Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  funpsstri Structured version   Visualization version   GIF version

Theorem funpsstri 35729
Description: A condition for subset trichotomy for functions. (Contributed by Scott Fenton, 19-Apr-2011.)
Assertion
Ref Expression
funpsstri ((Fun 𝐻 ∧ (𝐹𝐻𝐺𝐻) ∧ (dom 𝐹 ⊆ dom 𝐺 ∨ dom 𝐺 ⊆ dom 𝐹)) → (𝐹𝐺𝐹 = 𝐺𝐺𝐹))

Proof of Theorem funpsstri
StepHypRef Expression
1 funssres 6622 . . . . . 6 ((Fun 𝐻𝐹𝐻) → (𝐻 ↾ dom 𝐹) = 𝐹)
21ex 412 . . . . 5 (Fun 𝐻 → (𝐹𝐻 → (𝐻 ↾ dom 𝐹) = 𝐹))
3 funssres 6622 . . . . . 6 ((Fun 𝐻𝐺𝐻) → (𝐻 ↾ dom 𝐺) = 𝐺)
43ex 412 . . . . 5 (Fun 𝐻 → (𝐺𝐻 → (𝐻 ↾ dom 𝐺) = 𝐺))
52, 4anim12d 608 . . . 4 (Fun 𝐻 → ((𝐹𝐻𝐺𝐻) → ((𝐻 ↾ dom 𝐹) = 𝐹 ∧ (𝐻 ↾ dom 𝐺) = 𝐺)))
6 ssres2 6034 . . . . . 6 (dom 𝐹 ⊆ dom 𝐺 → (𝐻 ↾ dom 𝐹) ⊆ (𝐻 ↾ dom 𝐺))
7 ssres2 6034 . . . . . 6 (dom 𝐺 ⊆ dom 𝐹 → (𝐻 ↾ dom 𝐺) ⊆ (𝐻 ↾ dom 𝐹))
86, 7orim12i 907 . . . . 5 ((dom 𝐹 ⊆ dom 𝐺 ∨ dom 𝐺 ⊆ dom 𝐹) → ((𝐻 ↾ dom 𝐹) ⊆ (𝐻 ↾ dom 𝐺) ∨ (𝐻 ↾ dom 𝐺) ⊆ (𝐻 ↾ dom 𝐹)))
9 sseq12 4036 . . . . . 6 (((𝐻 ↾ dom 𝐹) = 𝐹 ∧ (𝐻 ↾ dom 𝐺) = 𝐺) → ((𝐻 ↾ dom 𝐹) ⊆ (𝐻 ↾ dom 𝐺) ↔ 𝐹𝐺))
10 sseq12 4036 . . . . . . 7 (((𝐻 ↾ dom 𝐺) = 𝐺 ∧ (𝐻 ↾ dom 𝐹) = 𝐹) → ((𝐻 ↾ dom 𝐺) ⊆ (𝐻 ↾ dom 𝐹) ↔ 𝐺𝐹))
1110ancoms 458 . . . . . 6 (((𝐻 ↾ dom 𝐹) = 𝐹 ∧ (𝐻 ↾ dom 𝐺) = 𝐺) → ((𝐻 ↾ dom 𝐺) ⊆ (𝐻 ↾ dom 𝐹) ↔ 𝐺𝐹))
129, 11orbi12d 917 . . . . 5 (((𝐻 ↾ dom 𝐹) = 𝐹 ∧ (𝐻 ↾ dom 𝐺) = 𝐺) → (((𝐻 ↾ dom 𝐹) ⊆ (𝐻 ↾ dom 𝐺) ∨ (𝐻 ↾ dom 𝐺) ⊆ (𝐻 ↾ dom 𝐹)) ↔ (𝐹𝐺𝐺𝐹)))
138, 12imbitrid 244 . . . 4 (((𝐻 ↾ dom 𝐹) = 𝐹 ∧ (𝐻 ↾ dom 𝐺) = 𝐺) → ((dom 𝐹 ⊆ dom 𝐺 ∨ dom 𝐺 ⊆ dom 𝐹) → (𝐹𝐺𝐺𝐹)))
145, 13syl6 35 . . 3 (Fun 𝐻 → ((𝐹𝐻𝐺𝐻) → ((dom 𝐹 ⊆ dom 𝐺 ∨ dom 𝐺 ⊆ dom 𝐹) → (𝐹𝐺𝐺𝐹))))
15143imp 1111 . 2 ((Fun 𝐻 ∧ (𝐹𝐻𝐺𝐻) ∧ (dom 𝐹 ⊆ dom 𝐺 ∨ dom 𝐺 ⊆ dom 𝐹)) → (𝐹𝐺𝐺𝐹))
16 sspsstri 4128 . 2 ((𝐹𝐺𝐺𝐹) ↔ (𝐹𝐺𝐹 = 𝐺𝐺𝐹))
1715, 16sylib 218 1 ((Fun 𝐻 ∧ (𝐹𝐻𝐺𝐻) ∧ (dom 𝐹 ⊆ dom 𝐺 ∨ dom 𝐺 ⊆ dom 𝐹)) → (𝐹𝐺𝐹 = 𝐺𝐺𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 846  w3o 1086  w3a 1087   = wceq 1537  wss 3976  wpss 3977  dom cdm 5700  cres 5702  Fun wfun 6567
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-res 5712  df-fun 6575
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator