| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sselii | Structured version Visualization version GIF version | ||
| Description: Membership inference from subclass relationship. (Contributed by NM, 31-May-1999.) |
| Ref | Expression |
|---|---|
| sseli.1 | ⊢ 𝐴 ⊆ 𝐵 |
| sselii.2 | ⊢ 𝐶 ∈ 𝐴 |
| Ref | Expression |
|---|---|
| sselii | ⊢ 𝐶 ∈ 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sselii.2 | . 2 ⊢ 𝐶 ∈ 𝐴 | |
| 2 | sseli.1 | . . 3 ⊢ 𝐴 ⊆ 𝐵 | |
| 3 | 2 | sseli 3926 | . 2 ⊢ (𝐶 ∈ 𝐴 → 𝐶 ∈ 𝐵) |
| 4 | 1, 3 | ax-mp 5 | 1 ⊢ 𝐶 ∈ 𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2113 ⊆ wss 3898 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-clel 2808 df-ss 3915 |
| This theorem is referenced by: sseliALT 5251 fvrn0 6859 ovima0 7534 brtpos0 8172 frrlem14 8238 rdg0 8349 iunfi 9238 rankdmr1 9705 rankeq0b 9764 cardprclem 9883 alephfp2 10011 dfac2b 10033 sdom2en01 10204 fin56 10295 fin1a2lem10 10311 hsmexlem4 10331 canthp1lem2 10555 ax1cn 11051 recni 11137 0xr 11170 pnfxr 11177 nn0rei 12403 nn0cni 12404 0xnn0 12471 nnzi 12506 nn0zi 12507 seqexw 13931 mulgfval 18990 lbsextlem4 21107 qsubdrg 21365 leordtval2 23147 iooordt 23152 hauspwdom 23436 comppfsc 23467 dfac14 23553 filconn 23818 isufil2 23843 iooretop 24700 ovolfiniun 25449 volfiniun 25495 iblabslem 25776 iblabs 25777 bddmulibl 25787 mdegcl 26021 logcn 26603 logccv 26619 leibpi 26899 xrlimcnp 26925 jensen 26946 emre 26963 lgsdir2lem3 27285 shelii 31216 chelii 31234 omlsilem 31403 nonbooli 31652 pjssmii 31682 riesz4 32065 riesz1 32066 cnlnadjeu 32079 nmopadjlei 32089 adjeq0 32092 dp2clq 32890 rpdp2cl 32891 dp2lt10 32893 dp2lt 32894 dp2ltc 32896 dplti 32914 zringfrac 33563 vieta 33664 qqh0 34069 qqh1 34070 qqhcn 34076 rrh0 34100 esumcst 34148 esumrnmpt2 34153 volmeas 34316 hgt750lem 34736 tgoldbachgtde 34745 kur14lem7 35328 kur14lem9 35330 iinllyconn 35370 bj-rdg0gALT 37188 bj-pinftyccb 37338 bj-minftyccb 37342 bj-rrdrg 37407 finixpnum 37718 poimirlem32 37765 ftc1cnnclem 37804 ftc2nc 37815 areacirclem2 37822 prdsbnd 37906 reheibor 37952 rmxyadd 43078 rmxy1 43079 rmxy0 43080 rmydioph 43171 rmxdioph 43173 expdiophlem2 43179 expdioph 43180 mpaaeu 43307 0iscard 43698 1iscard 43699 wfaxrep 45151 wfaxnul 45153 wfaxinf2 45158 fourierdlem85 46351 fourierdlem102 46368 fourierdlem114 46380 iooborel 46511 hoicvrrex 46716 lamberte 47050 |
| Copyright terms: Public domain | W3C validator |