| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sselii | Structured version Visualization version GIF version | ||
| Description: Membership inference from subclass relationship. (Contributed by NM, 31-May-1999.) |
| Ref | Expression |
|---|---|
| sseli.1 | ⊢ 𝐴 ⊆ 𝐵 |
| sselii.2 | ⊢ 𝐶 ∈ 𝐴 |
| Ref | Expression |
|---|---|
| sselii | ⊢ 𝐶 ∈ 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sselii.2 | . 2 ⊢ 𝐶 ∈ 𝐴 | |
| 2 | sseli.1 | . . 3 ⊢ 𝐴 ⊆ 𝐵 | |
| 3 | 2 | sseli 3925 | . 2 ⊢ (𝐶 ∈ 𝐴 → 𝐶 ∈ 𝐵) |
| 4 | 1, 3 | ax-mp 5 | 1 ⊢ 𝐶 ∈ 𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2111 ⊆ wss 3897 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-clel 2806 df-ss 3914 |
| This theorem is referenced by: sseliALT 5242 fvrn0 6845 ovima0 7520 brtpos0 8158 frrlem14 8224 rdg0 8335 iunfi 9222 rankdmr1 9689 rankeq0b 9748 cardprclem 9867 alephfp2 9995 dfac2b 10017 sdom2en01 10188 fin56 10279 fin1a2lem10 10295 hsmexlem4 10315 canthp1lem2 10539 ax1cn 11035 recni 11121 0xr 11154 pnfxr 11161 nn0rei 12387 nn0cni 12388 0xnn0 12455 nnzi 12491 nn0zi 12492 seqexw 13919 mulgfval 18977 lbsextlem4 21093 qsubdrg 21351 leordtval2 23122 iooordt 23127 hauspwdom 23411 comppfsc 23442 dfac14 23528 filconn 23793 isufil2 23818 iooretop 24675 ovolfiniun 25424 volfiniun 25470 iblabslem 25751 iblabs 25752 bddmulibl 25762 mdegcl 25996 logcn 26578 logccv 26594 leibpi 26874 xrlimcnp 26900 jensen 26921 emre 26938 lgsdir2lem3 27260 shelii 31187 chelii 31205 omlsilem 31374 nonbooli 31623 pjssmii 31653 riesz4 32036 riesz1 32037 cnlnadjeu 32050 nmopadjlei 32060 adjeq0 32063 dp2clq 32853 rpdp2cl 32854 dp2lt10 32856 dp2lt 32857 dp2ltc 32859 dplti 32877 zringfrac 33511 qqh0 33989 qqh1 33990 qqhcn 33996 rrh0 34020 esumcst 34068 esumrnmpt2 34073 volmeas 34236 hgt750lem 34656 tgoldbachgtde 34665 kur14lem7 35248 kur14lem9 35250 iinllyconn 35290 bj-rdg0gALT 37105 bj-pinftyccb 37255 bj-minftyccb 37259 bj-rrdrg 37324 finixpnum 37645 poimirlem32 37692 ftc1cnnclem 37731 ftc2nc 37742 areacirclem2 37749 prdsbnd 37833 reheibor 37879 rmxyadd 42954 rmxy1 42955 rmxy0 42956 rmydioph 43047 rmxdioph 43049 expdiophlem2 43055 expdioph 43056 mpaaeu 43183 0iscard 43574 1iscard 43575 wfaxrep 45027 wfaxnul 45029 wfaxinf2 45034 fourierdlem85 46229 fourierdlem102 46246 fourierdlem114 46258 iooborel 46389 hoicvrrex 46594 lamberte 46919 |
| Copyright terms: Public domain | W3C validator |