MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sseq12 Structured version   Visualization version   GIF version

Theorem sseq12 3953
Description: Equality theorem for the subclass relationship. (Contributed by NM, 31-May-1999.)
Assertion
Ref Expression
sseq12 ((𝐴 = 𝐵𝐶 = 𝐷) → (𝐴𝐶𝐵𝐷))

Proof of Theorem sseq12
StepHypRef Expression
1 sseq1 3951 . 2 (𝐴 = 𝐵 → (𝐴𝐶𝐵𝐶))
2 sseq2 3952 . 2 (𝐶 = 𝐷 → (𝐵𝐶𝐵𝐷))
31, 2sylan9bb 510 1 ((𝐴 = 𝐵𝐶 = 𝐷) → (𝐴𝐶𝐵𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1542  wss 3892
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-ext 2711
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1545  df-ex 1787  df-sb 2072  df-clab 2718  df-cleq 2732  df-clel 2818  df-v 3433  df-in 3899  df-ss 3909
This theorem is referenced by:  sseq12i  3956  sorpsscmpl  7582  funcnvuni  7773  fiunlem  7779  sornom  10044  axdc3lem2  10218  ipole  18263  ipodrsima  18270  metsscmetcld  24490  funpsstri  33748  brredunds  36748  ismrcd2  40530  ismrc  40532
  Copyright terms: Public domain W3C validator