MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sseq12 Structured version   Visualization version   GIF version

Theorem sseq12 4010
Description: Equality theorem for the subclass relationship. (Contributed by NM, 31-May-1999.)
Assertion
Ref Expression
sseq12 ((𝐴 = 𝐵𝐶 = 𝐷) → (𝐴𝐶𝐵𝐷))

Proof of Theorem sseq12
StepHypRef Expression
1 sseq1 4008 . 2 (𝐴 = 𝐵 → (𝐴𝐶𝐵𝐶))
2 sseq2 4009 . 2 (𝐶 = 𝐷 → (𝐵𝐶𝐵𝐷))
31, 2sylan9bb 511 1 ((𝐴 = 𝐵𝐶 = 𝐷) → (𝐴𝐶𝐵𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397   = wceq 1542  wss 3949
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704
This theorem depends on definitions:  df-bi 206  df-an 398  df-tru 1545  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-v 3477  df-in 3956  df-ss 3966
This theorem is referenced by:  sseq12i  4013  sorpsscmpl  7724  funcnvuni  7922  fiunlem  7928  sornom  10272  axdc3lem2  10446  ipole  18487  ipodrsima  18494  metsscmetcld  24832  funpsstri  34737  brredunds  37496  ismrcd2  41437  ismrc  41439
  Copyright terms: Public domain W3C validator