Step | Hyp | Ref
| Expression |
1 | | ismrcd.f |
. . 3
⊢ (𝜑 → 𝐹:𝒫 𝐵⟶𝒫 𝐵) |
2 | 1 | ffnd 6585 |
. 2
⊢ (𝜑 → 𝐹 Fn 𝒫 𝐵) |
3 | | ismrcd.b |
. . . 4
⊢ (𝜑 → 𝐵 ∈ 𝑉) |
4 | | ismrcd.e |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ⊆ 𝐵) → 𝑥 ⊆ (𝐹‘𝑥)) |
5 | | ismrcd.m |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ⊆ 𝐵 ∧ 𝑦 ⊆ 𝑥) → (𝐹‘𝑦) ⊆ (𝐹‘𝑥)) |
6 | | ismrcd.i |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ⊆ 𝐵) → (𝐹‘(𝐹‘𝑥)) = (𝐹‘𝑥)) |
7 | 3, 1, 4, 5, 6 | ismrcd1 40436 |
. . 3
⊢ (𝜑 → dom (𝐹 ∩ I ) ∈ (Moore‘𝐵)) |
8 | | eqid 2738 |
. . . 4
⊢
(mrCls‘dom (𝐹
∩ I )) = (mrCls‘dom (𝐹 ∩ I )) |
9 | 8 | mrcf 17235 |
. . 3
⊢ (dom
(𝐹 ∩ I ) ∈
(Moore‘𝐵) →
(mrCls‘dom (𝐹 ∩ I
)):𝒫 𝐵⟶dom
(𝐹 ∩ I
)) |
10 | | ffn 6584 |
. . 3
⊢
((mrCls‘dom (𝐹
∩ I )):𝒫 𝐵⟶dom (𝐹 ∩ I ) → (mrCls‘dom (𝐹 ∩ I )) Fn 𝒫 𝐵) |
11 | 7, 9, 10 | 3syl 18 |
. 2
⊢ (𝜑 → (mrCls‘dom (𝐹 ∩ I )) Fn 𝒫 𝐵) |
12 | 7, 8 | mrcssvd 17249 |
. . . . . 6
⊢ (𝜑 → ((mrCls‘dom (𝐹 ∩ I ))‘𝑧) ⊆ 𝐵) |
13 | 12 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝑧 ∈ 𝒫 𝐵) → ((mrCls‘dom (𝐹 ∩ I ))‘𝑧) ⊆ 𝐵) |
14 | | elpwi 4539 |
. . . . . 6
⊢ (𝑧 ∈ 𝒫 𝐵 → 𝑧 ⊆ 𝐵) |
15 | 8 | mrcssid 17243 |
. . . . . 6
⊢ ((dom
(𝐹 ∩ I ) ∈
(Moore‘𝐵) ∧ 𝑧 ⊆ 𝐵) → 𝑧 ⊆ ((mrCls‘dom (𝐹 ∩ I ))‘𝑧)) |
16 | 7, 14, 15 | syl2an 595 |
. . . . 5
⊢ ((𝜑 ∧ 𝑧 ∈ 𝒫 𝐵) → 𝑧 ⊆ ((mrCls‘dom (𝐹 ∩ I ))‘𝑧)) |
17 | 5 | 3expib 1120 |
. . . . . . . 8
⊢ (𝜑 → ((𝑥 ⊆ 𝐵 ∧ 𝑦 ⊆ 𝑥) → (𝐹‘𝑦) ⊆ (𝐹‘𝑥))) |
18 | 17 | alrimivv 1932 |
. . . . . . 7
⊢ (𝜑 → ∀𝑦∀𝑥((𝑥 ⊆ 𝐵 ∧ 𝑦 ⊆ 𝑥) → (𝐹‘𝑦) ⊆ (𝐹‘𝑥))) |
19 | | vex 3426 |
. . . . . . . 8
⊢ 𝑧 ∈ V |
20 | | fvex 6769 |
. . . . . . . 8
⊢
((mrCls‘dom (𝐹
∩ I ))‘𝑧) ∈
V |
21 | | sseq1 3942 |
. . . . . . . . . . . 12
⊢ (𝑥 = ((mrCls‘dom (𝐹 ∩ I ))‘𝑧) → (𝑥 ⊆ 𝐵 ↔ ((mrCls‘dom (𝐹 ∩ I ))‘𝑧) ⊆ 𝐵)) |
22 | 21 | adantl 481 |
. . . . . . . . . . 11
⊢ ((𝑦 = 𝑧 ∧ 𝑥 = ((mrCls‘dom (𝐹 ∩ I ))‘𝑧)) → (𝑥 ⊆ 𝐵 ↔ ((mrCls‘dom (𝐹 ∩ I ))‘𝑧) ⊆ 𝐵)) |
23 | | sseq12 3944 |
. . . . . . . . . . 11
⊢ ((𝑦 = 𝑧 ∧ 𝑥 = ((mrCls‘dom (𝐹 ∩ I ))‘𝑧)) → (𝑦 ⊆ 𝑥 ↔ 𝑧 ⊆ ((mrCls‘dom (𝐹 ∩ I ))‘𝑧))) |
24 | 22, 23 | anbi12d 630 |
. . . . . . . . . 10
⊢ ((𝑦 = 𝑧 ∧ 𝑥 = ((mrCls‘dom (𝐹 ∩ I ))‘𝑧)) → ((𝑥 ⊆ 𝐵 ∧ 𝑦 ⊆ 𝑥) ↔ (((mrCls‘dom (𝐹 ∩ I ))‘𝑧) ⊆ 𝐵 ∧ 𝑧 ⊆ ((mrCls‘dom (𝐹 ∩ I ))‘𝑧)))) |
25 | | fveq2 6756 |
. . . . . . . . . . 11
⊢ (𝑦 = 𝑧 → (𝐹‘𝑦) = (𝐹‘𝑧)) |
26 | | fveq2 6756 |
. . . . . . . . . . 11
⊢ (𝑥 = ((mrCls‘dom (𝐹 ∩ I ))‘𝑧) → (𝐹‘𝑥) = (𝐹‘((mrCls‘dom (𝐹 ∩ I ))‘𝑧))) |
27 | | sseq12 3944 |
. . . . . . . . . . 11
⊢ (((𝐹‘𝑦) = (𝐹‘𝑧) ∧ (𝐹‘𝑥) = (𝐹‘((mrCls‘dom (𝐹 ∩ I ))‘𝑧))) → ((𝐹‘𝑦) ⊆ (𝐹‘𝑥) ↔ (𝐹‘𝑧) ⊆ (𝐹‘((mrCls‘dom (𝐹 ∩ I ))‘𝑧)))) |
28 | 25, 26, 27 | syl2an 595 |
. . . . . . . . . 10
⊢ ((𝑦 = 𝑧 ∧ 𝑥 = ((mrCls‘dom (𝐹 ∩ I ))‘𝑧)) → ((𝐹‘𝑦) ⊆ (𝐹‘𝑥) ↔ (𝐹‘𝑧) ⊆ (𝐹‘((mrCls‘dom (𝐹 ∩ I ))‘𝑧)))) |
29 | 24, 28 | imbi12d 344 |
. . . . . . . . 9
⊢ ((𝑦 = 𝑧 ∧ 𝑥 = ((mrCls‘dom (𝐹 ∩ I ))‘𝑧)) → (((𝑥 ⊆ 𝐵 ∧ 𝑦 ⊆ 𝑥) → (𝐹‘𝑦) ⊆ (𝐹‘𝑥)) ↔ ((((mrCls‘dom (𝐹 ∩ I ))‘𝑧) ⊆ 𝐵 ∧ 𝑧 ⊆ ((mrCls‘dom (𝐹 ∩ I ))‘𝑧)) → (𝐹‘𝑧) ⊆ (𝐹‘((mrCls‘dom (𝐹 ∩ I ))‘𝑧))))) |
30 | 29 | spc2gv 3529 |
. . . . . . . 8
⊢ ((𝑧 ∈ V ∧
((mrCls‘dom (𝐹 ∩
I ))‘𝑧) ∈ V)
→ (∀𝑦∀𝑥((𝑥 ⊆ 𝐵 ∧ 𝑦 ⊆ 𝑥) → (𝐹‘𝑦) ⊆ (𝐹‘𝑥)) → ((((mrCls‘dom (𝐹 ∩ I ))‘𝑧) ⊆ 𝐵 ∧ 𝑧 ⊆ ((mrCls‘dom (𝐹 ∩ I ))‘𝑧)) → (𝐹‘𝑧) ⊆ (𝐹‘((mrCls‘dom (𝐹 ∩ I ))‘𝑧))))) |
31 | 19, 20, 30 | mp2an 688 |
. . . . . . 7
⊢
(∀𝑦∀𝑥((𝑥 ⊆ 𝐵 ∧ 𝑦 ⊆ 𝑥) → (𝐹‘𝑦) ⊆ (𝐹‘𝑥)) → ((((mrCls‘dom (𝐹 ∩ I ))‘𝑧) ⊆ 𝐵 ∧ 𝑧 ⊆ ((mrCls‘dom (𝐹 ∩ I ))‘𝑧)) → (𝐹‘𝑧) ⊆ (𝐹‘((mrCls‘dom (𝐹 ∩ I ))‘𝑧)))) |
32 | 18, 31 | syl 17 |
. . . . . 6
⊢ (𝜑 → ((((mrCls‘dom (𝐹 ∩ I ))‘𝑧) ⊆ 𝐵 ∧ 𝑧 ⊆ ((mrCls‘dom (𝐹 ∩ I ))‘𝑧)) → (𝐹‘𝑧) ⊆ (𝐹‘((mrCls‘dom (𝐹 ∩ I ))‘𝑧)))) |
33 | 32 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝑧 ∈ 𝒫 𝐵) → ((((mrCls‘dom (𝐹 ∩ I ))‘𝑧) ⊆ 𝐵 ∧ 𝑧 ⊆ ((mrCls‘dom (𝐹 ∩ I ))‘𝑧)) → (𝐹‘𝑧) ⊆ (𝐹‘((mrCls‘dom (𝐹 ∩ I ))‘𝑧)))) |
34 | 13, 16, 33 | mp2and 695 |
. . . 4
⊢ ((𝜑 ∧ 𝑧 ∈ 𝒫 𝐵) → (𝐹‘𝑧) ⊆ (𝐹‘((mrCls‘dom (𝐹 ∩ I ))‘𝑧))) |
35 | 8 | mrccl 17237 |
. . . . . 6
⊢ ((dom
(𝐹 ∩ I ) ∈
(Moore‘𝐵) ∧ 𝑧 ⊆ 𝐵) → ((mrCls‘dom (𝐹 ∩ I ))‘𝑧) ∈ dom (𝐹 ∩ I )) |
36 | 7, 14, 35 | syl2an 595 |
. . . . 5
⊢ ((𝜑 ∧ 𝑧 ∈ 𝒫 𝐵) → ((mrCls‘dom (𝐹 ∩ I ))‘𝑧) ∈ dom (𝐹 ∩ I )) |
37 | 2 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ 𝒫 𝐵) → 𝐹 Fn 𝒫 𝐵) |
38 | 20 | elpw 4534 |
. . . . . . . 8
⊢
(((mrCls‘dom (𝐹 ∩ I ))‘𝑧) ∈ 𝒫 𝐵 ↔ ((mrCls‘dom (𝐹 ∩ I ))‘𝑧) ⊆ 𝐵) |
39 | 12, 38 | sylibr 233 |
. . . . . . 7
⊢ (𝜑 → ((mrCls‘dom (𝐹 ∩ I ))‘𝑧) ∈ 𝒫 𝐵) |
40 | 39 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ 𝒫 𝐵) → ((mrCls‘dom (𝐹 ∩ I ))‘𝑧) ∈ 𝒫 𝐵) |
41 | | fnelfp 7029 |
. . . . . 6
⊢ ((𝐹 Fn 𝒫 𝐵 ∧ ((mrCls‘dom (𝐹 ∩ I ))‘𝑧) ∈ 𝒫 𝐵) → (((mrCls‘dom (𝐹 ∩ I ))‘𝑧) ∈ dom (𝐹 ∩ I ) ↔ (𝐹‘((mrCls‘dom (𝐹 ∩ I ))‘𝑧)) = ((mrCls‘dom (𝐹 ∩ I ))‘𝑧))) |
42 | 37, 40, 41 | syl2anc 583 |
. . . . 5
⊢ ((𝜑 ∧ 𝑧 ∈ 𝒫 𝐵) → (((mrCls‘dom (𝐹 ∩ I ))‘𝑧) ∈ dom (𝐹 ∩ I ) ↔ (𝐹‘((mrCls‘dom (𝐹 ∩ I ))‘𝑧)) = ((mrCls‘dom (𝐹 ∩ I ))‘𝑧))) |
43 | 36, 42 | mpbid 231 |
. . . 4
⊢ ((𝜑 ∧ 𝑧 ∈ 𝒫 𝐵) → (𝐹‘((mrCls‘dom (𝐹 ∩ I ))‘𝑧)) = ((mrCls‘dom (𝐹 ∩ I ))‘𝑧)) |
44 | 34, 43 | sseqtrd 3957 |
. . 3
⊢ ((𝜑 ∧ 𝑧 ∈ 𝒫 𝐵) → (𝐹‘𝑧) ⊆ ((mrCls‘dom (𝐹 ∩ I ))‘𝑧)) |
45 | 7 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 𝑧 ∈ 𝒫 𝐵) → dom (𝐹 ∩ I ) ∈ (Moore‘𝐵)) |
46 | | sseq1 3942 |
. . . . . . . 8
⊢ (𝑥 = 𝑧 → (𝑥 ⊆ 𝐵 ↔ 𝑧 ⊆ 𝐵)) |
47 | 46 | anbi2d 628 |
. . . . . . 7
⊢ (𝑥 = 𝑧 → ((𝜑 ∧ 𝑥 ⊆ 𝐵) ↔ (𝜑 ∧ 𝑧 ⊆ 𝐵))) |
48 | | id 22 |
. . . . . . . 8
⊢ (𝑥 = 𝑧 → 𝑥 = 𝑧) |
49 | | fveq2 6756 |
. . . . . . . 8
⊢ (𝑥 = 𝑧 → (𝐹‘𝑥) = (𝐹‘𝑧)) |
50 | 48, 49 | sseq12d 3950 |
. . . . . . 7
⊢ (𝑥 = 𝑧 → (𝑥 ⊆ (𝐹‘𝑥) ↔ 𝑧 ⊆ (𝐹‘𝑧))) |
51 | 47, 50 | imbi12d 344 |
. . . . . 6
⊢ (𝑥 = 𝑧 → (((𝜑 ∧ 𝑥 ⊆ 𝐵) → 𝑥 ⊆ (𝐹‘𝑥)) ↔ ((𝜑 ∧ 𝑧 ⊆ 𝐵) → 𝑧 ⊆ (𝐹‘𝑧)))) |
52 | 51, 4 | chvarvv 2003 |
. . . . 5
⊢ ((𝜑 ∧ 𝑧 ⊆ 𝐵) → 𝑧 ⊆ (𝐹‘𝑧)) |
53 | 14, 52 | sylan2 592 |
. . . 4
⊢ ((𝜑 ∧ 𝑧 ∈ 𝒫 𝐵) → 𝑧 ⊆ (𝐹‘𝑧)) |
54 | | 2fveq3 6761 |
. . . . . . . . 9
⊢ (𝑥 = 𝑧 → (𝐹‘(𝐹‘𝑥)) = (𝐹‘(𝐹‘𝑧))) |
55 | 54, 49 | eqeq12d 2754 |
. . . . . . . 8
⊢ (𝑥 = 𝑧 → ((𝐹‘(𝐹‘𝑥)) = (𝐹‘𝑥) ↔ (𝐹‘(𝐹‘𝑧)) = (𝐹‘𝑧))) |
56 | 47, 55 | imbi12d 344 |
. . . . . . 7
⊢ (𝑥 = 𝑧 → (((𝜑 ∧ 𝑥 ⊆ 𝐵) → (𝐹‘(𝐹‘𝑥)) = (𝐹‘𝑥)) ↔ ((𝜑 ∧ 𝑧 ⊆ 𝐵) → (𝐹‘(𝐹‘𝑧)) = (𝐹‘𝑧)))) |
57 | 56, 6 | chvarvv 2003 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ⊆ 𝐵) → (𝐹‘(𝐹‘𝑧)) = (𝐹‘𝑧)) |
58 | 14, 57 | sylan2 592 |
. . . . 5
⊢ ((𝜑 ∧ 𝑧 ∈ 𝒫 𝐵) → (𝐹‘(𝐹‘𝑧)) = (𝐹‘𝑧)) |
59 | 1 | ffvelrnda 6943 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ 𝒫 𝐵) → (𝐹‘𝑧) ∈ 𝒫 𝐵) |
60 | | fnelfp 7029 |
. . . . . 6
⊢ ((𝐹 Fn 𝒫 𝐵 ∧ (𝐹‘𝑧) ∈ 𝒫 𝐵) → ((𝐹‘𝑧) ∈ dom (𝐹 ∩ I ) ↔ (𝐹‘(𝐹‘𝑧)) = (𝐹‘𝑧))) |
61 | 37, 59, 60 | syl2anc 583 |
. . . . 5
⊢ ((𝜑 ∧ 𝑧 ∈ 𝒫 𝐵) → ((𝐹‘𝑧) ∈ dom (𝐹 ∩ I ) ↔ (𝐹‘(𝐹‘𝑧)) = (𝐹‘𝑧))) |
62 | 58, 61 | mpbird 256 |
. . . 4
⊢ ((𝜑 ∧ 𝑧 ∈ 𝒫 𝐵) → (𝐹‘𝑧) ∈ dom (𝐹 ∩ I )) |
63 | 8 | mrcsscl 17246 |
. . . 4
⊢ ((dom
(𝐹 ∩ I ) ∈
(Moore‘𝐵) ∧ 𝑧 ⊆ (𝐹‘𝑧) ∧ (𝐹‘𝑧) ∈ dom (𝐹 ∩ I )) → ((mrCls‘dom (𝐹 ∩ I ))‘𝑧) ⊆ (𝐹‘𝑧)) |
64 | 45, 53, 62, 63 | syl3anc 1369 |
. . 3
⊢ ((𝜑 ∧ 𝑧 ∈ 𝒫 𝐵) → ((mrCls‘dom (𝐹 ∩ I ))‘𝑧) ⊆ (𝐹‘𝑧)) |
65 | 44, 64 | eqssd 3934 |
. 2
⊢ ((𝜑 ∧ 𝑧 ∈ 𝒫 𝐵) → (𝐹‘𝑧) = ((mrCls‘dom (𝐹 ∩ I ))‘𝑧)) |
66 | 2, 11, 65 | eqfnfvd 6894 |
1
⊢ (𝜑 → 𝐹 = (mrCls‘dom (𝐹 ∩ I ))) |