| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sselii | Structured version Visualization version GIF version | ||
| Description: Membership inference from subclass relationship. (Contributed by NM, 31-May-1999.) |
| Ref | Expression |
|---|---|
| sseli.1 | ⊢ 𝐴 ⊆ 𝐵 |
| sselii.2 | ⊢ 𝐶 ∈ 𝐴 |
| Ref | Expression |
|---|---|
| sselii | ⊢ 𝐶 ∈ 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sselii.2 | . 2 ⊢ 𝐶 ∈ 𝐴 | |
| 2 | sseli.1 | . . 3 ⊢ 𝐴 ⊆ 𝐵 | |
| 3 | 2 | sseli 3945 | . 2 ⊢ (𝐶 ∈ 𝐴 → 𝐶 ∈ 𝐵) |
| 4 | 1, 3 | ax-mp 5 | 1 ⊢ 𝐶 ∈ 𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 ⊆ wss 3917 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-clel 2804 df-ss 3934 |
| This theorem is referenced by: sseliALT 5267 fvrn0 6891 ovima0 7571 brtpos0 8215 frrlem14 8281 rdg0 8392 iunfi 9301 rankdmr1 9761 rankeq0b 9820 cardprclem 9939 alephfp2 10069 dfac2b 10091 sdom2en01 10262 fin56 10353 fin1a2lem10 10369 hsmexlem4 10389 canthp1lem2 10613 ax1cn 11109 recni 11195 0xr 11228 pnfxr 11235 nn0rei 12460 nn0cni 12461 0xnn0 12528 nnzi 12564 nn0zi 12565 seqexw 13989 mulgfval 19008 lbsextlem4 21078 qsubdrg 21343 leordtval2 23106 iooordt 23111 hauspwdom 23395 comppfsc 23426 dfac14 23512 filconn 23777 isufil2 23802 iooretop 24660 ovolfiniun 25409 volfiniun 25455 iblabslem 25736 iblabs 25737 bddmulibl 25747 mdegcl 25981 logcn 26563 logccv 26579 leibpi 26859 xrlimcnp 26885 jensen 26906 emre 26923 lgsdir2lem3 27245 shelii 31151 chelii 31169 omlsilem 31338 nonbooli 31587 pjssmii 31617 riesz4 32000 riesz1 32001 cnlnadjeu 32014 nmopadjlei 32024 adjeq0 32027 dp2clq 32808 rpdp2cl 32809 dp2lt10 32811 dp2lt 32812 dp2ltc 32814 dplti 32832 zringfrac 33532 qqh0 33981 qqh1 33982 qqhcn 33988 rrh0 34012 esumcst 34060 esumrnmpt2 34065 volmeas 34228 hgt750lem 34649 tgoldbachgtde 34658 kur14lem7 35206 kur14lem9 35208 iinllyconn 35248 bj-rdg0gALT 37066 bj-pinftyccb 37216 bj-minftyccb 37220 bj-rrdrg 37285 finixpnum 37606 poimirlem32 37653 ftc1cnnclem 37692 ftc2nc 37703 areacirclem2 37710 prdsbnd 37794 reheibor 37840 rmxyadd 42917 rmxy1 42918 rmxy0 42919 rmydioph 43010 rmxdioph 43012 expdiophlem2 43018 expdioph 43019 mpaaeu 43146 0iscard 43537 1iscard 43538 wfaxrep 44991 wfaxnul 44993 wfaxinf2 44998 fourierdlem85 46196 fourierdlem102 46213 fourierdlem114 46225 iooborel 46356 hoicvrrex 46561 lamberte 46896 |
| Copyright terms: Public domain | W3C validator |