MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funcnvuni Structured version   Visualization version   GIF version

Theorem funcnvuni 7618
Description: The union of a chain (with respect to inclusion) of single-rooted sets is single-rooted. (See funcnv 6393 for "single-rooted" definition.) (Contributed by NM, 11-Aug-2004.)
Assertion
Ref Expression
funcnvuni (∀𝑓𝐴 (Fun 𝑓 ∧ ∀𝑔𝐴 (𝑓𝑔𝑔𝑓)) → Fun 𝐴)
Distinct variable group:   𝑓,𝑔,𝐴

Proof of Theorem funcnvuni
Dummy variables 𝑥 𝑦 𝑧 𝑤 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnveq 5708 . . . . . . . 8 (𝑥 = 𝑣𝑥 = 𝑣)
21eqeq2d 2809 . . . . . . 7 (𝑥 = 𝑣 → (𝑧 = 𝑥𝑧 = 𝑣))
32cbvrexvw 3397 . . . . . 6 (∃𝑥𝐴 𝑧 = 𝑥 ↔ ∃𝑣𝐴 𝑧 = 𝑣)
4 cnveq 5708 . . . . . . . . . . 11 (𝑓 = 𝑣𝑓 = 𝑣)
54funeqd 6346 . . . . . . . . . 10 (𝑓 = 𝑣 → (Fun 𝑓 ↔ Fun 𝑣))
6 sseq1 3940 . . . . . . . . . . . 12 (𝑓 = 𝑣 → (𝑓𝑔𝑣𝑔))
7 sseq2 3941 . . . . . . . . . . . 12 (𝑓 = 𝑣 → (𝑔𝑓𝑔𝑣))
86, 7orbi12d 916 . . . . . . . . . . 11 (𝑓 = 𝑣 → ((𝑓𝑔𝑔𝑓) ↔ (𝑣𝑔𝑔𝑣)))
98ralbidv 3162 . . . . . . . . . 10 (𝑓 = 𝑣 → (∀𝑔𝐴 (𝑓𝑔𝑔𝑓) ↔ ∀𝑔𝐴 (𝑣𝑔𝑔𝑣)))
105, 9anbi12d 633 . . . . . . . . 9 (𝑓 = 𝑣 → ((Fun 𝑓 ∧ ∀𝑔𝐴 (𝑓𝑔𝑔𝑓)) ↔ (Fun 𝑣 ∧ ∀𝑔𝐴 (𝑣𝑔𝑔𝑣))))
1110rspcv 3566 . . . . . . . 8 (𝑣𝐴 → (∀𝑓𝐴 (Fun 𝑓 ∧ ∀𝑔𝐴 (𝑓𝑔𝑔𝑓)) → (Fun 𝑣 ∧ ∀𝑔𝐴 (𝑣𝑔𝑔𝑣))))
12 funeq 6344 . . . . . . . . . 10 (𝑧 = 𝑣 → (Fun 𝑧 ↔ Fun 𝑣))
1312biimprcd 253 . . . . . . . . 9 (Fun 𝑣 → (𝑧 = 𝑣 → Fun 𝑧))
14 sseq2 3941 . . . . . . . . . . . . . . 15 (𝑔 = 𝑥 → (𝑣𝑔𝑣𝑥))
15 sseq1 3940 . . . . . . . . . . . . . . 15 (𝑔 = 𝑥 → (𝑔𝑣𝑥𝑣))
1614, 15orbi12d 916 . . . . . . . . . . . . . 14 (𝑔 = 𝑥 → ((𝑣𝑔𝑔𝑣) ↔ (𝑣𝑥𝑥𝑣)))
1716rspcv 3566 . . . . . . . . . . . . 13 (𝑥𝐴 → (∀𝑔𝐴 (𝑣𝑔𝑔𝑣) → (𝑣𝑥𝑥𝑣)))
18 cnvss 5707 . . . . . . . . . . . . . . . 16 (𝑣𝑥𝑣𝑥)
19 cnvss 5707 . . . . . . . . . . . . . . . 16 (𝑥𝑣𝑥𝑣)
2018, 19orim12i 906 . . . . . . . . . . . . . . 15 ((𝑣𝑥𝑥𝑣) → (𝑣𝑥𝑥𝑣))
21 sseq12 3942 . . . . . . . . . . . . . . . . 17 ((𝑧 = 𝑣𝑤 = 𝑥) → (𝑧𝑤𝑣𝑥))
2221ancoms 462 . . . . . . . . . . . . . . . 16 ((𝑤 = 𝑥𝑧 = 𝑣) → (𝑧𝑤𝑣𝑥))
23 sseq12 3942 . . . . . . . . . . . . . . . 16 ((𝑤 = 𝑥𝑧 = 𝑣) → (𝑤𝑧𝑥𝑣))
2422, 23orbi12d 916 . . . . . . . . . . . . . . 15 ((𝑤 = 𝑥𝑧 = 𝑣) → ((𝑧𝑤𝑤𝑧) ↔ (𝑣𝑥𝑥𝑣)))
2520, 24syl5ibrcom 250 . . . . . . . . . . . . . 14 ((𝑣𝑥𝑥𝑣) → ((𝑤 = 𝑥𝑧 = 𝑣) → (𝑧𝑤𝑤𝑧)))
2625expd 419 . . . . . . . . . . . . 13 ((𝑣𝑥𝑥𝑣) → (𝑤 = 𝑥 → (𝑧 = 𝑣 → (𝑧𝑤𝑤𝑧))))
2717, 26syl6com 37 . . . . . . . . . . . 12 (∀𝑔𝐴 (𝑣𝑔𝑔𝑣) → (𝑥𝐴 → (𝑤 = 𝑥 → (𝑧 = 𝑣 → (𝑧𝑤𝑤𝑧)))))
2827rexlimdv 3242 . . . . . . . . . . 11 (∀𝑔𝐴 (𝑣𝑔𝑔𝑣) → (∃𝑥𝐴 𝑤 = 𝑥 → (𝑧 = 𝑣 → (𝑧𝑤𝑤𝑧))))
2928com23 86 . . . . . . . . . 10 (∀𝑔𝐴 (𝑣𝑔𝑔𝑣) → (𝑧 = 𝑣 → (∃𝑥𝐴 𝑤 = 𝑥 → (𝑧𝑤𝑤𝑧))))
3029alrimdv 1930 . . . . . . . . 9 (∀𝑔𝐴 (𝑣𝑔𝑔𝑣) → (𝑧 = 𝑣 → ∀𝑤(∃𝑥𝐴 𝑤 = 𝑥 → (𝑧𝑤𝑤𝑧))))
3113, 30anim12ii 620 . . . . . . . 8 ((Fun 𝑣 ∧ ∀𝑔𝐴 (𝑣𝑔𝑔𝑣)) → (𝑧 = 𝑣 → (Fun 𝑧 ∧ ∀𝑤(∃𝑥𝐴 𝑤 = 𝑥 → (𝑧𝑤𝑤𝑧)))))
3211, 31syl6com 37 . . . . . . 7 (∀𝑓𝐴 (Fun 𝑓 ∧ ∀𝑔𝐴 (𝑓𝑔𝑔𝑓)) → (𝑣𝐴 → (𝑧 = 𝑣 → (Fun 𝑧 ∧ ∀𝑤(∃𝑥𝐴 𝑤 = 𝑥 → (𝑧𝑤𝑤𝑧))))))
3332rexlimdv 3242 . . . . . 6 (∀𝑓𝐴 (Fun 𝑓 ∧ ∀𝑔𝐴 (𝑓𝑔𝑔𝑓)) → (∃𝑣𝐴 𝑧 = 𝑣 → (Fun 𝑧 ∧ ∀𝑤(∃𝑥𝐴 𝑤 = 𝑥 → (𝑧𝑤𝑤𝑧)))))
343, 33syl5bi 245 . . . . 5 (∀𝑓𝐴 (Fun 𝑓 ∧ ∀𝑔𝐴 (𝑓𝑔𝑔𝑓)) → (∃𝑥𝐴 𝑧 = 𝑥 → (Fun 𝑧 ∧ ∀𝑤(∃𝑥𝐴 𝑤 = 𝑥 → (𝑧𝑤𝑤𝑧)))))
3534alrimiv 1928 . . . 4 (∀𝑓𝐴 (Fun 𝑓 ∧ ∀𝑔𝐴 (𝑓𝑔𝑔𝑓)) → ∀𝑧(∃𝑥𝐴 𝑧 = 𝑥 → (Fun 𝑧 ∧ ∀𝑤(∃𝑥𝐴 𝑤 = 𝑥 → (𝑧𝑤𝑤𝑧)))))
36 df-ral 3111 . . . . 5 (∀𝑧 ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝑥} (Fun 𝑧 ∧ ∀𝑤 ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝑥} (𝑧𝑤𝑤𝑧)) ↔ ∀𝑧(𝑧 ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝑥} → (Fun 𝑧 ∧ ∀𝑤 ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝑥} (𝑧𝑤𝑤𝑧))))
37 vex 3444 . . . . . . . 8 𝑧 ∈ V
38 eqeq1 2802 . . . . . . . . 9 (𝑦 = 𝑧 → (𝑦 = 𝑥𝑧 = 𝑥))
3938rexbidv 3256 . . . . . . . 8 (𝑦 = 𝑧 → (∃𝑥𝐴 𝑦 = 𝑥 ↔ ∃𝑥𝐴 𝑧 = 𝑥))
4037, 39elab 3615 . . . . . . 7 (𝑧 ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝑥} ↔ ∃𝑥𝐴 𝑧 = 𝑥)
41 eqeq1 2802 . . . . . . . . . 10 (𝑦 = 𝑤 → (𝑦 = 𝑥𝑤 = 𝑥))
4241rexbidv 3256 . . . . . . . . 9 (𝑦 = 𝑤 → (∃𝑥𝐴 𝑦 = 𝑥 ↔ ∃𝑥𝐴 𝑤 = 𝑥))
4342ralab 3632 . . . . . . . 8 (∀𝑤 ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝑥} (𝑧𝑤𝑤𝑧) ↔ ∀𝑤(∃𝑥𝐴 𝑤 = 𝑥 → (𝑧𝑤𝑤𝑧)))
4443anbi2i 625 . . . . . . 7 ((Fun 𝑧 ∧ ∀𝑤 ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝑥} (𝑧𝑤𝑤𝑧)) ↔ (Fun 𝑧 ∧ ∀𝑤(∃𝑥𝐴 𝑤 = 𝑥 → (𝑧𝑤𝑤𝑧))))
4540, 44imbi12i 354 . . . . . 6 ((𝑧 ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝑥} → (Fun 𝑧 ∧ ∀𝑤 ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝑥} (𝑧𝑤𝑤𝑧))) ↔ (∃𝑥𝐴 𝑧 = 𝑥 → (Fun 𝑧 ∧ ∀𝑤(∃𝑥𝐴 𝑤 = 𝑥 → (𝑧𝑤𝑤𝑧)))))
4645albii 1821 . . . . 5 (∀𝑧(𝑧 ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝑥} → (Fun 𝑧 ∧ ∀𝑤 ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝑥} (𝑧𝑤𝑤𝑧))) ↔ ∀𝑧(∃𝑥𝐴 𝑧 = 𝑥 → (Fun 𝑧 ∧ ∀𝑤(∃𝑥𝐴 𝑤 = 𝑥 → (𝑧𝑤𝑤𝑧)))))
4736, 46bitr2i 279 . . . 4 (∀𝑧(∃𝑥𝐴 𝑧 = 𝑥 → (Fun 𝑧 ∧ ∀𝑤(∃𝑥𝐴 𝑤 = 𝑥 → (𝑧𝑤𝑤𝑧)))) ↔ ∀𝑧 ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝑥} (Fun 𝑧 ∧ ∀𝑤 ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝑥} (𝑧𝑤𝑤𝑧)))
4835, 47sylib 221 . . 3 (∀𝑓𝐴 (Fun 𝑓 ∧ ∀𝑔𝐴 (𝑓𝑔𝑔𝑓)) → ∀𝑧 ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝑥} (Fun 𝑧 ∧ ∀𝑤 ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝑥} (𝑧𝑤𝑤𝑧)))
49 fununi 6399 . . 3 (∀𝑧 ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝑥} (Fun 𝑧 ∧ ∀𝑤 ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝑥} (𝑧𝑤𝑤𝑧)) → Fun {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝑥})
5048, 49syl 17 . 2 (∀𝑓𝐴 (Fun 𝑓 ∧ ∀𝑔𝐴 (𝑓𝑔𝑔𝑓)) → Fun {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝑥})
51 cnvuni 5721 . . . 4 𝐴 = 𝑥𝐴 𝑥
52 vex 3444 . . . . . 6 𝑥 ∈ V
5352cnvex 7612 . . . . 5 𝑥 ∈ V
5453dfiun2 4920 . . . 4 𝑥𝐴 𝑥 = {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝑥}
5551, 54eqtri 2821 . . 3 𝐴 = {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝑥}
5655funeqi 6345 . 2 (Fun 𝐴 ↔ Fun {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝑥})
5750, 56sylibr 237 1 (∀𝑓𝐴 (Fun 𝑓 ∧ ∀𝑔𝐴 (𝑓𝑔𝑔𝑓)) → Fun 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  wo 844  wal 1536   = wceq 1538  wcel 2111  {cab 2776  wral 3106  wrex 3107  wss 3881   cuni 4800   ciun 4881  ccnv 5518  Fun wfun 6318
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-fun 6326
This theorem is referenced by:  fun11uni  7619
  Copyright terms: Public domain W3C validator