Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  funpsstri Structured version   Visualization version   GIF version

Theorem funpsstri 35270
Description: A condition for subset trichotomy for functions. (Contributed by Scott Fenton, 19-Apr-2011.)
Assertion
Ref Expression
funpsstri ((Fun 𝐻 ∧ (𝐹𝐻𝐺𝐻) ∧ (dom 𝐹 ⊆ dom 𝐺 ∨ dom 𝐺 ⊆ dom 𝐹)) → (𝐹𝐺𝐹 = 𝐺𝐺𝐹))

Proof of Theorem funpsstri
StepHypRef Expression
1 funssres 6586 . . . . . 6 ((Fun 𝐻𝐹𝐻) → (𝐻 ↾ dom 𝐹) = 𝐹)
21ex 412 . . . . 5 (Fun 𝐻 → (𝐹𝐻 → (𝐻 ↾ dom 𝐹) = 𝐹))
3 funssres 6586 . . . . . 6 ((Fun 𝐻𝐺𝐻) → (𝐻 ↾ dom 𝐺) = 𝐺)
43ex 412 . . . . 5 (Fun 𝐻 → (𝐺𝐻 → (𝐻 ↾ dom 𝐺) = 𝐺))
52, 4anim12d 608 . . . 4 (Fun 𝐻 → ((𝐹𝐻𝐺𝐻) → ((𝐻 ↾ dom 𝐹) = 𝐹 ∧ (𝐻 ↾ dom 𝐺) = 𝐺)))
6 ssres2 6003 . . . . . 6 (dom 𝐹 ⊆ dom 𝐺 → (𝐻 ↾ dom 𝐹) ⊆ (𝐻 ↾ dom 𝐺))
7 ssres2 6003 . . . . . 6 (dom 𝐺 ⊆ dom 𝐹 → (𝐻 ↾ dom 𝐺) ⊆ (𝐻 ↾ dom 𝐹))
86, 7orim12i 905 . . . . 5 ((dom 𝐹 ⊆ dom 𝐺 ∨ dom 𝐺 ⊆ dom 𝐹) → ((𝐻 ↾ dom 𝐹) ⊆ (𝐻 ↾ dom 𝐺) ∨ (𝐻 ↾ dom 𝐺) ⊆ (𝐻 ↾ dom 𝐹)))
9 sseq12 4004 . . . . . 6 (((𝐻 ↾ dom 𝐹) = 𝐹 ∧ (𝐻 ↾ dom 𝐺) = 𝐺) → ((𝐻 ↾ dom 𝐹) ⊆ (𝐻 ↾ dom 𝐺) ↔ 𝐹𝐺))
10 sseq12 4004 . . . . . . 7 (((𝐻 ↾ dom 𝐺) = 𝐺 ∧ (𝐻 ↾ dom 𝐹) = 𝐹) → ((𝐻 ↾ dom 𝐺) ⊆ (𝐻 ↾ dom 𝐹) ↔ 𝐺𝐹))
1110ancoms 458 . . . . . 6 (((𝐻 ↾ dom 𝐹) = 𝐹 ∧ (𝐻 ↾ dom 𝐺) = 𝐺) → ((𝐻 ↾ dom 𝐺) ⊆ (𝐻 ↾ dom 𝐹) ↔ 𝐺𝐹))
129, 11orbi12d 915 . . . . 5 (((𝐻 ↾ dom 𝐹) = 𝐹 ∧ (𝐻 ↾ dom 𝐺) = 𝐺) → (((𝐻 ↾ dom 𝐹) ⊆ (𝐻 ↾ dom 𝐺) ∨ (𝐻 ↾ dom 𝐺) ⊆ (𝐻 ↾ dom 𝐹)) ↔ (𝐹𝐺𝐺𝐹)))
138, 12imbitrid 243 . . . 4 (((𝐻 ↾ dom 𝐹) = 𝐹 ∧ (𝐻 ↾ dom 𝐺) = 𝐺) → ((dom 𝐹 ⊆ dom 𝐺 ∨ dom 𝐺 ⊆ dom 𝐹) → (𝐹𝐺𝐺𝐹)))
145, 13syl6 35 . . 3 (Fun 𝐻 → ((𝐹𝐻𝐺𝐻) → ((dom 𝐹 ⊆ dom 𝐺 ∨ dom 𝐺 ⊆ dom 𝐹) → (𝐹𝐺𝐺𝐹))))
15143imp 1108 . 2 ((Fun 𝐻 ∧ (𝐹𝐻𝐺𝐻) ∧ (dom 𝐹 ⊆ dom 𝐺 ∨ dom 𝐺 ⊆ dom 𝐹)) → (𝐹𝐺𝐺𝐹))
16 sspsstri 4097 . 2 ((𝐹𝐺𝐺𝐹) ↔ (𝐹𝐺𝐹 = 𝐺𝐺𝐹))
1715, 16sylib 217 1 ((Fun 𝐻 ∧ (𝐹𝐻𝐺𝐻) ∧ (dom 𝐹 ⊆ dom 𝐺 ∨ dom 𝐺 ⊆ dom 𝐹)) → (𝐹𝐺𝐹 = 𝐺𝐺𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wo 844  w3o 1083  w3a 1084   = wceq 1533  wss 3943  wpss 3944  dom cdm 5669  cres 5671  Fun wfun 6531
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pr 5420
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-ne 2935  df-ral 3056  df-rex 3065  df-rab 3427  df-v 3470  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-pss 3962  df-nul 4318  df-if 4524  df-sn 4624  df-pr 4626  df-op 4630  df-br 5142  df-opab 5204  df-id 5567  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-res 5681  df-fun 6539
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator