MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sseq12 Structured version   Visualization version   GIF version

Theorem sseq12 3986
Description: Equality theorem for the subclass relationship. (Contributed by NM, 31-May-1999.)
Assertion
Ref Expression
sseq12 ((𝐴 = 𝐵𝐶 = 𝐷) → (𝐴𝐶𝐵𝐷))

Proof of Theorem sseq12
StepHypRef Expression
1 sseq1 3984 . 2 (𝐴 = 𝐵 → (𝐴𝐶𝐵𝐶))
2 sseq2 3985 . 2 (𝐶 = 𝐷 → (𝐵𝐶𝐵𝐷))
31, 2sylan9bb 509 1 ((𝐴 = 𝐵𝐶 = 𝐷) → (𝐴𝐶𝐵𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wss 3926
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-9 2118  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-cleq 2727  df-ss 3943
This theorem is referenced by:  sseq12i  3989  sorpsscmpl  7728  funcnvuni  7928  fiunlem  7940  sornom  10291  axdc3lem2  10465  ipole  18544  ipodrsima  18551  metsscmetcld  25267  funpsstri  35783  brredunds  38644  ismrcd2  42722  ismrc  42724
  Copyright terms: Public domain W3C validator