MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funcnvuni Structured version   Visualization version   GIF version

Theorem funcnvuni 7628
Description: The union of a chain (with respect to inclusion) of single-rooted sets is single-rooted. (See funcnv 6416 for "single-rooted" definition.) (Contributed by NM, 11-Aug-2004.)
Assertion
Ref Expression
funcnvuni (∀𝑓𝐴 (Fun 𝑓 ∧ ∀𝑔𝐴 (𝑓𝑔𝑔𝑓)) → Fun 𝐴)
Distinct variable group:   𝑓,𝑔,𝐴

Proof of Theorem funcnvuni
Dummy variables 𝑥 𝑦 𝑧 𝑤 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnveq 5737 . . . . . . . 8 (𝑥 = 𝑣𝑥 = 𝑣)
21eqeq2d 2830 . . . . . . 7 (𝑥 = 𝑣 → (𝑧 = 𝑥𝑧 = 𝑣))
32cbvrexvw 3449 . . . . . 6 (∃𝑥𝐴 𝑧 = 𝑥 ↔ ∃𝑣𝐴 𝑧 = 𝑣)
4 cnveq 5737 . . . . . . . . . . 11 (𝑓 = 𝑣𝑓 = 𝑣)
54funeqd 6370 . . . . . . . . . 10 (𝑓 = 𝑣 → (Fun 𝑓 ↔ Fun 𝑣))
6 sseq1 3990 . . . . . . . . . . . 12 (𝑓 = 𝑣 → (𝑓𝑔𝑣𝑔))
7 sseq2 3991 . . . . . . . . . . . 12 (𝑓 = 𝑣 → (𝑔𝑓𝑔𝑣))
86, 7orbi12d 915 . . . . . . . . . . 11 (𝑓 = 𝑣 → ((𝑓𝑔𝑔𝑓) ↔ (𝑣𝑔𝑔𝑣)))
98ralbidv 3195 . . . . . . . . . 10 (𝑓 = 𝑣 → (∀𝑔𝐴 (𝑓𝑔𝑔𝑓) ↔ ∀𝑔𝐴 (𝑣𝑔𝑔𝑣)))
105, 9anbi12d 632 . . . . . . . . 9 (𝑓 = 𝑣 → ((Fun 𝑓 ∧ ∀𝑔𝐴 (𝑓𝑔𝑔𝑓)) ↔ (Fun 𝑣 ∧ ∀𝑔𝐴 (𝑣𝑔𝑔𝑣))))
1110rspcv 3616 . . . . . . . 8 (𝑣𝐴 → (∀𝑓𝐴 (Fun 𝑓 ∧ ∀𝑔𝐴 (𝑓𝑔𝑔𝑓)) → (Fun 𝑣 ∧ ∀𝑔𝐴 (𝑣𝑔𝑔𝑣))))
12 funeq 6368 . . . . . . . . . 10 (𝑧 = 𝑣 → (Fun 𝑧 ↔ Fun 𝑣))
1312biimprcd 252 . . . . . . . . 9 (Fun 𝑣 → (𝑧 = 𝑣 → Fun 𝑧))
14 sseq2 3991 . . . . . . . . . . . . . . 15 (𝑔 = 𝑥 → (𝑣𝑔𝑣𝑥))
15 sseq1 3990 . . . . . . . . . . . . . . 15 (𝑔 = 𝑥 → (𝑔𝑣𝑥𝑣))
1614, 15orbi12d 915 . . . . . . . . . . . . . 14 (𝑔 = 𝑥 → ((𝑣𝑔𝑔𝑣) ↔ (𝑣𝑥𝑥𝑣)))
1716rspcv 3616 . . . . . . . . . . . . 13 (𝑥𝐴 → (∀𝑔𝐴 (𝑣𝑔𝑔𝑣) → (𝑣𝑥𝑥𝑣)))
18 cnvss 5736 . . . . . . . . . . . . . . . 16 (𝑣𝑥𝑣𝑥)
19 cnvss 5736 . . . . . . . . . . . . . . . 16 (𝑥𝑣𝑥𝑣)
2018, 19orim12i 905 . . . . . . . . . . . . . . 15 ((𝑣𝑥𝑥𝑣) → (𝑣𝑥𝑥𝑣))
21 sseq12 3992 . . . . . . . . . . . . . . . . 17 ((𝑧 = 𝑣𝑤 = 𝑥) → (𝑧𝑤𝑣𝑥))
2221ancoms 461 . . . . . . . . . . . . . . . 16 ((𝑤 = 𝑥𝑧 = 𝑣) → (𝑧𝑤𝑣𝑥))
23 sseq12 3992 . . . . . . . . . . . . . . . 16 ((𝑤 = 𝑥𝑧 = 𝑣) → (𝑤𝑧𝑥𝑣))
2422, 23orbi12d 915 . . . . . . . . . . . . . . 15 ((𝑤 = 𝑥𝑧 = 𝑣) → ((𝑧𝑤𝑤𝑧) ↔ (𝑣𝑥𝑥𝑣)))
2520, 24syl5ibrcom 249 . . . . . . . . . . . . . 14 ((𝑣𝑥𝑥𝑣) → ((𝑤 = 𝑥𝑧 = 𝑣) → (𝑧𝑤𝑤𝑧)))
2625expd 418 . . . . . . . . . . . . 13 ((𝑣𝑥𝑥𝑣) → (𝑤 = 𝑥 → (𝑧 = 𝑣 → (𝑧𝑤𝑤𝑧))))
2717, 26syl6com 37 . . . . . . . . . . . 12 (∀𝑔𝐴 (𝑣𝑔𝑔𝑣) → (𝑥𝐴 → (𝑤 = 𝑥 → (𝑧 = 𝑣 → (𝑧𝑤𝑤𝑧)))))
2827rexlimdv 3281 . . . . . . . . . . 11 (∀𝑔𝐴 (𝑣𝑔𝑔𝑣) → (∃𝑥𝐴 𝑤 = 𝑥 → (𝑧 = 𝑣 → (𝑧𝑤𝑤𝑧))))
2928com23 86 . . . . . . . . . 10 (∀𝑔𝐴 (𝑣𝑔𝑔𝑣) → (𝑧 = 𝑣 → (∃𝑥𝐴 𝑤 = 𝑥 → (𝑧𝑤𝑤𝑧))))
3029alrimdv 1924 . . . . . . . . 9 (∀𝑔𝐴 (𝑣𝑔𝑔𝑣) → (𝑧 = 𝑣 → ∀𝑤(∃𝑥𝐴 𝑤 = 𝑥 → (𝑧𝑤𝑤𝑧))))
3113, 30anim12ii 619 . . . . . . . 8 ((Fun 𝑣 ∧ ∀𝑔𝐴 (𝑣𝑔𝑔𝑣)) → (𝑧 = 𝑣 → (Fun 𝑧 ∧ ∀𝑤(∃𝑥𝐴 𝑤 = 𝑥 → (𝑧𝑤𝑤𝑧)))))
3211, 31syl6com 37 . . . . . . 7 (∀𝑓𝐴 (Fun 𝑓 ∧ ∀𝑔𝐴 (𝑓𝑔𝑔𝑓)) → (𝑣𝐴 → (𝑧 = 𝑣 → (Fun 𝑧 ∧ ∀𝑤(∃𝑥𝐴 𝑤 = 𝑥 → (𝑧𝑤𝑤𝑧))))))
3332rexlimdv 3281 . . . . . 6 (∀𝑓𝐴 (Fun 𝑓 ∧ ∀𝑔𝐴 (𝑓𝑔𝑔𝑓)) → (∃𝑣𝐴 𝑧 = 𝑣 → (Fun 𝑧 ∧ ∀𝑤(∃𝑥𝐴 𝑤 = 𝑥 → (𝑧𝑤𝑤𝑧)))))
343, 33syl5bi 244 . . . . 5 (∀𝑓𝐴 (Fun 𝑓 ∧ ∀𝑔𝐴 (𝑓𝑔𝑔𝑓)) → (∃𝑥𝐴 𝑧 = 𝑥 → (Fun 𝑧 ∧ ∀𝑤(∃𝑥𝐴 𝑤 = 𝑥 → (𝑧𝑤𝑤𝑧)))))
3534alrimiv 1922 . . . 4 (∀𝑓𝐴 (Fun 𝑓 ∧ ∀𝑔𝐴 (𝑓𝑔𝑔𝑓)) → ∀𝑧(∃𝑥𝐴 𝑧 = 𝑥 → (Fun 𝑧 ∧ ∀𝑤(∃𝑥𝐴 𝑤 = 𝑥 → (𝑧𝑤𝑤𝑧)))))
36 df-ral 3141 . . . . 5 (∀𝑧 ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝑥} (Fun 𝑧 ∧ ∀𝑤 ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝑥} (𝑧𝑤𝑤𝑧)) ↔ ∀𝑧(𝑧 ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝑥} → (Fun 𝑧 ∧ ∀𝑤 ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝑥} (𝑧𝑤𝑤𝑧))))
37 vex 3496 . . . . . . . 8 𝑧 ∈ V
38 eqeq1 2823 . . . . . . . . 9 (𝑦 = 𝑧 → (𝑦 = 𝑥𝑧 = 𝑥))
3938rexbidv 3295 . . . . . . . 8 (𝑦 = 𝑧 → (∃𝑥𝐴 𝑦 = 𝑥 ↔ ∃𝑥𝐴 𝑧 = 𝑥))
4037, 39elab 3665 . . . . . . 7 (𝑧 ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝑥} ↔ ∃𝑥𝐴 𝑧 = 𝑥)
41 eqeq1 2823 . . . . . . . . . 10 (𝑦 = 𝑤 → (𝑦 = 𝑥𝑤 = 𝑥))
4241rexbidv 3295 . . . . . . . . 9 (𝑦 = 𝑤 → (∃𝑥𝐴 𝑦 = 𝑥 ↔ ∃𝑥𝐴 𝑤 = 𝑥))
4342ralab 3682 . . . . . . . 8 (∀𝑤 ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝑥} (𝑧𝑤𝑤𝑧) ↔ ∀𝑤(∃𝑥𝐴 𝑤 = 𝑥 → (𝑧𝑤𝑤𝑧)))
4443anbi2i 624 . . . . . . 7 ((Fun 𝑧 ∧ ∀𝑤 ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝑥} (𝑧𝑤𝑤𝑧)) ↔ (Fun 𝑧 ∧ ∀𝑤(∃𝑥𝐴 𝑤 = 𝑥 → (𝑧𝑤𝑤𝑧))))
4540, 44imbi12i 353 . . . . . 6 ((𝑧 ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝑥} → (Fun 𝑧 ∧ ∀𝑤 ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝑥} (𝑧𝑤𝑤𝑧))) ↔ (∃𝑥𝐴 𝑧 = 𝑥 → (Fun 𝑧 ∧ ∀𝑤(∃𝑥𝐴 𝑤 = 𝑥 → (𝑧𝑤𝑤𝑧)))))
4645albii 1814 . . . . 5 (∀𝑧(𝑧 ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝑥} → (Fun 𝑧 ∧ ∀𝑤 ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝑥} (𝑧𝑤𝑤𝑧))) ↔ ∀𝑧(∃𝑥𝐴 𝑧 = 𝑥 → (Fun 𝑧 ∧ ∀𝑤(∃𝑥𝐴 𝑤 = 𝑥 → (𝑧𝑤𝑤𝑧)))))
4736, 46bitr2i 278 . . . 4 (∀𝑧(∃𝑥𝐴 𝑧 = 𝑥 → (Fun 𝑧 ∧ ∀𝑤(∃𝑥𝐴 𝑤 = 𝑥 → (𝑧𝑤𝑤𝑧)))) ↔ ∀𝑧 ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝑥} (Fun 𝑧 ∧ ∀𝑤 ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝑥} (𝑧𝑤𝑤𝑧)))
4835, 47sylib 220 . . 3 (∀𝑓𝐴 (Fun 𝑓 ∧ ∀𝑔𝐴 (𝑓𝑔𝑔𝑓)) → ∀𝑧 ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝑥} (Fun 𝑧 ∧ ∀𝑤 ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝑥} (𝑧𝑤𝑤𝑧)))
49 fununi 6422 . . 3 (∀𝑧 ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝑥} (Fun 𝑧 ∧ ∀𝑤 ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝑥} (𝑧𝑤𝑤𝑧)) → Fun {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝑥})
5048, 49syl 17 . 2 (∀𝑓𝐴 (Fun 𝑓 ∧ ∀𝑔𝐴 (𝑓𝑔𝑔𝑓)) → Fun {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝑥})
51 cnvuni 5750 . . . 4 𝐴 = 𝑥𝐴 𝑥
52 vex 3496 . . . . . 6 𝑥 ∈ V
5352cnvex 7622 . . . . 5 𝑥 ∈ V
5453dfiun2 4949 . . . 4 𝑥𝐴 𝑥 = {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝑥}
5551, 54eqtri 2842 . . 3 𝐴 = {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝑥}
5655funeqi 6369 . 2 (Fun 𝐴 ↔ Fun {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝑥})
5750, 56sylibr 236 1 (∀𝑓𝐴 (Fun 𝑓 ∧ ∀𝑔𝐴 (𝑓𝑔𝑔𝑓)) → Fun 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  wo 843  wal 1529   = wceq 1531  wcel 2108  {cab 2797  wral 3136  wrex 3137  wss 3934   cuni 4830   ciun 4910  ccnv 5547  Fun wfun 6342
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1905  ax-6 1964  ax-7 2009  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2154  ax-12 2170  ax-ext 2791  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1084  df-tru 1534  df-ex 1775  df-nf 1779  df-sb 2064  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ral 3141  df-rex 3142  df-rab 3145  df-v 3495  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-op 4566  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-id 5453  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-fun 6350
This theorem is referenced by:  fun11uni  7629
  Copyright terms: Public domain W3C validator