![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sselii | Structured version Visualization version GIF version |
Description: Membership inference from subclass relationship. (Contributed by NM, 31-May-1999.) |
Ref | Expression |
---|---|
sseli.1 | ⊢ 𝐴 ⊆ 𝐵 |
sselii.2 | ⊢ 𝐶 ∈ 𝐴 |
Ref | Expression |
---|---|
sselii | ⊢ 𝐶 ∈ 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sselii.2 | . 2 ⊢ 𝐶 ∈ 𝐴 | |
2 | sseli.1 | . . 3 ⊢ 𝐴 ⊆ 𝐵 | |
3 | 2 | sseli 4004 | . 2 ⊢ (𝐶 ∈ 𝐴 → 𝐶 ∈ 𝐵) |
4 | 1, 3 | ax-mp 5 | 1 ⊢ 𝐶 ∈ 𝐵 |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 ⊆ wss 3976 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-clel 2819 df-ss 3993 |
This theorem is referenced by: sseliALT 5327 fvrn0 6950 ovima0 7629 brtpos0 8274 frrlem14 8340 wfrlem16OLD 8380 rdg0 8477 iunfi 9411 rankdmr1 9870 rankeq0b 9929 cardprclem 10048 alephfp2 10178 dfac2b 10200 sdom2en01 10371 fin56 10462 fin1a2lem10 10478 hsmexlem4 10498 canthp1lem2 10722 ax1cn 11218 recni 11304 0xr 11337 pnfxr 11344 nn0rei 12564 nn0cni 12565 0xnn0 12631 nnzi 12667 nn0zi 12668 seqexw 14068 mulgfval 19109 lbsextlem4 21186 qsubdrg 21460 leordtval2 23241 iooordt 23246 hauspwdom 23530 comppfsc 23561 dfac14 23647 filconn 23912 isufil2 23937 iooretop 24807 ovolfiniun 25555 volfiniun 25601 iblabslem 25883 iblabs 25884 bddmulibl 25894 mdegcl 26128 logcn 26707 logccv 26723 leibpi 27003 xrlimcnp 27029 jensen 27050 emre 27067 lgsdir2lem3 27389 shelii 31247 chelii 31265 omlsilem 31434 nonbooli 31683 pjssmii 31713 riesz4 32096 riesz1 32097 cnlnadjeu 32110 nmopadjlei 32120 adjeq0 32123 dp2clq 32845 rpdp2cl 32846 dp2lt10 32848 dp2lt 32849 dp2ltc 32851 dplti 32869 zringfrac 33547 qqh0 33930 qqh1 33931 qqhcn 33937 rrh0 33961 esumcst 34027 esumrnmpt2 34032 volmeas 34195 hgt750lem 34628 tgoldbachgtde 34637 kur14lem7 35180 kur14lem9 35182 iinllyconn 35222 bj-rdg0gALT 37037 bj-pinftyccb 37187 bj-minftyccb 37191 bj-rrdrg 37256 finixpnum 37565 poimirlem32 37612 ftc1cnnclem 37651 ftc2nc 37662 areacirclem2 37669 prdsbnd 37753 reheibor 37799 rmxyadd 42878 rmxy1 42879 rmxy0 42880 rmydioph 42971 rmxdioph 42973 expdiophlem2 42979 expdioph 42980 mpaaeu 43107 0iscard 43503 1iscard 43504 fourierdlem85 46112 fourierdlem102 46129 fourierdlem114 46141 iooborel 46272 hoicvrrex 46477 |
Copyright terms: Public domain | W3C validator |