| Step | Hyp | Ref
| Expression |
| 1 | | ismrcd.f |
. . 3
⊢ (𝜑 → 𝐹:𝒫 𝐵⟶𝒫 𝐵) |
| 2 | 1 | ffnd 6737 |
. 2
⊢ (𝜑 → 𝐹 Fn 𝒫 𝐵) |
| 3 | | ismrcd.b |
. . . 4
⊢ (𝜑 → 𝐵 ∈ 𝑉) |
| 4 | | ismrcd.e |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ⊆ 𝐵) → 𝑥 ⊆ (𝐹‘𝑥)) |
| 5 | | ismrcd.m |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ⊆ 𝐵 ∧ 𝑦 ⊆ 𝑥) → (𝐹‘𝑦) ⊆ (𝐹‘𝑥)) |
| 6 | | ismrcd.i |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ⊆ 𝐵) → (𝐹‘(𝐹‘𝑥)) = (𝐹‘𝑥)) |
| 7 | 3, 1, 4, 5, 6 | ismrcd1 42709 |
. . 3
⊢ (𝜑 → dom (𝐹 ∩ I ) ∈ (Moore‘𝐵)) |
| 8 | | eqid 2737 |
. . . 4
⊢
(mrCls‘dom (𝐹
∩ I )) = (mrCls‘dom (𝐹 ∩ I )) |
| 9 | 8 | mrcf 17652 |
. . 3
⊢ (dom
(𝐹 ∩ I ) ∈
(Moore‘𝐵) →
(mrCls‘dom (𝐹 ∩ I
)):𝒫 𝐵⟶dom
(𝐹 ∩ I
)) |
| 10 | | ffn 6736 |
. . 3
⊢
((mrCls‘dom (𝐹
∩ I )):𝒫 𝐵⟶dom (𝐹 ∩ I ) → (mrCls‘dom (𝐹 ∩ I )) Fn 𝒫 𝐵) |
| 11 | 7, 9, 10 | 3syl 18 |
. 2
⊢ (𝜑 → (mrCls‘dom (𝐹 ∩ I )) Fn 𝒫 𝐵) |
| 12 | 7, 8 | mrcssvd 17666 |
. . . . . 6
⊢ (𝜑 → ((mrCls‘dom (𝐹 ∩ I ))‘𝑧) ⊆ 𝐵) |
| 13 | 12 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝑧 ∈ 𝒫 𝐵) → ((mrCls‘dom (𝐹 ∩ I ))‘𝑧) ⊆ 𝐵) |
| 14 | | elpwi 4607 |
. . . . . 6
⊢ (𝑧 ∈ 𝒫 𝐵 → 𝑧 ⊆ 𝐵) |
| 15 | 8 | mrcssid 17660 |
. . . . . 6
⊢ ((dom
(𝐹 ∩ I ) ∈
(Moore‘𝐵) ∧ 𝑧 ⊆ 𝐵) → 𝑧 ⊆ ((mrCls‘dom (𝐹 ∩ I ))‘𝑧)) |
| 16 | 7, 14, 15 | syl2an 596 |
. . . . 5
⊢ ((𝜑 ∧ 𝑧 ∈ 𝒫 𝐵) → 𝑧 ⊆ ((mrCls‘dom (𝐹 ∩ I ))‘𝑧)) |
| 17 | 5 | 3expib 1123 |
. . . . . . . 8
⊢ (𝜑 → ((𝑥 ⊆ 𝐵 ∧ 𝑦 ⊆ 𝑥) → (𝐹‘𝑦) ⊆ (𝐹‘𝑥))) |
| 18 | 17 | alrimivv 1928 |
. . . . . . 7
⊢ (𝜑 → ∀𝑦∀𝑥((𝑥 ⊆ 𝐵 ∧ 𝑦 ⊆ 𝑥) → (𝐹‘𝑦) ⊆ (𝐹‘𝑥))) |
| 19 | | vex 3484 |
. . . . . . . 8
⊢ 𝑧 ∈ V |
| 20 | | fvex 6919 |
. . . . . . . 8
⊢
((mrCls‘dom (𝐹
∩ I ))‘𝑧) ∈
V |
| 21 | | sseq1 4009 |
. . . . . . . . . . . 12
⊢ (𝑥 = ((mrCls‘dom (𝐹 ∩ I ))‘𝑧) → (𝑥 ⊆ 𝐵 ↔ ((mrCls‘dom (𝐹 ∩ I ))‘𝑧) ⊆ 𝐵)) |
| 22 | 21 | adantl 481 |
. . . . . . . . . . 11
⊢ ((𝑦 = 𝑧 ∧ 𝑥 = ((mrCls‘dom (𝐹 ∩ I ))‘𝑧)) → (𝑥 ⊆ 𝐵 ↔ ((mrCls‘dom (𝐹 ∩ I ))‘𝑧) ⊆ 𝐵)) |
| 23 | | sseq12 4011 |
. . . . . . . . . . 11
⊢ ((𝑦 = 𝑧 ∧ 𝑥 = ((mrCls‘dom (𝐹 ∩ I ))‘𝑧)) → (𝑦 ⊆ 𝑥 ↔ 𝑧 ⊆ ((mrCls‘dom (𝐹 ∩ I ))‘𝑧))) |
| 24 | 22, 23 | anbi12d 632 |
. . . . . . . . . 10
⊢ ((𝑦 = 𝑧 ∧ 𝑥 = ((mrCls‘dom (𝐹 ∩ I ))‘𝑧)) → ((𝑥 ⊆ 𝐵 ∧ 𝑦 ⊆ 𝑥) ↔ (((mrCls‘dom (𝐹 ∩ I ))‘𝑧) ⊆ 𝐵 ∧ 𝑧 ⊆ ((mrCls‘dom (𝐹 ∩ I ))‘𝑧)))) |
| 25 | | fveq2 6906 |
. . . . . . . . . . 11
⊢ (𝑦 = 𝑧 → (𝐹‘𝑦) = (𝐹‘𝑧)) |
| 26 | | fveq2 6906 |
. . . . . . . . . . 11
⊢ (𝑥 = ((mrCls‘dom (𝐹 ∩ I ))‘𝑧) → (𝐹‘𝑥) = (𝐹‘((mrCls‘dom (𝐹 ∩ I ))‘𝑧))) |
| 27 | | sseq12 4011 |
. . . . . . . . . . 11
⊢ (((𝐹‘𝑦) = (𝐹‘𝑧) ∧ (𝐹‘𝑥) = (𝐹‘((mrCls‘dom (𝐹 ∩ I ))‘𝑧))) → ((𝐹‘𝑦) ⊆ (𝐹‘𝑥) ↔ (𝐹‘𝑧) ⊆ (𝐹‘((mrCls‘dom (𝐹 ∩ I ))‘𝑧)))) |
| 28 | 25, 26, 27 | syl2an 596 |
. . . . . . . . . 10
⊢ ((𝑦 = 𝑧 ∧ 𝑥 = ((mrCls‘dom (𝐹 ∩ I ))‘𝑧)) → ((𝐹‘𝑦) ⊆ (𝐹‘𝑥) ↔ (𝐹‘𝑧) ⊆ (𝐹‘((mrCls‘dom (𝐹 ∩ I ))‘𝑧)))) |
| 29 | 24, 28 | imbi12d 344 |
. . . . . . . . 9
⊢ ((𝑦 = 𝑧 ∧ 𝑥 = ((mrCls‘dom (𝐹 ∩ I ))‘𝑧)) → (((𝑥 ⊆ 𝐵 ∧ 𝑦 ⊆ 𝑥) → (𝐹‘𝑦) ⊆ (𝐹‘𝑥)) ↔ ((((mrCls‘dom (𝐹 ∩ I ))‘𝑧) ⊆ 𝐵 ∧ 𝑧 ⊆ ((mrCls‘dom (𝐹 ∩ I ))‘𝑧)) → (𝐹‘𝑧) ⊆ (𝐹‘((mrCls‘dom (𝐹 ∩ I ))‘𝑧))))) |
| 30 | 29 | spc2gv 3600 |
. . . . . . . 8
⊢ ((𝑧 ∈ V ∧
((mrCls‘dom (𝐹 ∩
I ))‘𝑧) ∈ V)
→ (∀𝑦∀𝑥((𝑥 ⊆ 𝐵 ∧ 𝑦 ⊆ 𝑥) → (𝐹‘𝑦) ⊆ (𝐹‘𝑥)) → ((((mrCls‘dom (𝐹 ∩ I ))‘𝑧) ⊆ 𝐵 ∧ 𝑧 ⊆ ((mrCls‘dom (𝐹 ∩ I ))‘𝑧)) → (𝐹‘𝑧) ⊆ (𝐹‘((mrCls‘dom (𝐹 ∩ I ))‘𝑧))))) |
| 31 | 19, 20, 30 | mp2an 692 |
. . . . . . 7
⊢
(∀𝑦∀𝑥((𝑥 ⊆ 𝐵 ∧ 𝑦 ⊆ 𝑥) → (𝐹‘𝑦) ⊆ (𝐹‘𝑥)) → ((((mrCls‘dom (𝐹 ∩ I ))‘𝑧) ⊆ 𝐵 ∧ 𝑧 ⊆ ((mrCls‘dom (𝐹 ∩ I ))‘𝑧)) → (𝐹‘𝑧) ⊆ (𝐹‘((mrCls‘dom (𝐹 ∩ I ))‘𝑧)))) |
| 32 | 18, 31 | syl 17 |
. . . . . 6
⊢ (𝜑 → ((((mrCls‘dom (𝐹 ∩ I ))‘𝑧) ⊆ 𝐵 ∧ 𝑧 ⊆ ((mrCls‘dom (𝐹 ∩ I ))‘𝑧)) → (𝐹‘𝑧) ⊆ (𝐹‘((mrCls‘dom (𝐹 ∩ I ))‘𝑧)))) |
| 33 | 32 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝑧 ∈ 𝒫 𝐵) → ((((mrCls‘dom (𝐹 ∩ I ))‘𝑧) ⊆ 𝐵 ∧ 𝑧 ⊆ ((mrCls‘dom (𝐹 ∩ I ))‘𝑧)) → (𝐹‘𝑧) ⊆ (𝐹‘((mrCls‘dom (𝐹 ∩ I ))‘𝑧)))) |
| 34 | 13, 16, 33 | mp2and 699 |
. . . 4
⊢ ((𝜑 ∧ 𝑧 ∈ 𝒫 𝐵) → (𝐹‘𝑧) ⊆ (𝐹‘((mrCls‘dom (𝐹 ∩ I ))‘𝑧))) |
| 35 | 8 | mrccl 17654 |
. . . . . 6
⊢ ((dom
(𝐹 ∩ I ) ∈
(Moore‘𝐵) ∧ 𝑧 ⊆ 𝐵) → ((mrCls‘dom (𝐹 ∩ I ))‘𝑧) ∈ dom (𝐹 ∩ I )) |
| 36 | 7, 14, 35 | syl2an 596 |
. . . . 5
⊢ ((𝜑 ∧ 𝑧 ∈ 𝒫 𝐵) → ((mrCls‘dom (𝐹 ∩ I ))‘𝑧) ∈ dom (𝐹 ∩ I )) |
| 37 | 2 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ 𝒫 𝐵) → 𝐹 Fn 𝒫 𝐵) |
| 38 | 20 | elpw 4604 |
. . . . . . . 8
⊢
(((mrCls‘dom (𝐹 ∩ I ))‘𝑧) ∈ 𝒫 𝐵 ↔ ((mrCls‘dom (𝐹 ∩ I ))‘𝑧) ⊆ 𝐵) |
| 39 | 12, 38 | sylibr 234 |
. . . . . . 7
⊢ (𝜑 → ((mrCls‘dom (𝐹 ∩ I ))‘𝑧) ∈ 𝒫 𝐵) |
| 40 | 39 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ 𝒫 𝐵) → ((mrCls‘dom (𝐹 ∩ I ))‘𝑧) ∈ 𝒫 𝐵) |
| 41 | | fnelfp 7195 |
. . . . . 6
⊢ ((𝐹 Fn 𝒫 𝐵 ∧ ((mrCls‘dom (𝐹 ∩ I ))‘𝑧) ∈ 𝒫 𝐵) → (((mrCls‘dom (𝐹 ∩ I ))‘𝑧) ∈ dom (𝐹 ∩ I ) ↔ (𝐹‘((mrCls‘dom (𝐹 ∩ I ))‘𝑧)) = ((mrCls‘dom (𝐹 ∩ I ))‘𝑧))) |
| 42 | 37, 40, 41 | syl2anc 584 |
. . . . 5
⊢ ((𝜑 ∧ 𝑧 ∈ 𝒫 𝐵) → (((mrCls‘dom (𝐹 ∩ I ))‘𝑧) ∈ dom (𝐹 ∩ I ) ↔ (𝐹‘((mrCls‘dom (𝐹 ∩ I ))‘𝑧)) = ((mrCls‘dom (𝐹 ∩ I ))‘𝑧))) |
| 43 | 36, 42 | mpbid 232 |
. . . 4
⊢ ((𝜑 ∧ 𝑧 ∈ 𝒫 𝐵) → (𝐹‘((mrCls‘dom (𝐹 ∩ I ))‘𝑧)) = ((mrCls‘dom (𝐹 ∩ I ))‘𝑧)) |
| 44 | 34, 43 | sseqtrd 4020 |
. . 3
⊢ ((𝜑 ∧ 𝑧 ∈ 𝒫 𝐵) → (𝐹‘𝑧) ⊆ ((mrCls‘dom (𝐹 ∩ I ))‘𝑧)) |
| 45 | 7 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 𝑧 ∈ 𝒫 𝐵) → dom (𝐹 ∩ I ) ∈ (Moore‘𝐵)) |
| 46 | | sseq1 4009 |
. . . . . . . 8
⊢ (𝑥 = 𝑧 → (𝑥 ⊆ 𝐵 ↔ 𝑧 ⊆ 𝐵)) |
| 47 | 46 | anbi2d 630 |
. . . . . . 7
⊢ (𝑥 = 𝑧 → ((𝜑 ∧ 𝑥 ⊆ 𝐵) ↔ (𝜑 ∧ 𝑧 ⊆ 𝐵))) |
| 48 | | id 22 |
. . . . . . . 8
⊢ (𝑥 = 𝑧 → 𝑥 = 𝑧) |
| 49 | | fveq2 6906 |
. . . . . . . 8
⊢ (𝑥 = 𝑧 → (𝐹‘𝑥) = (𝐹‘𝑧)) |
| 50 | 48, 49 | sseq12d 4017 |
. . . . . . 7
⊢ (𝑥 = 𝑧 → (𝑥 ⊆ (𝐹‘𝑥) ↔ 𝑧 ⊆ (𝐹‘𝑧))) |
| 51 | 47, 50 | imbi12d 344 |
. . . . . 6
⊢ (𝑥 = 𝑧 → (((𝜑 ∧ 𝑥 ⊆ 𝐵) → 𝑥 ⊆ (𝐹‘𝑥)) ↔ ((𝜑 ∧ 𝑧 ⊆ 𝐵) → 𝑧 ⊆ (𝐹‘𝑧)))) |
| 52 | 51, 4 | chvarvv 1998 |
. . . . 5
⊢ ((𝜑 ∧ 𝑧 ⊆ 𝐵) → 𝑧 ⊆ (𝐹‘𝑧)) |
| 53 | 14, 52 | sylan2 593 |
. . . 4
⊢ ((𝜑 ∧ 𝑧 ∈ 𝒫 𝐵) → 𝑧 ⊆ (𝐹‘𝑧)) |
| 54 | | 2fveq3 6911 |
. . . . . . . . 9
⊢ (𝑥 = 𝑧 → (𝐹‘(𝐹‘𝑥)) = (𝐹‘(𝐹‘𝑧))) |
| 55 | 54, 49 | eqeq12d 2753 |
. . . . . . . 8
⊢ (𝑥 = 𝑧 → ((𝐹‘(𝐹‘𝑥)) = (𝐹‘𝑥) ↔ (𝐹‘(𝐹‘𝑧)) = (𝐹‘𝑧))) |
| 56 | 47, 55 | imbi12d 344 |
. . . . . . 7
⊢ (𝑥 = 𝑧 → (((𝜑 ∧ 𝑥 ⊆ 𝐵) → (𝐹‘(𝐹‘𝑥)) = (𝐹‘𝑥)) ↔ ((𝜑 ∧ 𝑧 ⊆ 𝐵) → (𝐹‘(𝐹‘𝑧)) = (𝐹‘𝑧)))) |
| 57 | 56, 6 | chvarvv 1998 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ⊆ 𝐵) → (𝐹‘(𝐹‘𝑧)) = (𝐹‘𝑧)) |
| 58 | 14, 57 | sylan2 593 |
. . . . 5
⊢ ((𝜑 ∧ 𝑧 ∈ 𝒫 𝐵) → (𝐹‘(𝐹‘𝑧)) = (𝐹‘𝑧)) |
| 59 | 1 | ffvelcdmda 7104 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ 𝒫 𝐵) → (𝐹‘𝑧) ∈ 𝒫 𝐵) |
| 60 | | fnelfp 7195 |
. . . . . 6
⊢ ((𝐹 Fn 𝒫 𝐵 ∧ (𝐹‘𝑧) ∈ 𝒫 𝐵) → ((𝐹‘𝑧) ∈ dom (𝐹 ∩ I ) ↔ (𝐹‘(𝐹‘𝑧)) = (𝐹‘𝑧))) |
| 61 | 37, 59, 60 | syl2anc 584 |
. . . . 5
⊢ ((𝜑 ∧ 𝑧 ∈ 𝒫 𝐵) → ((𝐹‘𝑧) ∈ dom (𝐹 ∩ I ) ↔ (𝐹‘(𝐹‘𝑧)) = (𝐹‘𝑧))) |
| 62 | 58, 61 | mpbird 257 |
. . . 4
⊢ ((𝜑 ∧ 𝑧 ∈ 𝒫 𝐵) → (𝐹‘𝑧) ∈ dom (𝐹 ∩ I )) |
| 63 | 8 | mrcsscl 17663 |
. . . 4
⊢ ((dom
(𝐹 ∩ I ) ∈
(Moore‘𝐵) ∧ 𝑧 ⊆ (𝐹‘𝑧) ∧ (𝐹‘𝑧) ∈ dom (𝐹 ∩ I )) → ((mrCls‘dom (𝐹 ∩ I ))‘𝑧) ⊆ (𝐹‘𝑧)) |
| 64 | 45, 53, 62, 63 | syl3anc 1373 |
. . 3
⊢ ((𝜑 ∧ 𝑧 ∈ 𝒫 𝐵) → ((mrCls‘dom (𝐹 ∩ I ))‘𝑧) ⊆ (𝐹‘𝑧)) |
| 65 | 44, 64 | eqssd 4001 |
. 2
⊢ ((𝜑 ∧ 𝑧 ∈ 𝒫 𝐵) → (𝐹‘𝑧) = ((mrCls‘dom (𝐹 ∩ I ))‘𝑧)) |
| 66 | 2, 11, 65 | eqfnfvd 7054 |
1
⊢ (𝜑 → 𝐹 = (mrCls‘dom (𝐹 ∩ I ))) |