Step | Hyp | Ref
| Expression |
1 | | cnveq 5713 |
. . . . . . . 8
⊢ (𝑥 = 𝑣 → ◡𝑥 = ◡𝑣) |
2 | 1 | eqeq2d 2769 |
. . . . . . 7
⊢ (𝑥 = 𝑣 → (𝑧 = ◡𝑥 ↔ 𝑧 = ◡𝑣)) |
3 | 2 | cbvrexvw 3362 |
. . . . . 6
⊢
(∃𝑥 ∈
𝐴 𝑧 = ◡𝑥 ↔ ∃𝑣 ∈ 𝐴 𝑧 = ◡𝑣) |
4 | | cnveq 5713 |
. . . . . . . . . . 11
⊢ (𝑓 = 𝑣 → ◡𝑓 = ◡𝑣) |
5 | 4 | funeqd 6357 |
. . . . . . . . . 10
⊢ (𝑓 = 𝑣 → (Fun ◡𝑓 ↔ Fun ◡𝑣)) |
6 | | sseq1 3917 |
. . . . . . . . . . . 12
⊢ (𝑓 = 𝑣 → (𝑓 ⊆ 𝑔 ↔ 𝑣 ⊆ 𝑔)) |
7 | | sseq2 3918 |
. . . . . . . . . . . 12
⊢ (𝑓 = 𝑣 → (𝑔 ⊆ 𝑓 ↔ 𝑔 ⊆ 𝑣)) |
8 | 6, 7 | orbi12d 916 |
. . . . . . . . . . 11
⊢ (𝑓 = 𝑣 → ((𝑓 ⊆ 𝑔 ∨ 𝑔 ⊆ 𝑓) ↔ (𝑣 ⊆ 𝑔 ∨ 𝑔 ⊆ 𝑣))) |
9 | 8 | ralbidv 3126 |
. . . . . . . . . 10
⊢ (𝑓 = 𝑣 → (∀𝑔 ∈ 𝐴 (𝑓 ⊆ 𝑔 ∨ 𝑔 ⊆ 𝑓) ↔ ∀𝑔 ∈ 𝐴 (𝑣 ⊆ 𝑔 ∨ 𝑔 ⊆ 𝑣))) |
10 | 5, 9 | anbi12d 633 |
. . . . . . . . 9
⊢ (𝑓 = 𝑣 → ((Fun ◡𝑓 ∧ ∀𝑔 ∈ 𝐴 (𝑓 ⊆ 𝑔 ∨ 𝑔 ⊆ 𝑓)) ↔ (Fun ◡𝑣 ∧ ∀𝑔 ∈ 𝐴 (𝑣 ⊆ 𝑔 ∨ 𝑔 ⊆ 𝑣)))) |
11 | 10 | rspcv 3536 |
. . . . . . . 8
⊢ (𝑣 ∈ 𝐴 → (∀𝑓 ∈ 𝐴 (Fun ◡𝑓 ∧ ∀𝑔 ∈ 𝐴 (𝑓 ⊆ 𝑔 ∨ 𝑔 ⊆ 𝑓)) → (Fun ◡𝑣 ∧ ∀𝑔 ∈ 𝐴 (𝑣 ⊆ 𝑔 ∨ 𝑔 ⊆ 𝑣)))) |
12 | | funeq 6355 |
. . . . . . . . . 10
⊢ (𝑧 = ◡𝑣 → (Fun 𝑧 ↔ Fun ◡𝑣)) |
13 | 12 | biimprcd 253 |
. . . . . . . . 9
⊢ (Fun
◡𝑣 → (𝑧 = ◡𝑣 → Fun 𝑧)) |
14 | | sseq2 3918 |
. . . . . . . . . . . . . . 15
⊢ (𝑔 = 𝑥 → (𝑣 ⊆ 𝑔 ↔ 𝑣 ⊆ 𝑥)) |
15 | | sseq1 3917 |
. . . . . . . . . . . . . . 15
⊢ (𝑔 = 𝑥 → (𝑔 ⊆ 𝑣 ↔ 𝑥 ⊆ 𝑣)) |
16 | 14, 15 | orbi12d 916 |
. . . . . . . . . . . . . 14
⊢ (𝑔 = 𝑥 → ((𝑣 ⊆ 𝑔 ∨ 𝑔 ⊆ 𝑣) ↔ (𝑣 ⊆ 𝑥 ∨ 𝑥 ⊆ 𝑣))) |
17 | 16 | rspcv 3536 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ 𝐴 → (∀𝑔 ∈ 𝐴 (𝑣 ⊆ 𝑔 ∨ 𝑔 ⊆ 𝑣) → (𝑣 ⊆ 𝑥 ∨ 𝑥 ⊆ 𝑣))) |
18 | | cnvss 5712 |
. . . . . . . . . . . . . . . 16
⊢ (𝑣 ⊆ 𝑥 → ◡𝑣 ⊆ ◡𝑥) |
19 | | cnvss 5712 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 ⊆ 𝑣 → ◡𝑥 ⊆ ◡𝑣) |
20 | 18, 19 | orim12i 906 |
. . . . . . . . . . . . . . 15
⊢ ((𝑣 ⊆ 𝑥 ∨ 𝑥 ⊆ 𝑣) → (◡𝑣 ⊆ ◡𝑥 ∨ ◡𝑥 ⊆ ◡𝑣)) |
21 | | sseq12 3919 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑧 = ◡𝑣 ∧ 𝑤 = ◡𝑥) → (𝑧 ⊆ 𝑤 ↔ ◡𝑣 ⊆ ◡𝑥)) |
22 | 21 | ancoms 462 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑤 = ◡𝑥 ∧ 𝑧 = ◡𝑣) → (𝑧 ⊆ 𝑤 ↔ ◡𝑣 ⊆ ◡𝑥)) |
23 | | sseq12 3919 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑤 = ◡𝑥 ∧ 𝑧 = ◡𝑣) → (𝑤 ⊆ 𝑧 ↔ ◡𝑥 ⊆ ◡𝑣)) |
24 | 22, 23 | orbi12d 916 |
. . . . . . . . . . . . . . 15
⊢ ((𝑤 = ◡𝑥 ∧ 𝑧 = ◡𝑣) → ((𝑧 ⊆ 𝑤 ∨ 𝑤 ⊆ 𝑧) ↔ (◡𝑣 ⊆ ◡𝑥 ∨ ◡𝑥 ⊆ ◡𝑣))) |
25 | 20, 24 | syl5ibrcom 250 |
. . . . . . . . . . . . . 14
⊢ ((𝑣 ⊆ 𝑥 ∨ 𝑥 ⊆ 𝑣) → ((𝑤 = ◡𝑥 ∧ 𝑧 = ◡𝑣) → (𝑧 ⊆ 𝑤 ∨ 𝑤 ⊆ 𝑧))) |
26 | 25 | expd 419 |
. . . . . . . . . . . . 13
⊢ ((𝑣 ⊆ 𝑥 ∨ 𝑥 ⊆ 𝑣) → (𝑤 = ◡𝑥 → (𝑧 = ◡𝑣 → (𝑧 ⊆ 𝑤 ∨ 𝑤 ⊆ 𝑧)))) |
27 | 17, 26 | syl6com 37 |
. . . . . . . . . . . 12
⊢
(∀𝑔 ∈
𝐴 (𝑣 ⊆ 𝑔 ∨ 𝑔 ⊆ 𝑣) → (𝑥 ∈ 𝐴 → (𝑤 = ◡𝑥 → (𝑧 = ◡𝑣 → (𝑧 ⊆ 𝑤 ∨ 𝑤 ⊆ 𝑧))))) |
28 | 27 | rexlimdv 3207 |
. . . . . . . . . . 11
⊢
(∀𝑔 ∈
𝐴 (𝑣 ⊆ 𝑔 ∨ 𝑔 ⊆ 𝑣) → (∃𝑥 ∈ 𝐴 𝑤 = ◡𝑥 → (𝑧 = ◡𝑣 → (𝑧 ⊆ 𝑤 ∨ 𝑤 ⊆ 𝑧)))) |
29 | 28 | com23 86 |
. . . . . . . . . 10
⊢
(∀𝑔 ∈
𝐴 (𝑣 ⊆ 𝑔 ∨ 𝑔 ⊆ 𝑣) → (𝑧 = ◡𝑣 → (∃𝑥 ∈ 𝐴 𝑤 = ◡𝑥 → (𝑧 ⊆ 𝑤 ∨ 𝑤 ⊆ 𝑧)))) |
30 | 29 | alrimdv 1930 |
. . . . . . . . 9
⊢
(∀𝑔 ∈
𝐴 (𝑣 ⊆ 𝑔 ∨ 𝑔 ⊆ 𝑣) → (𝑧 = ◡𝑣 → ∀𝑤(∃𝑥 ∈ 𝐴 𝑤 = ◡𝑥 → (𝑧 ⊆ 𝑤 ∨ 𝑤 ⊆ 𝑧)))) |
31 | 13, 30 | anim12ii 620 |
. . . . . . . 8
⊢ ((Fun
◡𝑣 ∧ ∀𝑔 ∈ 𝐴 (𝑣 ⊆ 𝑔 ∨ 𝑔 ⊆ 𝑣)) → (𝑧 = ◡𝑣 → (Fun 𝑧 ∧ ∀𝑤(∃𝑥 ∈ 𝐴 𝑤 = ◡𝑥 → (𝑧 ⊆ 𝑤 ∨ 𝑤 ⊆ 𝑧))))) |
32 | 11, 31 | syl6com 37 |
. . . . . . 7
⊢
(∀𝑓 ∈
𝐴 (Fun ◡𝑓 ∧ ∀𝑔 ∈ 𝐴 (𝑓 ⊆ 𝑔 ∨ 𝑔 ⊆ 𝑓)) → (𝑣 ∈ 𝐴 → (𝑧 = ◡𝑣 → (Fun 𝑧 ∧ ∀𝑤(∃𝑥 ∈ 𝐴 𝑤 = ◡𝑥 → (𝑧 ⊆ 𝑤 ∨ 𝑤 ⊆ 𝑧)))))) |
33 | 32 | rexlimdv 3207 |
. . . . . 6
⊢
(∀𝑓 ∈
𝐴 (Fun ◡𝑓 ∧ ∀𝑔 ∈ 𝐴 (𝑓 ⊆ 𝑔 ∨ 𝑔 ⊆ 𝑓)) → (∃𝑣 ∈ 𝐴 𝑧 = ◡𝑣 → (Fun 𝑧 ∧ ∀𝑤(∃𝑥 ∈ 𝐴 𝑤 = ◡𝑥 → (𝑧 ⊆ 𝑤 ∨ 𝑤 ⊆ 𝑧))))) |
34 | 3, 33 | syl5bi 245 |
. . . . 5
⊢
(∀𝑓 ∈
𝐴 (Fun ◡𝑓 ∧ ∀𝑔 ∈ 𝐴 (𝑓 ⊆ 𝑔 ∨ 𝑔 ⊆ 𝑓)) → (∃𝑥 ∈ 𝐴 𝑧 = ◡𝑥 → (Fun 𝑧 ∧ ∀𝑤(∃𝑥 ∈ 𝐴 𝑤 = ◡𝑥 → (𝑧 ⊆ 𝑤 ∨ 𝑤 ⊆ 𝑧))))) |
35 | 34 | alrimiv 1928 |
. . . 4
⊢
(∀𝑓 ∈
𝐴 (Fun ◡𝑓 ∧ ∀𝑔 ∈ 𝐴 (𝑓 ⊆ 𝑔 ∨ 𝑔 ⊆ 𝑓)) → ∀𝑧(∃𝑥 ∈ 𝐴 𝑧 = ◡𝑥 → (Fun 𝑧 ∧ ∀𝑤(∃𝑥 ∈ 𝐴 𝑤 = ◡𝑥 → (𝑧 ⊆ 𝑤 ∨ 𝑤 ⊆ 𝑧))))) |
36 | | df-ral 3075 |
. . . . 5
⊢
(∀𝑧 ∈
{𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = ◡𝑥} (Fun 𝑧 ∧ ∀𝑤 ∈ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = ◡𝑥} (𝑧 ⊆ 𝑤 ∨ 𝑤 ⊆ 𝑧)) ↔ ∀𝑧(𝑧 ∈ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = ◡𝑥} → (Fun 𝑧 ∧ ∀𝑤 ∈ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = ◡𝑥} (𝑧 ⊆ 𝑤 ∨ 𝑤 ⊆ 𝑧)))) |
37 | | vex 3413 |
. . . . . . . 8
⊢ 𝑧 ∈ V |
38 | | eqeq1 2762 |
. . . . . . . . 9
⊢ (𝑦 = 𝑧 → (𝑦 = ◡𝑥 ↔ 𝑧 = ◡𝑥)) |
39 | 38 | rexbidv 3221 |
. . . . . . . 8
⊢ (𝑦 = 𝑧 → (∃𝑥 ∈ 𝐴 𝑦 = ◡𝑥 ↔ ∃𝑥 ∈ 𝐴 𝑧 = ◡𝑥)) |
40 | 37, 39 | elab 3588 |
. . . . . . 7
⊢ (𝑧 ∈ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = ◡𝑥} ↔ ∃𝑥 ∈ 𝐴 𝑧 = ◡𝑥) |
41 | | eqeq1 2762 |
. . . . . . . . . 10
⊢ (𝑦 = 𝑤 → (𝑦 = ◡𝑥 ↔ 𝑤 = ◡𝑥)) |
42 | 41 | rexbidv 3221 |
. . . . . . . . 9
⊢ (𝑦 = 𝑤 → (∃𝑥 ∈ 𝐴 𝑦 = ◡𝑥 ↔ ∃𝑥 ∈ 𝐴 𝑤 = ◡𝑥)) |
43 | 42 | ralab 3607 |
. . . . . . . 8
⊢
(∀𝑤 ∈
{𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = ◡𝑥} (𝑧 ⊆ 𝑤 ∨ 𝑤 ⊆ 𝑧) ↔ ∀𝑤(∃𝑥 ∈ 𝐴 𝑤 = ◡𝑥 → (𝑧 ⊆ 𝑤 ∨ 𝑤 ⊆ 𝑧))) |
44 | 43 | anbi2i 625 |
. . . . . . 7
⊢ ((Fun
𝑧 ∧ ∀𝑤 ∈ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = ◡𝑥} (𝑧 ⊆ 𝑤 ∨ 𝑤 ⊆ 𝑧)) ↔ (Fun 𝑧 ∧ ∀𝑤(∃𝑥 ∈ 𝐴 𝑤 = ◡𝑥 → (𝑧 ⊆ 𝑤 ∨ 𝑤 ⊆ 𝑧)))) |
45 | 40, 44 | imbi12i 354 |
. . . . . 6
⊢ ((𝑧 ∈ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = ◡𝑥} → (Fun 𝑧 ∧ ∀𝑤 ∈ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = ◡𝑥} (𝑧 ⊆ 𝑤 ∨ 𝑤 ⊆ 𝑧))) ↔ (∃𝑥 ∈ 𝐴 𝑧 = ◡𝑥 → (Fun 𝑧 ∧ ∀𝑤(∃𝑥 ∈ 𝐴 𝑤 = ◡𝑥 → (𝑧 ⊆ 𝑤 ∨ 𝑤 ⊆ 𝑧))))) |
46 | 45 | albii 1821 |
. . . . 5
⊢
(∀𝑧(𝑧 ∈ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = ◡𝑥} → (Fun 𝑧 ∧ ∀𝑤 ∈ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = ◡𝑥} (𝑧 ⊆ 𝑤 ∨ 𝑤 ⊆ 𝑧))) ↔ ∀𝑧(∃𝑥 ∈ 𝐴 𝑧 = ◡𝑥 → (Fun 𝑧 ∧ ∀𝑤(∃𝑥 ∈ 𝐴 𝑤 = ◡𝑥 → (𝑧 ⊆ 𝑤 ∨ 𝑤 ⊆ 𝑧))))) |
47 | 36, 46 | bitr2i 279 |
. . . 4
⊢
(∀𝑧(∃𝑥 ∈ 𝐴 𝑧 = ◡𝑥 → (Fun 𝑧 ∧ ∀𝑤(∃𝑥 ∈ 𝐴 𝑤 = ◡𝑥 → (𝑧 ⊆ 𝑤 ∨ 𝑤 ⊆ 𝑧)))) ↔ ∀𝑧 ∈ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = ◡𝑥} (Fun 𝑧 ∧ ∀𝑤 ∈ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = ◡𝑥} (𝑧 ⊆ 𝑤 ∨ 𝑤 ⊆ 𝑧))) |
48 | 35, 47 | sylib 221 |
. . 3
⊢
(∀𝑓 ∈
𝐴 (Fun ◡𝑓 ∧ ∀𝑔 ∈ 𝐴 (𝑓 ⊆ 𝑔 ∨ 𝑔 ⊆ 𝑓)) → ∀𝑧 ∈ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = ◡𝑥} (Fun 𝑧 ∧ ∀𝑤 ∈ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = ◡𝑥} (𝑧 ⊆ 𝑤 ∨ 𝑤 ⊆ 𝑧))) |
49 | | fununi 6410 |
. . 3
⊢
(∀𝑧 ∈
{𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = ◡𝑥} (Fun 𝑧 ∧ ∀𝑤 ∈ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = ◡𝑥} (𝑧 ⊆ 𝑤 ∨ 𝑤 ⊆ 𝑧)) → Fun ∪
{𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = ◡𝑥}) |
50 | 48, 49 | syl 17 |
. 2
⊢
(∀𝑓 ∈
𝐴 (Fun ◡𝑓 ∧ ∀𝑔 ∈ 𝐴 (𝑓 ⊆ 𝑔 ∨ 𝑔 ⊆ 𝑓)) → Fun ∪
{𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = ◡𝑥}) |
51 | | cnvuni 5726 |
. . . 4
⊢ ◡∪ 𝐴 = ∪ 𝑥 ∈ 𝐴 ◡𝑥 |
52 | | vex 3413 |
. . . . . 6
⊢ 𝑥 ∈ V |
53 | 52 | cnvex 7635 |
. . . . 5
⊢ ◡𝑥 ∈ V |
54 | 53 | dfiun2 4922 |
. . . 4
⊢ ∪ 𝑥 ∈ 𝐴 ◡𝑥 = ∪ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = ◡𝑥} |
55 | 51, 54 | eqtri 2781 |
. . 3
⊢ ◡∪ 𝐴 = ∪
{𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = ◡𝑥} |
56 | 55 | funeqi 6356 |
. 2
⊢ (Fun
◡∪ 𝐴 ↔ Fun ∪ {𝑦
∣ ∃𝑥 ∈
𝐴 𝑦 = ◡𝑥}) |
57 | 50, 56 | sylibr 237 |
1
⊢
(∀𝑓 ∈
𝐴 (Fun ◡𝑓 ∧ ∀𝑔 ∈ 𝐴 (𝑓 ⊆ 𝑔 ∨ 𝑔 ⊆ 𝑓)) → Fun ◡∪ 𝐴) |