Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ismrcd2 Structured version   Visualization version   GIF version

Theorem ismrcd2 41739
Description: Second half of ismrcd1 41738. (Contributed by Stefan O'Rear, 1-Feb-2015.)
Hypotheses
Ref Expression
ismrcd.b (πœ‘ β†’ 𝐡 ∈ 𝑉)
ismrcd.f (πœ‘ β†’ 𝐹:𝒫 π΅βŸΆπ’« 𝐡)
ismrcd.e ((πœ‘ ∧ π‘₯ βŠ† 𝐡) β†’ π‘₯ βŠ† (πΉβ€˜π‘₯))
ismrcd.m ((πœ‘ ∧ π‘₯ βŠ† 𝐡 ∧ 𝑦 βŠ† π‘₯) β†’ (πΉβ€˜π‘¦) βŠ† (πΉβ€˜π‘₯))
ismrcd.i ((πœ‘ ∧ π‘₯ βŠ† 𝐡) β†’ (πΉβ€˜(πΉβ€˜π‘₯)) = (πΉβ€˜π‘₯))
Assertion
Ref Expression
ismrcd2 (πœ‘ β†’ 𝐹 = (mrClsβ€˜dom (𝐹 ∩ I )))
Distinct variable groups:   πœ‘,π‘₯,𝑦   π‘₯,𝐡,𝑦   π‘₯,𝐹,𝑦   π‘₯,𝑉,𝑦

Proof of Theorem ismrcd2
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 ismrcd.f . . 3 (πœ‘ β†’ 𝐹:𝒫 π΅βŸΆπ’« 𝐡)
21ffnd 6717 . 2 (πœ‘ β†’ 𝐹 Fn 𝒫 𝐡)
3 ismrcd.b . . . 4 (πœ‘ β†’ 𝐡 ∈ 𝑉)
4 ismrcd.e . . . 4 ((πœ‘ ∧ π‘₯ βŠ† 𝐡) β†’ π‘₯ βŠ† (πΉβ€˜π‘₯))
5 ismrcd.m . . . 4 ((πœ‘ ∧ π‘₯ βŠ† 𝐡 ∧ 𝑦 βŠ† π‘₯) β†’ (πΉβ€˜π‘¦) βŠ† (πΉβ€˜π‘₯))
6 ismrcd.i . . . 4 ((πœ‘ ∧ π‘₯ βŠ† 𝐡) β†’ (πΉβ€˜(πΉβ€˜π‘₯)) = (πΉβ€˜π‘₯))
73, 1, 4, 5, 6ismrcd1 41738 . . 3 (πœ‘ β†’ dom (𝐹 ∩ I ) ∈ (Mooreβ€˜π΅))
8 eqid 2730 . . . 4 (mrClsβ€˜dom (𝐹 ∩ I )) = (mrClsβ€˜dom (𝐹 ∩ I ))
98mrcf 17557 . . 3 (dom (𝐹 ∩ I ) ∈ (Mooreβ€˜π΅) β†’ (mrClsβ€˜dom (𝐹 ∩ I )):𝒫 𝐡⟢dom (𝐹 ∩ I ))
10 ffn 6716 . . 3 ((mrClsβ€˜dom (𝐹 ∩ I )):𝒫 𝐡⟢dom (𝐹 ∩ I ) β†’ (mrClsβ€˜dom (𝐹 ∩ I )) Fn 𝒫 𝐡)
117, 9, 103syl 18 . 2 (πœ‘ β†’ (mrClsβ€˜dom (𝐹 ∩ I )) Fn 𝒫 𝐡)
127, 8mrcssvd 17571 . . . . . 6 (πœ‘ β†’ ((mrClsβ€˜dom (𝐹 ∩ I ))β€˜π‘§) βŠ† 𝐡)
1312adantr 479 . . . . 5 ((πœ‘ ∧ 𝑧 ∈ 𝒫 𝐡) β†’ ((mrClsβ€˜dom (𝐹 ∩ I ))β€˜π‘§) βŠ† 𝐡)
14 elpwi 4608 . . . . . 6 (𝑧 ∈ 𝒫 𝐡 β†’ 𝑧 βŠ† 𝐡)
158mrcssid 17565 . . . . . 6 ((dom (𝐹 ∩ I ) ∈ (Mooreβ€˜π΅) ∧ 𝑧 βŠ† 𝐡) β†’ 𝑧 βŠ† ((mrClsβ€˜dom (𝐹 ∩ I ))β€˜π‘§))
167, 14, 15syl2an 594 . . . . 5 ((πœ‘ ∧ 𝑧 ∈ 𝒫 𝐡) β†’ 𝑧 βŠ† ((mrClsβ€˜dom (𝐹 ∩ I ))β€˜π‘§))
1753expib 1120 . . . . . . . 8 (πœ‘ β†’ ((π‘₯ βŠ† 𝐡 ∧ 𝑦 βŠ† π‘₯) β†’ (πΉβ€˜π‘¦) βŠ† (πΉβ€˜π‘₯)))
1817alrimivv 1929 . . . . . . 7 (πœ‘ β†’ βˆ€π‘¦βˆ€π‘₯((π‘₯ βŠ† 𝐡 ∧ 𝑦 βŠ† π‘₯) β†’ (πΉβ€˜π‘¦) βŠ† (πΉβ€˜π‘₯)))
19 vex 3476 . . . . . . . 8 𝑧 ∈ V
20 fvex 6903 . . . . . . . 8 ((mrClsβ€˜dom (𝐹 ∩ I ))β€˜π‘§) ∈ V
21 sseq1 4006 . . . . . . . . . . . 12 (π‘₯ = ((mrClsβ€˜dom (𝐹 ∩ I ))β€˜π‘§) β†’ (π‘₯ βŠ† 𝐡 ↔ ((mrClsβ€˜dom (𝐹 ∩ I ))β€˜π‘§) βŠ† 𝐡))
2221adantl 480 . . . . . . . . . . 11 ((𝑦 = 𝑧 ∧ π‘₯ = ((mrClsβ€˜dom (𝐹 ∩ I ))β€˜π‘§)) β†’ (π‘₯ βŠ† 𝐡 ↔ ((mrClsβ€˜dom (𝐹 ∩ I ))β€˜π‘§) βŠ† 𝐡))
23 sseq12 4008 . . . . . . . . . . 11 ((𝑦 = 𝑧 ∧ π‘₯ = ((mrClsβ€˜dom (𝐹 ∩ I ))β€˜π‘§)) β†’ (𝑦 βŠ† π‘₯ ↔ 𝑧 βŠ† ((mrClsβ€˜dom (𝐹 ∩ I ))β€˜π‘§)))
2422, 23anbi12d 629 . . . . . . . . . 10 ((𝑦 = 𝑧 ∧ π‘₯ = ((mrClsβ€˜dom (𝐹 ∩ I ))β€˜π‘§)) β†’ ((π‘₯ βŠ† 𝐡 ∧ 𝑦 βŠ† π‘₯) ↔ (((mrClsβ€˜dom (𝐹 ∩ I ))β€˜π‘§) βŠ† 𝐡 ∧ 𝑧 βŠ† ((mrClsβ€˜dom (𝐹 ∩ I ))β€˜π‘§))))
25 fveq2 6890 . . . . . . . . . . 11 (𝑦 = 𝑧 β†’ (πΉβ€˜π‘¦) = (πΉβ€˜π‘§))
26 fveq2 6890 . . . . . . . . . . 11 (π‘₯ = ((mrClsβ€˜dom (𝐹 ∩ I ))β€˜π‘§) β†’ (πΉβ€˜π‘₯) = (πΉβ€˜((mrClsβ€˜dom (𝐹 ∩ I ))β€˜π‘§)))
27 sseq12 4008 . . . . . . . . . . 11 (((πΉβ€˜π‘¦) = (πΉβ€˜π‘§) ∧ (πΉβ€˜π‘₯) = (πΉβ€˜((mrClsβ€˜dom (𝐹 ∩ I ))β€˜π‘§))) β†’ ((πΉβ€˜π‘¦) βŠ† (πΉβ€˜π‘₯) ↔ (πΉβ€˜π‘§) βŠ† (πΉβ€˜((mrClsβ€˜dom (𝐹 ∩ I ))β€˜π‘§))))
2825, 26, 27syl2an 594 . . . . . . . . . 10 ((𝑦 = 𝑧 ∧ π‘₯ = ((mrClsβ€˜dom (𝐹 ∩ I ))β€˜π‘§)) β†’ ((πΉβ€˜π‘¦) βŠ† (πΉβ€˜π‘₯) ↔ (πΉβ€˜π‘§) βŠ† (πΉβ€˜((mrClsβ€˜dom (𝐹 ∩ I ))β€˜π‘§))))
2924, 28imbi12d 343 . . . . . . . . 9 ((𝑦 = 𝑧 ∧ π‘₯ = ((mrClsβ€˜dom (𝐹 ∩ I ))β€˜π‘§)) β†’ (((π‘₯ βŠ† 𝐡 ∧ 𝑦 βŠ† π‘₯) β†’ (πΉβ€˜π‘¦) βŠ† (πΉβ€˜π‘₯)) ↔ ((((mrClsβ€˜dom (𝐹 ∩ I ))β€˜π‘§) βŠ† 𝐡 ∧ 𝑧 βŠ† ((mrClsβ€˜dom (𝐹 ∩ I ))β€˜π‘§)) β†’ (πΉβ€˜π‘§) βŠ† (πΉβ€˜((mrClsβ€˜dom (𝐹 ∩ I ))β€˜π‘§)))))
3029spc2gv 3589 . . . . . . . 8 ((𝑧 ∈ V ∧ ((mrClsβ€˜dom (𝐹 ∩ I ))β€˜π‘§) ∈ V) β†’ (βˆ€π‘¦βˆ€π‘₯((π‘₯ βŠ† 𝐡 ∧ 𝑦 βŠ† π‘₯) β†’ (πΉβ€˜π‘¦) βŠ† (πΉβ€˜π‘₯)) β†’ ((((mrClsβ€˜dom (𝐹 ∩ I ))β€˜π‘§) βŠ† 𝐡 ∧ 𝑧 βŠ† ((mrClsβ€˜dom (𝐹 ∩ I ))β€˜π‘§)) β†’ (πΉβ€˜π‘§) βŠ† (πΉβ€˜((mrClsβ€˜dom (𝐹 ∩ I ))β€˜π‘§)))))
3119, 20, 30mp2an 688 . . . . . . 7 (βˆ€π‘¦βˆ€π‘₯((π‘₯ βŠ† 𝐡 ∧ 𝑦 βŠ† π‘₯) β†’ (πΉβ€˜π‘¦) βŠ† (πΉβ€˜π‘₯)) β†’ ((((mrClsβ€˜dom (𝐹 ∩ I ))β€˜π‘§) βŠ† 𝐡 ∧ 𝑧 βŠ† ((mrClsβ€˜dom (𝐹 ∩ I ))β€˜π‘§)) β†’ (πΉβ€˜π‘§) βŠ† (πΉβ€˜((mrClsβ€˜dom (𝐹 ∩ I ))β€˜π‘§))))
3218, 31syl 17 . . . . . 6 (πœ‘ β†’ ((((mrClsβ€˜dom (𝐹 ∩ I ))β€˜π‘§) βŠ† 𝐡 ∧ 𝑧 βŠ† ((mrClsβ€˜dom (𝐹 ∩ I ))β€˜π‘§)) β†’ (πΉβ€˜π‘§) βŠ† (πΉβ€˜((mrClsβ€˜dom (𝐹 ∩ I ))β€˜π‘§))))
3332adantr 479 . . . . 5 ((πœ‘ ∧ 𝑧 ∈ 𝒫 𝐡) β†’ ((((mrClsβ€˜dom (𝐹 ∩ I ))β€˜π‘§) βŠ† 𝐡 ∧ 𝑧 βŠ† ((mrClsβ€˜dom (𝐹 ∩ I ))β€˜π‘§)) β†’ (πΉβ€˜π‘§) βŠ† (πΉβ€˜((mrClsβ€˜dom (𝐹 ∩ I ))β€˜π‘§))))
3413, 16, 33mp2and 695 . . . 4 ((πœ‘ ∧ 𝑧 ∈ 𝒫 𝐡) β†’ (πΉβ€˜π‘§) βŠ† (πΉβ€˜((mrClsβ€˜dom (𝐹 ∩ I ))β€˜π‘§)))
358mrccl 17559 . . . . . 6 ((dom (𝐹 ∩ I ) ∈ (Mooreβ€˜π΅) ∧ 𝑧 βŠ† 𝐡) β†’ ((mrClsβ€˜dom (𝐹 ∩ I ))β€˜π‘§) ∈ dom (𝐹 ∩ I ))
367, 14, 35syl2an 594 . . . . 5 ((πœ‘ ∧ 𝑧 ∈ 𝒫 𝐡) β†’ ((mrClsβ€˜dom (𝐹 ∩ I ))β€˜π‘§) ∈ dom (𝐹 ∩ I ))
372adantr 479 . . . . . 6 ((πœ‘ ∧ 𝑧 ∈ 𝒫 𝐡) β†’ 𝐹 Fn 𝒫 𝐡)
3820elpw 4605 . . . . . . . 8 (((mrClsβ€˜dom (𝐹 ∩ I ))β€˜π‘§) ∈ 𝒫 𝐡 ↔ ((mrClsβ€˜dom (𝐹 ∩ I ))β€˜π‘§) βŠ† 𝐡)
3912, 38sylibr 233 . . . . . . 7 (πœ‘ β†’ ((mrClsβ€˜dom (𝐹 ∩ I ))β€˜π‘§) ∈ 𝒫 𝐡)
4039adantr 479 . . . . . 6 ((πœ‘ ∧ 𝑧 ∈ 𝒫 𝐡) β†’ ((mrClsβ€˜dom (𝐹 ∩ I ))β€˜π‘§) ∈ 𝒫 𝐡)
41 fnelfp 7174 . . . . . 6 ((𝐹 Fn 𝒫 𝐡 ∧ ((mrClsβ€˜dom (𝐹 ∩ I ))β€˜π‘§) ∈ 𝒫 𝐡) β†’ (((mrClsβ€˜dom (𝐹 ∩ I ))β€˜π‘§) ∈ dom (𝐹 ∩ I ) ↔ (πΉβ€˜((mrClsβ€˜dom (𝐹 ∩ I ))β€˜π‘§)) = ((mrClsβ€˜dom (𝐹 ∩ I ))β€˜π‘§)))
4237, 40, 41syl2anc 582 . . . . 5 ((πœ‘ ∧ 𝑧 ∈ 𝒫 𝐡) β†’ (((mrClsβ€˜dom (𝐹 ∩ I ))β€˜π‘§) ∈ dom (𝐹 ∩ I ) ↔ (πΉβ€˜((mrClsβ€˜dom (𝐹 ∩ I ))β€˜π‘§)) = ((mrClsβ€˜dom (𝐹 ∩ I ))β€˜π‘§)))
4336, 42mpbid 231 . . . 4 ((πœ‘ ∧ 𝑧 ∈ 𝒫 𝐡) β†’ (πΉβ€˜((mrClsβ€˜dom (𝐹 ∩ I ))β€˜π‘§)) = ((mrClsβ€˜dom (𝐹 ∩ I ))β€˜π‘§))
4434, 43sseqtrd 4021 . . 3 ((πœ‘ ∧ 𝑧 ∈ 𝒫 𝐡) β†’ (πΉβ€˜π‘§) βŠ† ((mrClsβ€˜dom (𝐹 ∩ I ))β€˜π‘§))
457adantr 479 . . . 4 ((πœ‘ ∧ 𝑧 ∈ 𝒫 𝐡) β†’ dom (𝐹 ∩ I ) ∈ (Mooreβ€˜π΅))
46 sseq1 4006 . . . . . . . 8 (π‘₯ = 𝑧 β†’ (π‘₯ βŠ† 𝐡 ↔ 𝑧 βŠ† 𝐡))
4746anbi2d 627 . . . . . . 7 (π‘₯ = 𝑧 β†’ ((πœ‘ ∧ π‘₯ βŠ† 𝐡) ↔ (πœ‘ ∧ 𝑧 βŠ† 𝐡)))
48 id 22 . . . . . . . 8 (π‘₯ = 𝑧 β†’ π‘₯ = 𝑧)
49 fveq2 6890 . . . . . . . 8 (π‘₯ = 𝑧 β†’ (πΉβ€˜π‘₯) = (πΉβ€˜π‘§))
5048, 49sseq12d 4014 . . . . . . 7 (π‘₯ = 𝑧 β†’ (π‘₯ βŠ† (πΉβ€˜π‘₯) ↔ 𝑧 βŠ† (πΉβ€˜π‘§)))
5147, 50imbi12d 343 . . . . . 6 (π‘₯ = 𝑧 β†’ (((πœ‘ ∧ π‘₯ βŠ† 𝐡) β†’ π‘₯ βŠ† (πΉβ€˜π‘₯)) ↔ ((πœ‘ ∧ 𝑧 βŠ† 𝐡) β†’ 𝑧 βŠ† (πΉβ€˜π‘§))))
5251, 4chvarvv 2000 . . . . 5 ((πœ‘ ∧ 𝑧 βŠ† 𝐡) β†’ 𝑧 βŠ† (πΉβ€˜π‘§))
5314, 52sylan2 591 . . . 4 ((πœ‘ ∧ 𝑧 ∈ 𝒫 𝐡) β†’ 𝑧 βŠ† (πΉβ€˜π‘§))
54 2fveq3 6895 . . . . . . . . 9 (π‘₯ = 𝑧 β†’ (πΉβ€˜(πΉβ€˜π‘₯)) = (πΉβ€˜(πΉβ€˜π‘§)))
5554, 49eqeq12d 2746 . . . . . . . 8 (π‘₯ = 𝑧 β†’ ((πΉβ€˜(πΉβ€˜π‘₯)) = (πΉβ€˜π‘₯) ↔ (πΉβ€˜(πΉβ€˜π‘§)) = (πΉβ€˜π‘§)))
5647, 55imbi12d 343 . . . . . . 7 (π‘₯ = 𝑧 β†’ (((πœ‘ ∧ π‘₯ βŠ† 𝐡) β†’ (πΉβ€˜(πΉβ€˜π‘₯)) = (πΉβ€˜π‘₯)) ↔ ((πœ‘ ∧ 𝑧 βŠ† 𝐡) β†’ (πΉβ€˜(πΉβ€˜π‘§)) = (πΉβ€˜π‘§))))
5756, 6chvarvv 2000 . . . . . 6 ((πœ‘ ∧ 𝑧 βŠ† 𝐡) β†’ (πΉβ€˜(πΉβ€˜π‘§)) = (πΉβ€˜π‘§))
5814, 57sylan2 591 . . . . 5 ((πœ‘ ∧ 𝑧 ∈ 𝒫 𝐡) β†’ (πΉβ€˜(πΉβ€˜π‘§)) = (πΉβ€˜π‘§))
591ffvelcdmda 7085 . . . . . 6 ((πœ‘ ∧ 𝑧 ∈ 𝒫 𝐡) β†’ (πΉβ€˜π‘§) ∈ 𝒫 𝐡)
60 fnelfp 7174 . . . . . 6 ((𝐹 Fn 𝒫 𝐡 ∧ (πΉβ€˜π‘§) ∈ 𝒫 𝐡) β†’ ((πΉβ€˜π‘§) ∈ dom (𝐹 ∩ I ) ↔ (πΉβ€˜(πΉβ€˜π‘§)) = (πΉβ€˜π‘§)))
6137, 59, 60syl2anc 582 . . . . 5 ((πœ‘ ∧ 𝑧 ∈ 𝒫 𝐡) β†’ ((πΉβ€˜π‘§) ∈ dom (𝐹 ∩ I ) ↔ (πΉβ€˜(πΉβ€˜π‘§)) = (πΉβ€˜π‘§)))
6258, 61mpbird 256 . . . 4 ((πœ‘ ∧ 𝑧 ∈ 𝒫 𝐡) β†’ (πΉβ€˜π‘§) ∈ dom (𝐹 ∩ I ))
638mrcsscl 17568 . . . 4 ((dom (𝐹 ∩ I ) ∈ (Mooreβ€˜π΅) ∧ 𝑧 βŠ† (πΉβ€˜π‘§) ∧ (πΉβ€˜π‘§) ∈ dom (𝐹 ∩ I )) β†’ ((mrClsβ€˜dom (𝐹 ∩ I ))β€˜π‘§) βŠ† (πΉβ€˜π‘§))
6445, 53, 62, 63syl3anc 1369 . . 3 ((πœ‘ ∧ 𝑧 ∈ 𝒫 𝐡) β†’ ((mrClsβ€˜dom (𝐹 ∩ I ))β€˜π‘§) βŠ† (πΉβ€˜π‘§))
6544, 64eqssd 3998 . 2 ((πœ‘ ∧ 𝑧 ∈ 𝒫 𝐡) β†’ (πΉβ€˜π‘§) = ((mrClsβ€˜dom (𝐹 ∩ I ))β€˜π‘§))
662, 11, 65eqfnfvd 7034 1 (πœ‘ β†’ 𝐹 = (mrClsβ€˜dom (𝐹 ∩ I )))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 394   ∧ w3a 1085  βˆ€wal 1537   = wceq 1539   ∈ wcel 2104  Vcvv 3472   ∩ cin 3946   βŠ† wss 3947  π’« cpw 4601   I cid 5572  dom cdm 5675   Fn wfn 6537  βŸΆwf 6538  β€˜cfv 6542  Moorecmre 17530  mrClscmrc 17531
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7727
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-fv 6550  df-mre 17534  df-mrc 17535
This theorem is referenced by:  istopclsd  41740  ismrc  41741
  Copyright terms: Public domain W3C validator