MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sseq12 Structured version   Visualization version   GIF version

Theorem sseq12 3879
Description: Equality theorem for the subclass relationship. (Contributed by NM, 31-May-1999.)
Assertion
Ref Expression
sseq12 ((𝐴 = 𝐵𝐶 = 𝐷) → (𝐴𝐶𝐵𝐷))

Proof of Theorem sseq12
StepHypRef Expression
1 sseq1 3877 . 2 (𝐴 = 𝐵 → (𝐴𝐶𝐵𝐶))
2 sseq2 3878 . 2 (𝐶 = 𝐷 → (𝐵𝐶𝐵𝐷))
31, 2sylan9bb 502 1 ((𝐴 = 𝐵𝐶 = 𝐷) → (𝐴𝐶𝐵𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 387   = wceq 1508  wss 3824
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1759  ax-4 1773  ax-5 1870  ax-6 1929  ax-7 1966  ax-8 2053  ax-9 2060  ax-10 2080  ax-11 2094  ax-12 2107  ax-ext 2745
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 835  df-tru 1511  df-ex 1744  df-nf 1748  df-sb 2017  df-clab 2754  df-cleq 2766  df-clel 2841  df-in 3831  df-ss 3838
This theorem is referenced by:  sseq12i  3882  sorpsscmpl  7277  funcnvuni  7450  fun11iun  7457  sornom  9496  axdc3lem2  9670  ipole  17639  ipodrsima  17646  metsscmetcld  23637  funpsstri  32561  brredunds  35339  ismrcd2  38725  ismrc  38727
  Copyright terms: Public domain W3C validator