| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sseq12 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for the subclass relationship. (Contributed by NM, 31-May-1999.) |
| Ref | Expression |
|---|---|
| sseq12 | ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴 ⊆ 𝐶 ↔ 𝐵 ⊆ 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseq1 3972 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 ⊆ 𝐶 ↔ 𝐵 ⊆ 𝐶)) | |
| 2 | sseq2 3973 | . 2 ⊢ (𝐶 = 𝐷 → (𝐵 ⊆ 𝐶 ↔ 𝐵 ⊆ 𝐷)) | |
| 3 | 1, 2 | sylan9bb 509 | 1 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴 ⊆ 𝐶 ↔ 𝐵 ⊆ 𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ⊆ wss 3914 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 df-ss 3931 |
| This theorem is referenced by: sseq12i 3977 sorpsscmpl 7710 funcnvuni 7908 fiunlem 7920 sornom 10230 axdc3lem2 10404 ipole 18493 ipodrsima 18500 metsscmetcld 25215 funpsstri 35753 brredunds 38617 ismrcd2 42687 ismrc 42689 |
| Copyright terms: Public domain | W3C validator |