Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  funpsstri Structured version   Visualization version   GIF version

Theorem funpsstri 35760
Description: A condition for subset trichotomy for functions. (Contributed by Scott Fenton, 19-Apr-2011.)
Assertion
Ref Expression
funpsstri ((Fun 𝐻 ∧ (𝐹𝐻𝐺𝐻) ∧ (dom 𝐹 ⊆ dom 𝐺 ∨ dom 𝐺 ⊆ dom 𝐹)) → (𝐹𝐺𝐹 = 𝐺𝐺𝐹))

Proof of Theorem funpsstri
StepHypRef Expression
1 funssres 6563 . . . . . 6 ((Fun 𝐻𝐹𝐻) → (𝐻 ↾ dom 𝐹) = 𝐹)
21ex 412 . . . . 5 (Fun 𝐻 → (𝐹𝐻 → (𝐻 ↾ dom 𝐹) = 𝐹))
3 funssres 6563 . . . . . 6 ((Fun 𝐻𝐺𝐻) → (𝐻 ↾ dom 𝐺) = 𝐺)
43ex 412 . . . . 5 (Fun 𝐻 → (𝐺𝐻 → (𝐻 ↾ dom 𝐺) = 𝐺))
52, 4anim12d 609 . . . 4 (Fun 𝐻 → ((𝐹𝐻𝐺𝐻) → ((𝐻 ↾ dom 𝐹) = 𝐹 ∧ (𝐻 ↾ dom 𝐺) = 𝐺)))
6 ssres2 5978 . . . . . 6 (dom 𝐹 ⊆ dom 𝐺 → (𝐻 ↾ dom 𝐹) ⊆ (𝐻 ↾ dom 𝐺))
7 ssres2 5978 . . . . . 6 (dom 𝐺 ⊆ dom 𝐹 → (𝐻 ↾ dom 𝐺) ⊆ (𝐻 ↾ dom 𝐹))
86, 7orim12i 908 . . . . 5 ((dom 𝐹 ⊆ dom 𝐺 ∨ dom 𝐺 ⊆ dom 𝐹) → ((𝐻 ↾ dom 𝐹) ⊆ (𝐻 ↾ dom 𝐺) ∨ (𝐻 ↾ dom 𝐺) ⊆ (𝐻 ↾ dom 𝐹)))
9 sseq12 3977 . . . . . 6 (((𝐻 ↾ dom 𝐹) = 𝐹 ∧ (𝐻 ↾ dom 𝐺) = 𝐺) → ((𝐻 ↾ dom 𝐹) ⊆ (𝐻 ↾ dom 𝐺) ↔ 𝐹𝐺))
10 sseq12 3977 . . . . . . 7 (((𝐻 ↾ dom 𝐺) = 𝐺 ∧ (𝐻 ↾ dom 𝐹) = 𝐹) → ((𝐻 ↾ dom 𝐺) ⊆ (𝐻 ↾ dom 𝐹) ↔ 𝐺𝐹))
1110ancoms 458 . . . . . 6 (((𝐻 ↾ dom 𝐹) = 𝐹 ∧ (𝐻 ↾ dom 𝐺) = 𝐺) → ((𝐻 ↾ dom 𝐺) ⊆ (𝐻 ↾ dom 𝐹) ↔ 𝐺𝐹))
129, 11orbi12d 918 . . . . 5 (((𝐻 ↾ dom 𝐹) = 𝐹 ∧ (𝐻 ↾ dom 𝐺) = 𝐺) → (((𝐻 ↾ dom 𝐹) ⊆ (𝐻 ↾ dom 𝐺) ∨ (𝐻 ↾ dom 𝐺) ⊆ (𝐻 ↾ dom 𝐹)) ↔ (𝐹𝐺𝐺𝐹)))
138, 12imbitrid 244 . . . 4 (((𝐻 ↾ dom 𝐹) = 𝐹 ∧ (𝐻 ↾ dom 𝐺) = 𝐺) → ((dom 𝐹 ⊆ dom 𝐺 ∨ dom 𝐺 ⊆ dom 𝐹) → (𝐹𝐺𝐺𝐹)))
145, 13syl6 35 . . 3 (Fun 𝐻 → ((𝐹𝐻𝐺𝐻) → ((dom 𝐹 ⊆ dom 𝐺 ∨ dom 𝐺 ⊆ dom 𝐹) → (𝐹𝐺𝐺𝐹))))
15143imp 1110 . 2 ((Fun 𝐻 ∧ (𝐹𝐻𝐺𝐻) ∧ (dom 𝐹 ⊆ dom 𝐺 ∨ dom 𝐺 ⊆ dom 𝐹)) → (𝐹𝐺𝐺𝐹))
16 sspsstri 4071 . 2 ((𝐹𝐺𝐺𝐹) ↔ (𝐹𝐺𝐹 = 𝐺𝐺𝐹))
1715, 16sylib 218 1 ((Fun 𝐻 ∧ (𝐹𝐻𝐺𝐻) ∧ (dom 𝐹 ⊆ dom 𝐺 ∨ dom 𝐺 ⊆ dom 𝐹)) → (𝐹𝐺𝐹 = 𝐺𝐺𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  w3o 1085  w3a 1086   = wceq 1540  wss 3917  wpss 3918  dom cdm 5641  cres 5643  Fun wfun 6508
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-br 5111  df-opab 5173  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-res 5653  df-fun 6516
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator