Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sseq12 | Structured version Visualization version GIF version |
Description: Equality theorem for the subclass relationship. (Contributed by NM, 31-May-1999.) |
Ref | Expression |
---|---|
sseq12 | ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴 ⊆ 𝐶 ↔ 𝐵 ⊆ 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sseq1 3951 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 ⊆ 𝐶 ↔ 𝐵 ⊆ 𝐶)) | |
2 | sseq2 3952 | . 2 ⊢ (𝐶 = 𝐷 → (𝐵 ⊆ 𝐶 ↔ 𝐵 ⊆ 𝐷)) | |
3 | 1, 2 | sylan9bb 510 | 1 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴 ⊆ 𝐶 ↔ 𝐵 ⊆ 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1542 ⊆ wss 3892 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-ext 2711 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1545 df-ex 1787 df-sb 2072 df-clab 2718 df-cleq 2732 df-clel 2818 df-v 3433 df-in 3899 df-ss 3909 |
This theorem is referenced by: sseq12i 3956 sorpsscmpl 7582 funcnvuni 7773 fiunlem 7779 sornom 10044 axdc3lem2 10218 ipole 18263 ipodrsima 18270 metsscmetcld 24490 funpsstri 33748 brredunds 36748 ismrcd2 40530 ismrc 40532 |
Copyright terms: Public domain | W3C validator |