶 ∈ 𝐵 |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2109 ⊆ wss 3891 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1544 df-ex 1786 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-v 3432 df-in 3898 df-ss 3908 |
This theorem is referenced by: sseliALT 5236 fvrn0 6796 ovima0 7442 brtpos0 8033 frrlem14 8099 wfrlem16OLD 8139 rdg0 8236 iunfi 9068 rankdmr1 9543 rankeq0b 9602 cardprclem 9721 alephfp2 9849 dfac2b 9870 sdom2en01 10042 fin56 10133 fin1a2lem10 10149 hsmexlem4 10169 canthp1lem2 10393 ax1cn 10889 recni 10973 0xr 11006 pnfxr 11013 nn0rei 12227 nn0cni 12228 0xnn0 12294 nnzi 12327 nn0zi 12328 seqexw 13718 mulgfval 18683 lbsextlem4 20404 qsubdrg 20631 leordtval2 22344 iooordt 22349 hauspwdom 22633 comppfsc 22664 dfac14 22750 filconn 23015 isufil2 23040 iooretop 23910 ovolfiniun 24646 volfiniun 24692 iblabslem 24973 iblabs 24974 bddmulibl 24984 mdegcl 25215 logcn 25783 logccv 25799 leibpi 26073 xrlimcnp 26099 jensen 26119 emre 26136 lgsdir2lem3 26456 shelii 29556 chelii 29574 omlsilem 29743 nonbooli 29992 pjssmii 30022 riesz4 30405 riesz1 30406 cnlnadjeu 30419 nmopadjlei 30429 adjeq0 30432 dp2clq 31134 rpdp2cl 31135 dp2lt10 31137 dp2lt 31138 dp2ltc 31140 dplti 31158 qqh0 31913 qqh1 31914 qqhcn 31920 rrh0 31944 esumcst 32010 esumrnmpt2 32015 volmeas 32178 hgt750lem 32610 tgoldbachgtde 32619 kur14lem7 33153 kur14lem9 33155 iinllyconn 33195 bj-rdg0gALT 35221 bj-pinftyccb 35371 bj-minftyccb 35375 bj-rrdrg 35440 finixpnum 35741 poimirlem32 35788 ftc1cnnclem 35827 ftc2nc 35838 areacirclem2 35845 prdsbnd 35930 reheibor 35976 rmxyadd 40723 rmxy1 40724 rmxy0 40725 rmydioph 40816 rmxdioph 40818 expdiophlem2 40824 expdioph 40825 mpaaeu 40955 fourierdlem85 43686 fourierdlem102 43703 fourierdlem114 43715 iooborel 43844 hoicvrrex 44048 |
Copyright terms: Public domain | W3C validator |