MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axdc3lem2 Structured version   Visualization version   GIF version

Theorem axdc3lem2 10207
Description: Lemma for axdc3 10210. We have constructed a "candidate set" 𝑆, which consists of all finite sequences 𝑠 that satisfy our property of interest, namely 𝑠(𝑥 + 1) ∈ 𝐹(𝑠(𝑥)) on its domain, but with the added constraint that 𝑠(0) = 𝐶. These sets are possible "initial segments" of the infinite sequence satisfying these constraints, but we can leverage the standard ax-dc 10202 (with no initial condition) to select a sequence of ever-lengthening finite sequences, namely (𝑛):𝑚𝐴 (for some integer 𝑚). We let our "choice" function select a sequence whose domain is one more than the last one, and agrees with the previous one on its domain. Thus, the application of vanilla ax-dc 10202 yields a sequence of sequences whose domains increase without bound, and whose union is a function which has all the properties we want. In this lemma, we show that given the sequence , we can construct the sequence 𝑔 that we are after. (Contributed by Mario Carneiro, 30-Jan-2013.)
Hypotheses
Ref Expression
axdc3lem2.1 𝐴 ∈ V
axdc3lem2.2 𝑆 = {𝑠 ∣ ∃𝑛 ∈ ω (𝑠:suc 𝑛𝐴 ∧ (𝑠‘∅) = 𝐶 ∧ ∀𝑘𝑛 (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠𝑘)))}
axdc3lem2.3 𝐺 = (𝑥𝑆 ↦ {𝑦𝑆 ∣ (dom 𝑦 = suc dom 𝑥 ∧ (𝑦 ↾ dom 𝑥) = 𝑥)})
Assertion
Ref Expression
axdc3lem2 (∃(:ω⟶𝑆 ∧ ∀𝑘 ∈ ω (‘suc 𝑘) ∈ (𝐺‘(𝑘))) → ∃𝑔(𝑔:ω⟶𝐴 ∧ (𝑔‘∅) = 𝐶 ∧ ∀𝑘 ∈ ω (𝑔‘suc 𝑘) ∈ (𝐹‘(𝑔𝑘))))
Distinct variable groups:   𝐴,𝑔,   𝐴,𝑛,𝑠   𝐶,𝑔,   𝐶,𝑛,𝑠   𝑔,𝐹,   𝑛,𝐹,𝑠   𝑘,𝐺   𝑆,𝑘,𝑠   𝑥,𝑆,𝑦   𝑔,𝑘,   ,𝑠   𝑥,,𝑦   𝑘,𝑛
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑘)   𝐶(𝑥,𝑦,𝑘)   𝑆(𝑔,,𝑛)   𝐹(𝑥,𝑦,𝑘)   𝐺(𝑥,𝑦,𝑔,,𝑛,𝑠)

Proof of Theorem axdc3lem2
Dummy variables 𝑖 𝑗 𝑚 𝑢 𝑣 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 id 22 . . . . . . . . . . . . 13 (𝑚 = ∅ → 𝑚 = ∅)
2 fveq2 6774 . . . . . . . . . . . . . 14 (𝑚 = ∅ → (𝑚) = (‘∅))
32dmeqd 5814 . . . . . . . . . . . . 13 (𝑚 = ∅ → dom (𝑚) = dom (‘∅))
41, 3eleq12d 2833 . . . . . . . . . . . 12 (𝑚 = ∅ → (𝑚 ∈ dom (𝑚) ↔ ∅ ∈ dom (‘∅)))
5 eleq2 2827 . . . . . . . . . . . . 13 (𝑚 = ∅ → (𝑗𝑚𝑗 ∈ ∅))
62sseq2d 3953 . . . . . . . . . . . . 13 (𝑚 = ∅ → ((𝑗) ⊆ (𝑚) ↔ (𝑗) ⊆ (‘∅)))
75, 6imbi12d 345 . . . . . . . . . . . 12 (𝑚 = ∅ → ((𝑗𝑚 → (𝑗) ⊆ (𝑚)) ↔ (𝑗 ∈ ∅ → (𝑗) ⊆ (‘∅))))
84, 7anbi12d 631 . . . . . . . . . . 11 (𝑚 = ∅ → ((𝑚 ∈ dom (𝑚) ∧ (𝑗𝑚 → (𝑗) ⊆ (𝑚))) ↔ (∅ ∈ dom (‘∅) ∧ (𝑗 ∈ ∅ → (𝑗) ⊆ (‘∅)))))
9 id 22 . . . . . . . . . . . . 13 (𝑚 = 𝑖𝑚 = 𝑖)
10 fveq2 6774 . . . . . . . . . . . . . 14 (𝑚 = 𝑖 → (𝑚) = (𝑖))
1110dmeqd 5814 . . . . . . . . . . . . 13 (𝑚 = 𝑖 → dom (𝑚) = dom (𝑖))
129, 11eleq12d 2833 . . . . . . . . . . . 12 (𝑚 = 𝑖 → (𝑚 ∈ dom (𝑚) ↔ 𝑖 ∈ dom (𝑖)))
13 elequ2 2121 . . . . . . . . . . . . 13 (𝑚 = 𝑖 → (𝑗𝑚𝑗𝑖))
1410sseq2d 3953 . . . . . . . . . . . . 13 (𝑚 = 𝑖 → ((𝑗) ⊆ (𝑚) ↔ (𝑗) ⊆ (𝑖)))
1513, 14imbi12d 345 . . . . . . . . . . . 12 (𝑚 = 𝑖 → ((𝑗𝑚 → (𝑗) ⊆ (𝑚)) ↔ (𝑗𝑖 → (𝑗) ⊆ (𝑖))))
1612, 15anbi12d 631 . . . . . . . . . . 11 (𝑚 = 𝑖 → ((𝑚 ∈ dom (𝑚) ∧ (𝑗𝑚 → (𝑗) ⊆ (𝑚))) ↔ (𝑖 ∈ dom (𝑖) ∧ (𝑗𝑖 → (𝑗) ⊆ (𝑖)))))
17 id 22 . . . . . . . . . . . . 13 (𝑚 = suc 𝑖𝑚 = suc 𝑖)
18 fveq2 6774 . . . . . . . . . . . . . 14 (𝑚 = suc 𝑖 → (𝑚) = (‘suc 𝑖))
1918dmeqd 5814 . . . . . . . . . . . . 13 (𝑚 = suc 𝑖 → dom (𝑚) = dom (‘suc 𝑖))
2017, 19eleq12d 2833 . . . . . . . . . . . 12 (𝑚 = suc 𝑖 → (𝑚 ∈ dom (𝑚) ↔ suc 𝑖 ∈ dom (‘suc 𝑖)))
21 eleq2 2827 . . . . . . . . . . . . 13 (𝑚 = suc 𝑖 → (𝑗𝑚𝑗 ∈ suc 𝑖))
2218sseq2d 3953 . . . . . . . . . . . . 13 (𝑚 = suc 𝑖 → ((𝑗) ⊆ (𝑚) ↔ (𝑗) ⊆ (‘suc 𝑖)))
2321, 22imbi12d 345 . . . . . . . . . . . 12 (𝑚 = suc 𝑖 → ((𝑗𝑚 → (𝑗) ⊆ (𝑚)) ↔ (𝑗 ∈ suc 𝑖 → (𝑗) ⊆ (‘suc 𝑖))))
2420, 23anbi12d 631 . . . . . . . . . . 11 (𝑚 = suc 𝑖 → ((𝑚 ∈ dom (𝑚) ∧ (𝑗𝑚 → (𝑗) ⊆ (𝑚))) ↔ (suc 𝑖 ∈ dom (‘suc 𝑖) ∧ (𝑗 ∈ suc 𝑖 → (𝑗) ⊆ (‘suc 𝑖)))))
25 peano1 7735 . . . . . . . . . . . . . . 15 ∅ ∈ ω
26 ffvelrn 6959 . . . . . . . . . . . . . . 15 ((:ω⟶𝑆 ∧ ∅ ∈ ω) → (‘∅) ∈ 𝑆)
2725, 26mpan2 688 . . . . . . . . . . . . . 14 (:ω⟶𝑆 → (‘∅) ∈ 𝑆)
28 axdc3lem2.2 . . . . . . . . . . . . . . . . . 18 𝑆 = {𝑠 ∣ ∃𝑛 ∈ ω (𝑠:suc 𝑛𝐴 ∧ (𝑠‘∅) = 𝐶 ∧ ∀𝑘𝑛 (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠𝑘)))}
29 fdm 6609 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑠:suc 𝑛𝐴 → dom 𝑠 = suc 𝑛)
30 nnord 7720 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑛 ∈ ω → Ord 𝑛)
31 0elsuc 7682 . . . . . . . . . . . . . . . . . . . . . . . . 25 (Ord 𝑛 → ∅ ∈ suc 𝑛)
3230, 31syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑛 ∈ ω → ∅ ∈ suc 𝑛)
33 peano2 7737 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑛 ∈ ω → suc 𝑛 ∈ ω)
34 eleq2 2827 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (dom 𝑠 = suc 𝑛 → (∅ ∈ dom 𝑠 ↔ ∅ ∈ suc 𝑛))
35 eleq1 2826 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (dom 𝑠 = suc 𝑛 → (dom 𝑠 ∈ ω ↔ suc 𝑛 ∈ ω))
3634, 35anbi12d 631 . . . . . . . . . . . . . . . . . . . . . . . . 25 (dom 𝑠 = suc 𝑛 → ((∅ ∈ dom 𝑠 ∧ dom 𝑠 ∈ ω) ↔ (∅ ∈ suc 𝑛 ∧ suc 𝑛 ∈ ω)))
3736biimprcd 249 . . . . . . . . . . . . . . . . . . . . . . . 24 ((∅ ∈ suc 𝑛 ∧ suc 𝑛 ∈ ω) → (dom 𝑠 = suc 𝑛 → (∅ ∈ dom 𝑠 ∧ dom 𝑠 ∈ ω)))
3832, 33, 37syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑛 ∈ ω → (dom 𝑠 = suc 𝑛 → (∅ ∈ dom 𝑠 ∧ dom 𝑠 ∈ ω)))
3929, 38syl5com 31 . . . . . . . . . . . . . . . . . . . . . 22 (𝑠:suc 𝑛𝐴 → (𝑛 ∈ ω → (∅ ∈ dom 𝑠 ∧ dom 𝑠 ∈ ω)))
40393ad2ant1 1132 . . . . . . . . . . . . . . . . . . . . 21 ((𝑠:suc 𝑛𝐴 ∧ (𝑠‘∅) = 𝐶 ∧ ∀𝑘𝑛 (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠𝑘))) → (𝑛 ∈ ω → (∅ ∈ dom 𝑠 ∧ dom 𝑠 ∈ ω)))
4140impcom 408 . . . . . . . . . . . . . . . . . . . 20 ((𝑛 ∈ ω ∧ (𝑠:suc 𝑛𝐴 ∧ (𝑠‘∅) = 𝐶 ∧ ∀𝑘𝑛 (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠𝑘)))) → (∅ ∈ dom 𝑠 ∧ dom 𝑠 ∈ ω))
4241rexlimiva 3210 . . . . . . . . . . . . . . . . . . 19 (∃𝑛 ∈ ω (𝑠:suc 𝑛𝐴 ∧ (𝑠‘∅) = 𝐶 ∧ ∀𝑘𝑛 (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠𝑘))) → (∅ ∈ dom 𝑠 ∧ dom 𝑠 ∈ ω))
4342ss2abi 4000 . . . . . . . . . . . . . . . . . 18 {𝑠 ∣ ∃𝑛 ∈ ω (𝑠:suc 𝑛𝐴 ∧ (𝑠‘∅) = 𝐶 ∧ ∀𝑘𝑛 (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠𝑘)))} ⊆ {𝑠 ∣ (∅ ∈ dom 𝑠 ∧ dom 𝑠 ∈ ω)}
4428, 43eqsstri 3955 . . . . . . . . . . . . . . . . 17 𝑆 ⊆ {𝑠 ∣ (∅ ∈ dom 𝑠 ∧ dom 𝑠 ∈ ω)}
4544sseli 3917 . . . . . . . . . . . . . . . 16 ((‘∅) ∈ 𝑆 → (‘∅) ∈ {𝑠 ∣ (∅ ∈ dom 𝑠 ∧ dom 𝑠 ∈ ω)})
46 fvex 6787 . . . . . . . . . . . . . . . . 17 (‘∅) ∈ V
47 dmeq 5812 . . . . . . . . . . . . . . . . . . 19 (𝑠 = (‘∅) → dom 𝑠 = dom (‘∅))
4847eleq2d 2824 . . . . . . . . . . . . . . . . . 18 (𝑠 = (‘∅) → (∅ ∈ dom 𝑠 ↔ ∅ ∈ dom (‘∅)))
4947eleq1d 2823 . . . . . . . . . . . . . . . . . 18 (𝑠 = (‘∅) → (dom 𝑠 ∈ ω ↔ dom (‘∅) ∈ ω))
5048, 49anbi12d 631 . . . . . . . . . . . . . . . . 17 (𝑠 = (‘∅) → ((∅ ∈ dom 𝑠 ∧ dom 𝑠 ∈ ω) ↔ (∅ ∈ dom (‘∅) ∧ dom (‘∅) ∈ ω)))
5146, 50elab 3609 . . . . . . . . . . . . . . . 16 ((‘∅) ∈ {𝑠 ∣ (∅ ∈ dom 𝑠 ∧ dom 𝑠 ∈ ω)} ↔ (∅ ∈ dom (‘∅) ∧ dom (‘∅) ∈ ω))
5245, 51sylib 217 . . . . . . . . . . . . . . 15 ((‘∅) ∈ 𝑆 → (∅ ∈ dom (‘∅) ∧ dom (‘∅) ∈ ω))
5352simpld 495 . . . . . . . . . . . . . 14 ((‘∅) ∈ 𝑆 → ∅ ∈ dom (‘∅))
5427, 53syl 17 . . . . . . . . . . . . 13 (:ω⟶𝑆 → ∅ ∈ dom (‘∅))
55 noel 4264 . . . . . . . . . . . . . 14 ¬ 𝑗 ∈ ∅
5655pm2.21i 119 . . . . . . . . . . . . 13 (𝑗 ∈ ∅ → (𝑗) ⊆ (‘∅))
5754, 56jctir 521 . . . . . . . . . . . 12 (:ω⟶𝑆 → (∅ ∈ dom (‘∅) ∧ (𝑗 ∈ ∅ → (𝑗) ⊆ (‘∅))))
5857adantr 481 . . . . . . . . . . 11 ((:ω⟶𝑆 ∧ ∀𝑘 ∈ ω (‘suc 𝑘) ∈ (𝐺‘(𝑘))) → (∅ ∈ dom (‘∅) ∧ (𝑗 ∈ ∅ → (𝑗) ⊆ (‘∅))))
59 ffvelrn 6959 . . . . . . . . . . . . . . 15 ((:ω⟶𝑆𝑖 ∈ ω) → (𝑖) ∈ 𝑆)
6059ancoms 459 . . . . . . . . . . . . . 14 ((𝑖 ∈ ω ∧ :ω⟶𝑆) → (𝑖) ∈ 𝑆)
6160adantrr 714 . . . . . . . . . . . . 13 ((𝑖 ∈ ω ∧ (:ω⟶𝑆 ∧ ∀𝑘 ∈ ω (‘suc 𝑘) ∈ (𝐺‘(𝑘)))) → (𝑖) ∈ 𝑆)
62 suceq 6331 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑖 → suc 𝑘 = suc 𝑖)
6362fveq2d 6778 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑖 → (‘suc 𝑘) = (‘suc 𝑖))
64 2fveq3 6779 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑖 → (𝐺‘(𝑘)) = (𝐺‘(𝑖)))
6563, 64eleq12d 2833 . . . . . . . . . . . . . . 15 (𝑘 = 𝑖 → ((‘suc 𝑘) ∈ (𝐺‘(𝑘)) ↔ (‘suc 𝑖) ∈ (𝐺‘(𝑖))))
6665rspcva 3559 . . . . . . . . . . . . . 14 ((𝑖 ∈ ω ∧ ∀𝑘 ∈ ω (‘suc 𝑘) ∈ (𝐺‘(𝑘))) → (‘suc 𝑖) ∈ (𝐺‘(𝑖)))
6766adantrl 713 . . . . . . . . . . . . 13 ((𝑖 ∈ ω ∧ (:ω⟶𝑆 ∧ ∀𝑘 ∈ ω (‘suc 𝑘) ∈ (𝐺‘(𝑘)))) → (‘suc 𝑖) ∈ (𝐺‘(𝑖)))
6844sseli 3917 . . . . . . . . . . . . . . . . . . . 20 ((𝑖) ∈ 𝑆 → (𝑖) ∈ {𝑠 ∣ (∅ ∈ dom 𝑠 ∧ dom 𝑠 ∈ ω)})
69 fvex 6787 . . . . . . . . . . . . . . . . . . . . 21 (𝑖) ∈ V
70 dmeq 5812 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑠 = (𝑖) → dom 𝑠 = dom (𝑖))
7170eleq2d 2824 . . . . . . . . . . . . . . . . . . . . . 22 (𝑠 = (𝑖) → (∅ ∈ dom 𝑠 ↔ ∅ ∈ dom (𝑖)))
7270eleq1d 2823 . . . . . . . . . . . . . . . . . . . . . 22 (𝑠 = (𝑖) → (dom 𝑠 ∈ ω ↔ dom (𝑖) ∈ ω))
7371, 72anbi12d 631 . . . . . . . . . . . . . . . . . . . . 21 (𝑠 = (𝑖) → ((∅ ∈ dom 𝑠 ∧ dom 𝑠 ∈ ω) ↔ (∅ ∈ dom (𝑖) ∧ dom (𝑖) ∈ ω)))
7469, 73elab 3609 . . . . . . . . . . . . . . . . . . . 20 ((𝑖) ∈ {𝑠 ∣ (∅ ∈ dom 𝑠 ∧ dom 𝑠 ∈ ω)} ↔ (∅ ∈ dom (𝑖) ∧ dom (𝑖) ∈ ω))
7568, 74sylib 217 . . . . . . . . . . . . . . . . . . 19 ((𝑖) ∈ 𝑆 → (∅ ∈ dom (𝑖) ∧ dom (𝑖) ∈ ω))
7675simprd 496 . . . . . . . . . . . . . . . . . 18 ((𝑖) ∈ 𝑆 → dom (𝑖) ∈ ω)
77 nnord 7720 . . . . . . . . . . . . . . . . . 18 (dom (𝑖) ∈ ω → Ord dom (𝑖))
78 ordsucelsuc 7669 . . . . . . . . . . . . . . . . . 18 (Ord dom (𝑖) → (𝑖 ∈ dom (𝑖) ↔ suc 𝑖 ∈ suc dom (𝑖)))
7976, 77, 783syl 18 . . . . . . . . . . . . . . . . 17 ((𝑖) ∈ 𝑆 → (𝑖 ∈ dom (𝑖) ↔ suc 𝑖 ∈ suc dom (𝑖)))
8079adantr 481 . . . . . . . . . . . . . . . 16 (((𝑖) ∈ 𝑆 ∧ (‘suc 𝑖) ∈ (𝐺‘(𝑖))) → (𝑖 ∈ dom (𝑖) ↔ suc 𝑖 ∈ suc dom (𝑖)))
81 dmeq 5812 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑥 = (𝑖) → dom 𝑥 = dom (𝑖))
82 suceq 6331 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (dom 𝑥 = dom (𝑖) → suc dom 𝑥 = suc dom (𝑖))
8381, 82syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥 = (𝑖) → suc dom 𝑥 = suc dom (𝑖))
8483eqeq2d 2749 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 = (𝑖) → (dom 𝑦 = suc dom 𝑥 ↔ dom 𝑦 = suc dom (𝑖)))
8581reseq2d 5891 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥 = (𝑖) → (𝑦 ↾ dom 𝑥) = (𝑦 ↾ dom (𝑖)))
86 id 22 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥 = (𝑖) → 𝑥 = (𝑖))
8785, 86eqeq12d 2754 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 = (𝑖) → ((𝑦 ↾ dom 𝑥) = 𝑥 ↔ (𝑦 ↾ dom (𝑖)) = (𝑖)))
8884, 87anbi12d 631 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 = (𝑖) → ((dom 𝑦 = suc dom 𝑥 ∧ (𝑦 ↾ dom 𝑥) = 𝑥) ↔ (dom 𝑦 = suc dom (𝑖) ∧ (𝑦 ↾ dom (𝑖)) = (𝑖))))
8988rabbidv 3414 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = (𝑖) → {𝑦𝑆 ∣ (dom 𝑦 = suc dom 𝑥 ∧ (𝑦 ↾ dom 𝑥) = 𝑥)} = {𝑦𝑆 ∣ (dom 𝑦 = suc dom (𝑖) ∧ (𝑦 ↾ dom (𝑖)) = (𝑖))})
90 axdc3lem2.3 . . . . . . . . . . . . . . . . . . . . . 22 𝐺 = (𝑥𝑆 ↦ {𝑦𝑆 ∣ (dom 𝑦 = suc dom 𝑥 ∧ (𝑦 ↾ dom 𝑥) = 𝑥)})
91 axdc3lem2.1 . . . . . . . . . . . . . . . . . . . . . . . 24 𝐴 ∈ V
9291, 28axdc3lem 10206 . . . . . . . . . . . . . . . . . . . . . . 23 𝑆 ∈ V
9392rabex 5256 . . . . . . . . . . . . . . . . . . . . . 22 {𝑦𝑆 ∣ (dom 𝑦 = suc dom (𝑖) ∧ (𝑦 ↾ dom (𝑖)) = (𝑖))} ∈ V
9489, 90, 93fvmpt 6875 . . . . . . . . . . . . . . . . . . . . 21 ((𝑖) ∈ 𝑆 → (𝐺‘(𝑖)) = {𝑦𝑆 ∣ (dom 𝑦 = suc dom (𝑖) ∧ (𝑦 ↾ dom (𝑖)) = (𝑖))})
9594eleq2d 2824 . . . . . . . . . . . . . . . . . . . 20 ((𝑖) ∈ 𝑆 → ((‘suc 𝑖) ∈ (𝐺‘(𝑖)) ↔ (‘suc 𝑖) ∈ {𝑦𝑆 ∣ (dom 𝑦 = suc dom (𝑖) ∧ (𝑦 ↾ dom (𝑖)) = (𝑖))}))
96 dmeq 5812 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦 = (‘suc 𝑖) → dom 𝑦 = dom (‘suc 𝑖))
9796eqeq1d 2740 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 = (‘suc 𝑖) → (dom 𝑦 = suc dom (𝑖) ↔ dom (‘suc 𝑖) = suc dom (𝑖)))
98 reseq1 5885 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦 = (‘suc 𝑖) → (𝑦 ↾ dom (𝑖)) = ((‘suc 𝑖) ↾ dom (𝑖)))
9998eqeq1d 2740 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 = (‘suc 𝑖) → ((𝑦 ↾ dom (𝑖)) = (𝑖) ↔ ((‘suc 𝑖) ↾ dom (𝑖)) = (𝑖)))
10097, 99anbi12d 631 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 = (‘suc 𝑖) → ((dom 𝑦 = suc dom (𝑖) ∧ (𝑦 ↾ dom (𝑖)) = (𝑖)) ↔ (dom (‘suc 𝑖) = suc dom (𝑖) ∧ ((‘suc 𝑖) ↾ dom (𝑖)) = (𝑖))))
101100elrab 3624 . . . . . . . . . . . . . . . . . . . 20 ((‘suc 𝑖) ∈ {𝑦𝑆 ∣ (dom 𝑦 = suc dom (𝑖) ∧ (𝑦 ↾ dom (𝑖)) = (𝑖))} ↔ ((‘suc 𝑖) ∈ 𝑆 ∧ (dom (‘suc 𝑖) = suc dom (𝑖) ∧ ((‘suc 𝑖) ↾ dom (𝑖)) = (𝑖))))
10295, 101bitrdi 287 . . . . . . . . . . . . . . . . . . 19 ((𝑖) ∈ 𝑆 → ((‘suc 𝑖) ∈ (𝐺‘(𝑖)) ↔ ((‘suc 𝑖) ∈ 𝑆 ∧ (dom (‘suc 𝑖) = suc dom (𝑖) ∧ ((‘suc 𝑖) ↾ dom (𝑖)) = (𝑖)))))
103102simplbda 500 . . . . . . . . . . . . . . . . . 18 (((𝑖) ∈ 𝑆 ∧ (‘suc 𝑖) ∈ (𝐺‘(𝑖))) → (dom (‘suc 𝑖) = suc dom (𝑖) ∧ ((‘suc 𝑖) ↾ dom (𝑖)) = (𝑖)))
104103simpld 495 . . . . . . . . . . . . . . . . 17 (((𝑖) ∈ 𝑆 ∧ (‘suc 𝑖) ∈ (𝐺‘(𝑖))) → dom (‘suc 𝑖) = suc dom (𝑖))
105104eleq2d 2824 . . . . . . . . . . . . . . . 16 (((𝑖) ∈ 𝑆 ∧ (‘suc 𝑖) ∈ (𝐺‘(𝑖))) → (suc 𝑖 ∈ dom (‘suc 𝑖) ↔ suc 𝑖 ∈ suc dom (𝑖)))
10680, 105bitr4d 281 . . . . . . . . . . . . . . 15 (((𝑖) ∈ 𝑆 ∧ (‘suc 𝑖) ∈ (𝐺‘(𝑖))) → (𝑖 ∈ dom (𝑖) ↔ suc 𝑖 ∈ dom (‘suc 𝑖)))
107106biimpd 228 . . . . . . . . . . . . . 14 (((𝑖) ∈ 𝑆 ∧ (‘suc 𝑖) ∈ (𝐺‘(𝑖))) → (𝑖 ∈ dom (𝑖) → suc 𝑖 ∈ dom (‘suc 𝑖)))
108103simprd 496 . . . . . . . . . . . . . . 15 (((𝑖) ∈ 𝑆 ∧ (‘suc 𝑖) ∈ (𝐺‘(𝑖))) → ((‘suc 𝑖) ↾ dom (𝑖)) = (𝑖))
109 resss 5916 . . . . . . . . . . . . . . . 16 ((‘suc 𝑖) ↾ dom (𝑖)) ⊆ (‘suc 𝑖)
110 sseq1 3946 . . . . . . . . . . . . . . . 16 (((‘suc 𝑖) ↾ dom (𝑖)) = (𝑖) → (((‘suc 𝑖) ↾ dom (𝑖)) ⊆ (‘suc 𝑖) ↔ (𝑖) ⊆ (‘suc 𝑖)))
111109, 110mpbii 232 . . . . . . . . . . . . . . 15 (((‘suc 𝑖) ↾ dom (𝑖)) = (𝑖) → (𝑖) ⊆ (‘suc 𝑖))
112 elsuci 6332 . . . . . . . . . . . . . . . . 17 (𝑗 ∈ suc 𝑖 → (𝑗𝑖𝑗 = 𝑖))
113 pm2.27 42 . . . . . . . . . . . . . . . . . . 19 (𝑗𝑖 → ((𝑗𝑖 → (𝑗) ⊆ (𝑖)) → (𝑗) ⊆ (𝑖)))
114 sstr2 3928 . . . . . . . . . . . . . . . . . . 19 ((𝑗) ⊆ (𝑖) → ((𝑖) ⊆ (‘suc 𝑖) → (𝑗) ⊆ (‘suc 𝑖)))
115113, 114syl6 35 . . . . . . . . . . . . . . . . . 18 (𝑗𝑖 → ((𝑗𝑖 → (𝑗) ⊆ (𝑖)) → ((𝑖) ⊆ (‘suc 𝑖) → (𝑗) ⊆ (‘suc 𝑖))))
116 fveq2 6774 . . . . . . . . . . . . . . . . . . . . 21 (𝑗 = 𝑖 → (𝑗) = (𝑖))
117116sseq1d 3952 . . . . . . . . . . . . . . . . . . . 20 (𝑗 = 𝑖 → ((𝑗) ⊆ (‘suc 𝑖) ↔ (𝑖) ⊆ (‘suc 𝑖)))
118117biimprd 247 . . . . . . . . . . . . . . . . . . 19 (𝑗 = 𝑖 → ((𝑖) ⊆ (‘suc 𝑖) → (𝑗) ⊆ (‘suc 𝑖)))
119118a1d 25 . . . . . . . . . . . . . . . . . 18 (𝑗 = 𝑖 → ((𝑗𝑖 → (𝑗) ⊆ (𝑖)) → ((𝑖) ⊆ (‘suc 𝑖) → (𝑗) ⊆ (‘suc 𝑖))))
120115, 119jaoi 854 . . . . . . . . . . . . . . . . 17 ((𝑗𝑖𝑗 = 𝑖) → ((𝑗𝑖 → (𝑗) ⊆ (𝑖)) → ((𝑖) ⊆ (‘suc 𝑖) → (𝑗) ⊆ (‘suc 𝑖))))
121112, 120syl 17 . . . . . . . . . . . . . . . 16 (𝑗 ∈ suc 𝑖 → ((𝑗𝑖 → (𝑗) ⊆ (𝑖)) → ((𝑖) ⊆ (‘suc 𝑖) → (𝑗) ⊆ (‘suc 𝑖))))
122121com13 88 . . . . . . . . . . . . . . 15 ((𝑖) ⊆ (‘suc 𝑖) → ((𝑗𝑖 → (𝑗) ⊆ (𝑖)) → (𝑗 ∈ suc 𝑖 → (𝑗) ⊆ (‘suc 𝑖))))
123108, 111, 1223syl 18 . . . . . . . . . . . . . 14 (((𝑖) ∈ 𝑆 ∧ (‘suc 𝑖) ∈ (𝐺‘(𝑖))) → ((𝑗𝑖 → (𝑗) ⊆ (𝑖)) → (𝑗 ∈ suc 𝑖 → (𝑗) ⊆ (‘suc 𝑖))))
124107, 123anim12d 609 . . . . . . . . . . . . 13 (((𝑖) ∈ 𝑆 ∧ (‘suc 𝑖) ∈ (𝐺‘(𝑖))) → ((𝑖 ∈ dom (𝑖) ∧ (𝑗𝑖 → (𝑗) ⊆ (𝑖))) → (suc 𝑖 ∈ dom (‘suc 𝑖) ∧ (𝑗 ∈ suc 𝑖 → (𝑗) ⊆ (‘suc 𝑖)))))
12561, 67, 124syl2anc 584 . . . . . . . . . . . 12 ((𝑖 ∈ ω ∧ (:ω⟶𝑆 ∧ ∀𝑘 ∈ ω (‘suc 𝑘) ∈ (𝐺‘(𝑘)))) → ((𝑖 ∈ dom (𝑖) ∧ (𝑗𝑖 → (𝑗) ⊆ (𝑖))) → (suc 𝑖 ∈ dom (‘suc 𝑖) ∧ (𝑗 ∈ suc 𝑖 → (𝑗) ⊆ (‘suc 𝑖)))))
126125ex 413 . . . . . . . . . . 11 (𝑖 ∈ ω → ((:ω⟶𝑆 ∧ ∀𝑘 ∈ ω (‘suc 𝑘) ∈ (𝐺‘(𝑘))) → ((𝑖 ∈ dom (𝑖) ∧ (𝑗𝑖 → (𝑗) ⊆ (𝑖))) → (suc 𝑖 ∈ dom (‘suc 𝑖) ∧ (𝑗 ∈ suc 𝑖 → (𝑗) ⊆ (‘suc 𝑖))))))
1278, 16, 24, 58, 126finds2 7747 . . . . . . . . . 10 (𝑚 ∈ ω → ((:ω⟶𝑆 ∧ ∀𝑘 ∈ ω (‘suc 𝑘) ∈ (𝐺‘(𝑘))) → (𝑚 ∈ dom (𝑚) ∧ (𝑗𝑚 → (𝑗) ⊆ (𝑚)))))
128127imp 407 . . . . . . . . 9 ((𝑚 ∈ ω ∧ (:ω⟶𝑆 ∧ ∀𝑘 ∈ ω (‘suc 𝑘) ∈ (𝐺‘(𝑘)))) → (𝑚 ∈ dom (𝑚) ∧ (𝑗𝑚 → (𝑗) ⊆ (𝑚))))
129128simprd 496 . . . . . . . 8 ((𝑚 ∈ ω ∧ (:ω⟶𝑆 ∧ ∀𝑘 ∈ ω (‘suc 𝑘) ∈ (𝐺‘(𝑘)))) → (𝑗𝑚 → (𝑗) ⊆ (𝑚)))
130129expcom 414 . . . . . . 7 ((:ω⟶𝑆 ∧ ∀𝑘 ∈ ω (‘suc 𝑘) ∈ (𝐺‘(𝑘))) → (𝑚 ∈ ω → (𝑗𝑚 → (𝑗) ⊆ (𝑚))))
131130ralrimdv 3105 . . . . . 6 ((:ω⟶𝑆 ∧ ∀𝑘 ∈ ω (‘suc 𝑘) ∈ (𝐺‘(𝑘))) → (𝑚 ∈ ω → ∀𝑗𝑚 (𝑗) ⊆ (𝑚)))
132131ralrimiv 3102 . . . . 5 ((:ω⟶𝑆 ∧ ∀𝑘 ∈ ω (‘suc 𝑘) ∈ (𝐺‘(𝑘))) → ∀𝑚 ∈ ω ∀𝑗𝑚 (𝑗) ⊆ (𝑚))
133 frn 6607 . . . . . . . . . . . 12 (:ω⟶𝑆 → ran 𝑆)
134 ffun 6603 . . . . . . . . . . . . . . . 16 (𝑠:suc 𝑛𝐴 → Fun 𝑠)
1351343ad2ant1 1132 . . . . . . . . . . . . . . 15 ((𝑠:suc 𝑛𝐴 ∧ (𝑠‘∅) = 𝐶 ∧ ∀𝑘𝑛 (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠𝑘))) → Fun 𝑠)
136135rexlimivw 3211 . . . . . . . . . . . . . 14 (∃𝑛 ∈ ω (𝑠:suc 𝑛𝐴 ∧ (𝑠‘∅) = 𝐶 ∧ ∀𝑘𝑛 (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠𝑘))) → Fun 𝑠)
137136ss2abi 4000 . . . . . . . . . . . . 13 {𝑠 ∣ ∃𝑛 ∈ ω (𝑠:suc 𝑛𝐴 ∧ (𝑠‘∅) = 𝐶 ∧ ∀𝑘𝑛 (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠𝑘)))} ⊆ {𝑠 ∣ Fun 𝑠}
13828, 137eqsstri 3955 . . . . . . . . . . . 12 𝑆 ⊆ {𝑠 ∣ Fun 𝑠}
139133, 138sstrdi 3933 . . . . . . . . . . 11 (:ω⟶𝑆 → ran ⊆ {𝑠 ∣ Fun 𝑠})
140139sseld 3920 . . . . . . . . . 10 (:ω⟶𝑆 → (𝑢 ∈ ran 𝑢 ∈ {𝑠 ∣ Fun 𝑠}))
141 vex 3436 . . . . . . . . . . 11 𝑢 ∈ V
142 funeq 6454 . . . . . . . . . . 11 (𝑠 = 𝑢 → (Fun 𝑠 ↔ Fun 𝑢))
143141, 142elab 3609 . . . . . . . . . 10 (𝑢 ∈ {𝑠 ∣ Fun 𝑠} ↔ Fun 𝑢)
144140, 143syl6ib 250 . . . . . . . . 9 (:ω⟶𝑆 → (𝑢 ∈ ran → Fun 𝑢))
145144adantr 481 . . . . . . . 8 ((:ω⟶𝑆 ∧ ∀𝑚 ∈ ω ∀𝑗𝑚 (𝑗) ⊆ (𝑚)) → (𝑢 ∈ ran → Fun 𝑢))
146 ffn 6600 . . . . . . . . 9 (:ω⟶𝑆 Fn ω)
147 fvelrnb 6830 . . . . . . . . . . . . 13 ( Fn ω → (𝑣 ∈ ran ↔ ∃𝑏 ∈ ω (𝑏) = 𝑣))
148 fvelrnb 6830 . . . . . . . . . . . . . . 15 ( Fn ω → (𝑢 ∈ ran ↔ ∃𝑎 ∈ ω (𝑎) = 𝑢))
149 nnord 7720 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑎 ∈ ω → Ord 𝑎)
150 nnord 7720 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑏 ∈ ω → Ord 𝑏)
151149, 150anim12i 613 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑎 ∈ ω ∧ 𝑏 ∈ ω) → (Ord 𝑎 ∧ Ord 𝑏))
152 ordtri3or 6298 . . . . . . . . . . . . . . . . . . . . . . 23 ((Ord 𝑎 ∧ Ord 𝑏) → (𝑎𝑏𝑎 = 𝑏𝑏𝑎))
153 fveq2 6774 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑚 = 𝑏 → (𝑚) = (𝑏))
154153sseq2d 3953 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑚 = 𝑏 → ((𝑗) ⊆ (𝑚) ↔ (𝑗) ⊆ (𝑏)))
155154raleqbi1dv 3340 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑚 = 𝑏 → (∀𝑗𝑚 (𝑗) ⊆ (𝑚) ↔ ∀𝑗𝑏 (𝑗) ⊆ (𝑏)))
156155rspcv 3557 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑏 ∈ ω → (∀𝑚 ∈ ω ∀𝑗𝑚 (𝑗) ⊆ (𝑚) → ∀𝑗𝑏 (𝑗) ⊆ (𝑏)))
157 fveq2 6774 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑗 = 𝑎 → (𝑗) = (𝑎))
158157sseq1d 3952 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑗 = 𝑎 → ((𝑗) ⊆ (𝑏) ↔ (𝑎) ⊆ (𝑏)))
159158rspccv 3558 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (∀𝑗𝑏 (𝑗) ⊆ (𝑏) → (𝑎𝑏 → (𝑎) ⊆ (𝑏)))
160156, 159syl6 35 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑏 ∈ ω → (∀𝑚 ∈ ω ∀𝑗𝑚 (𝑗) ⊆ (𝑚) → (𝑎𝑏 → (𝑎) ⊆ (𝑏))))
161160adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑎 ∈ ω ∧ 𝑏 ∈ ω) → (∀𝑚 ∈ ω ∀𝑗𝑚 (𝑗) ⊆ (𝑚) → (𝑎𝑏 → (𝑎) ⊆ (𝑏))))
1621613imp 1110 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑎 ∈ ω ∧ 𝑏 ∈ ω) ∧ ∀𝑚 ∈ ω ∀𝑗𝑚 (𝑗) ⊆ (𝑚) ∧ 𝑎𝑏) → (𝑎) ⊆ (𝑏))
163162orcd 870 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑎 ∈ ω ∧ 𝑏 ∈ ω) ∧ ∀𝑚 ∈ ω ∀𝑗𝑚 (𝑗) ⊆ (𝑚) ∧ 𝑎𝑏) → ((𝑎) ⊆ (𝑏) ∨ (𝑏) ⊆ (𝑎)))
1641633exp 1118 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑎 ∈ ω ∧ 𝑏 ∈ ω) → (∀𝑚 ∈ ω ∀𝑗𝑚 (𝑗) ⊆ (𝑚) → (𝑎𝑏 → ((𝑎) ⊆ (𝑏) ∨ (𝑏) ⊆ (𝑎)))))
165164com3r 87 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑎𝑏 → ((𝑎 ∈ ω ∧ 𝑏 ∈ ω) → (∀𝑚 ∈ ω ∀𝑗𝑚 (𝑗) ⊆ (𝑚) → ((𝑎) ⊆ (𝑏) ∨ (𝑏) ⊆ (𝑎)))))
166 fveq2 6774 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑎 = 𝑏 → (𝑎) = (𝑏))
167 eqimss 3977 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑎) = (𝑏) → (𝑎) ⊆ (𝑏))
168167orcd 870 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑎) = (𝑏) → ((𝑎) ⊆ (𝑏) ∨ (𝑏) ⊆ (𝑎)))
169166, 168syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑎 = 𝑏 → ((𝑎) ⊆ (𝑏) ∨ (𝑏) ⊆ (𝑎)))
1701692a1d 26 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑎 = 𝑏 → ((𝑎 ∈ ω ∧ 𝑏 ∈ ω) → (∀𝑚 ∈ ω ∀𝑗𝑚 (𝑗) ⊆ (𝑚) → ((𝑎) ⊆ (𝑏) ∨ (𝑏) ⊆ (𝑎)))))
171 fveq2 6774 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑚 = 𝑎 → (𝑚) = (𝑎))
172171sseq2d 3953 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑚 = 𝑎 → ((𝑗) ⊆ (𝑚) ↔ (𝑗) ⊆ (𝑎)))
173172raleqbi1dv 3340 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑚 = 𝑎 → (∀𝑗𝑚 (𝑗) ⊆ (𝑚) ↔ ∀𝑗𝑎 (𝑗) ⊆ (𝑎)))
174173rspcv 3557 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑎 ∈ ω → (∀𝑚 ∈ ω ∀𝑗𝑚 (𝑗) ⊆ (𝑚) → ∀𝑗𝑎 (𝑗) ⊆ (𝑎)))
175 fveq2 6774 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑗 = 𝑏 → (𝑗) = (𝑏))
176175sseq1d 3952 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑗 = 𝑏 → ((𝑗) ⊆ (𝑎) ↔ (𝑏) ⊆ (𝑎)))
177176rspccv 3558 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (∀𝑗𝑎 (𝑗) ⊆ (𝑎) → (𝑏𝑎 → (𝑏) ⊆ (𝑎)))
178174, 177syl6 35 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑎 ∈ ω → (∀𝑚 ∈ ω ∀𝑗𝑚 (𝑗) ⊆ (𝑚) → (𝑏𝑎 → (𝑏) ⊆ (𝑎))))
179178adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑎 ∈ ω ∧ 𝑏 ∈ ω) → (∀𝑚 ∈ ω ∀𝑗𝑚 (𝑗) ⊆ (𝑚) → (𝑏𝑎 → (𝑏) ⊆ (𝑎))))
1801793imp 1110 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑎 ∈ ω ∧ 𝑏 ∈ ω) ∧ ∀𝑚 ∈ ω ∀𝑗𝑚 (𝑗) ⊆ (𝑚) ∧ 𝑏𝑎) → (𝑏) ⊆ (𝑎))
181180olcd 871 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑎 ∈ ω ∧ 𝑏 ∈ ω) ∧ ∀𝑚 ∈ ω ∀𝑗𝑚 (𝑗) ⊆ (𝑚) ∧ 𝑏𝑎) → ((𝑎) ⊆ (𝑏) ∨ (𝑏) ⊆ (𝑎)))
1821813exp 1118 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑎 ∈ ω ∧ 𝑏 ∈ ω) → (∀𝑚 ∈ ω ∀𝑗𝑚 (𝑗) ⊆ (𝑚) → (𝑏𝑎 → ((𝑎) ⊆ (𝑏) ∨ (𝑏) ⊆ (𝑎)))))
183182com3r 87 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑏𝑎 → ((𝑎 ∈ ω ∧ 𝑏 ∈ ω) → (∀𝑚 ∈ ω ∀𝑗𝑚 (𝑗) ⊆ (𝑚) → ((𝑎) ⊆ (𝑏) ∨ (𝑏) ⊆ (𝑎)))))
184165, 170, 1833jaoi 1426 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑎𝑏𝑎 = 𝑏𝑏𝑎) → ((𝑎 ∈ ω ∧ 𝑏 ∈ ω) → (∀𝑚 ∈ ω ∀𝑗𝑚 (𝑗) ⊆ (𝑚) → ((𝑎) ⊆ (𝑏) ∨ (𝑏) ⊆ (𝑎)))))
185152, 184syl 17 . . . . . . . . . . . . . . . . . . . . . 22 ((Ord 𝑎 ∧ Ord 𝑏) → ((𝑎 ∈ ω ∧ 𝑏 ∈ ω) → (∀𝑚 ∈ ω ∀𝑗𝑚 (𝑗) ⊆ (𝑚) → ((𝑎) ⊆ (𝑏) ∨ (𝑏) ⊆ (𝑎)))))
186151, 185mpcom 38 . . . . . . . . . . . . . . . . . . . . 21 ((𝑎 ∈ ω ∧ 𝑏 ∈ ω) → (∀𝑚 ∈ ω ∀𝑗𝑚 (𝑗) ⊆ (𝑚) → ((𝑎) ⊆ (𝑏) ∨ (𝑏) ⊆ (𝑎))))
187 sseq12 3948 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑎) = 𝑢 ∧ (𝑏) = 𝑣) → ((𝑎) ⊆ (𝑏) ↔ 𝑢𝑣))
188 sseq12 3948 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑏) = 𝑣 ∧ (𝑎) = 𝑢) → ((𝑏) ⊆ (𝑎) ↔ 𝑣𝑢))
189188ancoms 459 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑎) = 𝑢 ∧ (𝑏) = 𝑣) → ((𝑏) ⊆ (𝑎) ↔ 𝑣𝑢))
190187, 189orbi12d 916 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑎) = 𝑢 ∧ (𝑏) = 𝑣) → (((𝑎) ⊆ (𝑏) ∨ (𝑏) ⊆ (𝑎)) ↔ (𝑢𝑣𝑣𝑢)))
191190biimpcd 248 . . . . . . . . . . . . . . . . . . . . 21 (((𝑎) ⊆ (𝑏) ∨ (𝑏) ⊆ (𝑎)) → (((𝑎) = 𝑢 ∧ (𝑏) = 𝑣) → (𝑢𝑣𝑣𝑢)))
192186, 191syl6 35 . . . . . . . . . . . . . . . . . . . 20 ((𝑎 ∈ ω ∧ 𝑏 ∈ ω) → (∀𝑚 ∈ ω ∀𝑗𝑚 (𝑗) ⊆ (𝑚) → (((𝑎) = 𝑢 ∧ (𝑏) = 𝑣) → (𝑢𝑣𝑣𝑢))))
193192com23 86 . . . . . . . . . . . . . . . . . . 19 ((𝑎 ∈ ω ∧ 𝑏 ∈ ω) → (((𝑎) = 𝑢 ∧ (𝑏) = 𝑣) → (∀𝑚 ∈ ω ∀𝑗𝑚 (𝑗) ⊆ (𝑚) → (𝑢𝑣𝑣𝑢))))
194193exp4b 431 . . . . . . . . . . . . . . . . . 18 (𝑎 ∈ ω → (𝑏 ∈ ω → ((𝑎) = 𝑢 → ((𝑏) = 𝑣 → (∀𝑚 ∈ ω ∀𝑗𝑚 (𝑗) ⊆ (𝑚) → (𝑢𝑣𝑣𝑢))))))
195194com23 86 . . . . . . . . . . . . . . . . 17 (𝑎 ∈ ω → ((𝑎) = 𝑢 → (𝑏 ∈ ω → ((𝑏) = 𝑣 → (∀𝑚 ∈ ω ∀𝑗𝑚 (𝑗) ⊆ (𝑚) → (𝑢𝑣𝑣𝑢))))))
196195rexlimiv 3209 . . . . . . . . . . . . . . . 16 (∃𝑎 ∈ ω (𝑎) = 𝑢 → (𝑏 ∈ ω → ((𝑏) = 𝑣 → (∀𝑚 ∈ ω ∀𝑗𝑚 (𝑗) ⊆ (𝑚) → (𝑢𝑣𝑣𝑢)))))
197196rexlimdv 3212 . . . . . . . . . . . . . . 15 (∃𝑎 ∈ ω (𝑎) = 𝑢 → (∃𝑏 ∈ ω (𝑏) = 𝑣 → (∀𝑚 ∈ ω ∀𝑗𝑚 (𝑗) ⊆ (𝑚) → (𝑢𝑣𝑣𝑢))))
198148, 197syl6bi 252 . . . . . . . . . . . . . 14 ( Fn ω → (𝑢 ∈ ran → (∃𝑏 ∈ ω (𝑏) = 𝑣 → (∀𝑚 ∈ ω ∀𝑗𝑚 (𝑗) ⊆ (𝑚) → (𝑢𝑣𝑣𝑢)))))
199198com23 86 . . . . . . . . . . . . 13 ( Fn ω → (∃𝑏 ∈ ω (𝑏) = 𝑣 → (𝑢 ∈ ran → (∀𝑚 ∈ ω ∀𝑗𝑚 (𝑗) ⊆ (𝑚) → (𝑢𝑣𝑣𝑢)))))
200147, 199sylbid 239 . . . . . . . . . . . 12 ( Fn ω → (𝑣 ∈ ran → (𝑢 ∈ ran → (∀𝑚 ∈ ω ∀𝑗𝑚 (𝑗) ⊆ (𝑚) → (𝑢𝑣𝑣𝑢)))))
201200com24 95 . . . . . . . . . . 11 ( Fn ω → (∀𝑚 ∈ ω ∀𝑗𝑚 (𝑗) ⊆ (𝑚) → (𝑢 ∈ ran → (𝑣 ∈ ran → (𝑢𝑣𝑣𝑢)))))
202201imp 407 . . . . . . . . . 10 (( Fn ω ∧ ∀𝑚 ∈ ω ∀𝑗𝑚 (𝑗) ⊆ (𝑚)) → (𝑢 ∈ ran → (𝑣 ∈ ran → (𝑢𝑣𝑣𝑢))))
203202ralrimdv 3105 . . . . . . . . 9 (( Fn ω ∧ ∀𝑚 ∈ ω ∀𝑗𝑚 (𝑗) ⊆ (𝑚)) → (𝑢 ∈ ran → ∀𝑣 ∈ ran (𝑢𝑣𝑣𝑢)))
204146, 203sylan 580 . . . . . . . 8 ((:ω⟶𝑆 ∧ ∀𝑚 ∈ ω ∀𝑗𝑚 (𝑗) ⊆ (𝑚)) → (𝑢 ∈ ran → ∀𝑣 ∈ ran (𝑢𝑣𝑣𝑢)))
205145, 204jcad 513 . . . . . . 7 ((:ω⟶𝑆 ∧ ∀𝑚 ∈ ω ∀𝑗𝑚 (𝑗) ⊆ (𝑚)) → (𝑢 ∈ ran → (Fun 𝑢 ∧ ∀𝑣 ∈ ran (𝑢𝑣𝑣𝑢))))
206205ralrimiv 3102 . . . . . 6 ((:ω⟶𝑆 ∧ ∀𝑚 ∈ ω ∀𝑗𝑚 (𝑗) ⊆ (𝑚)) → ∀𝑢 ∈ ran (Fun 𝑢 ∧ ∀𝑣 ∈ ran (𝑢𝑣𝑣𝑢)))
207 fununi 6509 . . . . . 6 (∀𝑢 ∈ ran (Fun 𝑢 ∧ ∀𝑣 ∈ ran (𝑢𝑣𝑣𝑢)) → Fun ran )
208206, 207syl 17 . . . . 5 ((:ω⟶𝑆 ∧ ∀𝑚 ∈ ω ∀𝑗𝑚 (𝑗) ⊆ (𝑚)) → Fun ran )
209132, 208syldan 591 . . . 4 ((:ω⟶𝑆 ∧ ∀𝑘 ∈ ω (‘suc 𝑘) ∈ (𝐺‘(𝑘))) → Fun ran )
210 vex 3436 . . . . . . . . 9 𝑚 ∈ V
211210eldm2 5810 . . . . . . . 8 (𝑚 ∈ dom ran ↔ ∃𝑢𝑚, 𝑢⟩ ∈ ran )
212 eluni2 4843 . . . . . . . . . 10 (⟨𝑚, 𝑢⟩ ∈ ran ↔ ∃𝑣 ∈ ran 𝑚, 𝑢⟩ ∈ 𝑣)
213210, 141opeldm 5816 . . . . . . . . . . . . . . 15 (⟨𝑚, 𝑢⟩ ∈ 𝑣𝑚 ∈ dom 𝑣)
214213a1i 11 . . . . . . . . . . . . . 14 (:ω⟶𝑆 → (⟨𝑚, 𝑢⟩ ∈ 𝑣𝑚 ∈ dom 𝑣))
215133, 44sstrdi 3933 . . . . . . . . . . . . . . 15 (:ω⟶𝑆 → ran ⊆ {𝑠 ∣ (∅ ∈ dom 𝑠 ∧ dom 𝑠 ∈ ω)})
216 ssel 3914 . . . . . . . . . . . . . . . 16 (ran ⊆ {𝑠 ∣ (∅ ∈ dom 𝑠 ∧ dom 𝑠 ∈ ω)} → (𝑣 ∈ ran 𝑣 ∈ {𝑠 ∣ (∅ ∈ dom 𝑠 ∧ dom 𝑠 ∈ ω)}))
217 vex 3436 . . . . . . . . . . . . . . . . . 18 𝑣 ∈ V
218 dmeq 5812 . . . . . . . . . . . . . . . . . . . 20 (𝑠 = 𝑣 → dom 𝑠 = dom 𝑣)
219218eleq2d 2824 . . . . . . . . . . . . . . . . . . 19 (𝑠 = 𝑣 → (∅ ∈ dom 𝑠 ↔ ∅ ∈ dom 𝑣))
220218eleq1d 2823 . . . . . . . . . . . . . . . . . . 19 (𝑠 = 𝑣 → (dom 𝑠 ∈ ω ↔ dom 𝑣 ∈ ω))
221219, 220anbi12d 631 . . . . . . . . . . . . . . . . . 18 (𝑠 = 𝑣 → ((∅ ∈ dom 𝑠 ∧ dom 𝑠 ∈ ω) ↔ (∅ ∈ dom 𝑣 ∧ dom 𝑣 ∈ ω)))
222217, 221elab 3609 . . . . . . . . . . . . . . . . 17 (𝑣 ∈ {𝑠 ∣ (∅ ∈ dom 𝑠 ∧ dom 𝑠 ∈ ω)} ↔ (∅ ∈ dom 𝑣 ∧ dom 𝑣 ∈ ω))
223222simprbi 497 . . . . . . . . . . . . . . . 16 (𝑣 ∈ {𝑠 ∣ (∅ ∈ dom 𝑠 ∧ dom 𝑠 ∈ ω)} → dom 𝑣 ∈ ω)
224216, 223syl6 35 . . . . . . . . . . . . . . 15 (ran ⊆ {𝑠 ∣ (∅ ∈ dom 𝑠 ∧ dom 𝑠 ∈ ω)} → (𝑣 ∈ ran → dom 𝑣 ∈ ω))
225215, 224syl 17 . . . . . . . . . . . . . 14 (:ω⟶𝑆 → (𝑣 ∈ ran → dom 𝑣 ∈ ω))
226214, 225anim12d 609 . . . . . . . . . . . . 13 (:ω⟶𝑆 → ((⟨𝑚, 𝑢⟩ ∈ 𝑣𝑣 ∈ ran ) → (𝑚 ∈ dom 𝑣 ∧ dom 𝑣 ∈ ω)))
227 elnn 7723 . . . . . . . . . . . . 13 ((𝑚 ∈ dom 𝑣 ∧ dom 𝑣 ∈ ω) → 𝑚 ∈ ω)
228226, 227syl6 35 . . . . . . . . . . . 12 (:ω⟶𝑆 → ((⟨𝑚, 𝑢⟩ ∈ 𝑣𝑣 ∈ ran ) → 𝑚 ∈ ω))
229228expcomd 417 . . . . . . . . . . 11 (:ω⟶𝑆 → (𝑣 ∈ ran → (⟨𝑚, 𝑢⟩ ∈ 𝑣𝑚 ∈ ω)))
230229rexlimdv 3212 . . . . . . . . . 10 (:ω⟶𝑆 → (∃𝑣 ∈ ran 𝑚, 𝑢⟩ ∈ 𝑣𝑚 ∈ ω))
231212, 230syl5bi 241 . . . . . . . . 9 (:ω⟶𝑆 → (⟨𝑚, 𝑢⟩ ∈ ran 𝑚 ∈ ω))
232231exlimdv 1936 . . . . . . . 8 (:ω⟶𝑆 → (∃𝑢𝑚, 𝑢⟩ ∈ ran 𝑚 ∈ ω))
233211, 232syl5bi 241 . . . . . . 7 (:ω⟶𝑆 → (𝑚 ∈ dom ran 𝑚 ∈ ω))
234233adantr 481 . . . . . 6 ((:ω⟶𝑆 ∧ ∀𝑘 ∈ ω (‘suc 𝑘) ∈ (𝐺‘(𝑘))) → (𝑚 ∈ dom ran 𝑚 ∈ ω))
235 id 22 . . . . . . . . . . 11 (𝑚 ∈ ω → 𝑚 ∈ ω)
236 fnfvelrn 6958 . . . . . . . . . . 11 (( Fn ω ∧ 𝑚 ∈ ω) → (𝑚) ∈ ran )
237146, 235, 236syl2anr 597 . . . . . . . . . 10 ((𝑚 ∈ ω ∧ :ω⟶𝑆) → (𝑚) ∈ ran )
238237adantrr 714 . . . . . . . . 9 ((𝑚 ∈ ω ∧ (:ω⟶𝑆 ∧ ∀𝑘 ∈ ω (‘suc 𝑘) ∈ (𝐺‘(𝑘)))) → (𝑚) ∈ ran )
239128simpld 495 . . . . . . . . 9 ((𝑚 ∈ ω ∧ (:ω⟶𝑆 ∧ ∀𝑘 ∈ ω (‘suc 𝑘) ∈ (𝐺‘(𝑘)))) → 𝑚 ∈ dom (𝑚))
240 dmeq 5812 . . . . . . . . . 10 (𝑢 = (𝑚) → dom 𝑢 = dom (𝑚))
241240eliuni 4930 . . . . . . . . 9 (((𝑚) ∈ ran 𝑚 ∈ dom (𝑚)) → 𝑚 𝑢 ∈ ran dom 𝑢)
242238, 239, 241syl2anc 584 . . . . . . . 8 ((𝑚 ∈ ω ∧ (:ω⟶𝑆 ∧ ∀𝑘 ∈ ω (‘suc 𝑘) ∈ (𝐺‘(𝑘)))) → 𝑚 𝑢 ∈ ran dom 𝑢)
243 dmuni 5823 . . . . . . . 8 dom ran = 𝑢 ∈ ran dom 𝑢
244242, 243eleqtrrdi 2850 . . . . . . 7 ((𝑚 ∈ ω ∧ (:ω⟶𝑆 ∧ ∀𝑘 ∈ ω (‘suc 𝑘) ∈ (𝐺‘(𝑘)))) → 𝑚 ∈ dom ran )
245244expcom 414 . . . . . 6 ((:ω⟶𝑆 ∧ ∀𝑘 ∈ ω (‘suc 𝑘) ∈ (𝐺‘(𝑘))) → (𝑚 ∈ ω → 𝑚 ∈ dom ran ))
246234, 245impbid 211 . . . . 5 ((:ω⟶𝑆 ∧ ∀𝑘 ∈ ω (‘suc 𝑘) ∈ (𝐺‘(𝑘))) → (𝑚 ∈ dom ran 𝑚 ∈ ω))
247246eqrdv 2736 . . . 4 ((:ω⟶𝑆 ∧ ∀𝑘 ∈ ω (‘suc 𝑘) ∈ (𝐺‘(𝑘))) → dom ran = ω)
248 rnuni 6052 . . . . . 6 ran ran = 𝑠 ∈ ran ran 𝑠
249 frn 6607 . . . . . . . . . . . . . 14 (𝑠:suc 𝑛𝐴 → ran 𝑠𝐴)
2502493ad2ant1 1132 . . . . . . . . . . . . 13 ((𝑠:suc 𝑛𝐴 ∧ (𝑠‘∅) = 𝐶 ∧ ∀𝑘𝑛 (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠𝑘))) → ran 𝑠𝐴)
251250rexlimivw 3211 . . . . . . . . . . . 12 (∃𝑛 ∈ ω (𝑠:suc 𝑛𝐴 ∧ (𝑠‘∅) = 𝐶 ∧ ∀𝑘𝑛 (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠𝑘))) → ran 𝑠𝐴)
252251ss2abi 4000 . . . . . . . . . . 11 {𝑠 ∣ ∃𝑛 ∈ ω (𝑠:suc 𝑛𝐴 ∧ (𝑠‘∅) = 𝐶 ∧ ∀𝑘𝑛 (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠𝑘)))} ⊆ {𝑠 ∣ ran 𝑠𝐴}
25328, 252eqsstri 3955 . . . . . . . . . 10 𝑆 ⊆ {𝑠 ∣ ran 𝑠𝐴}
254133, 253sstrdi 3933 . . . . . . . . 9 (:ω⟶𝑆 → ran ⊆ {𝑠 ∣ ran 𝑠𝐴})
255 ssel 3914 . . . . . . . . . 10 (ran ⊆ {𝑠 ∣ ran 𝑠𝐴} → (𝑠 ∈ ran 𝑠 ∈ {𝑠 ∣ ran 𝑠𝐴}))
256 abid 2719 . . . . . . . . . 10 (𝑠 ∈ {𝑠 ∣ ran 𝑠𝐴} ↔ ran 𝑠𝐴)
257255, 256syl6ib 250 . . . . . . . . 9 (ran ⊆ {𝑠 ∣ ran 𝑠𝐴} → (𝑠 ∈ ran → ran 𝑠𝐴))
258254, 257syl 17 . . . . . . . 8 (:ω⟶𝑆 → (𝑠 ∈ ran → ran 𝑠𝐴))
259258ralrimiv 3102 . . . . . . 7 (:ω⟶𝑆 → ∀𝑠 ∈ ran ran 𝑠𝐴)
260 iunss 4975 . . . . . . 7 ( 𝑠 ∈ ran ran 𝑠𝐴 ↔ ∀𝑠 ∈ ran ran 𝑠𝐴)
261259, 260sylibr 233 . . . . . 6 (:ω⟶𝑆 𝑠 ∈ ran ran 𝑠𝐴)
262248, 261eqsstrid 3969 . . . . 5 (:ω⟶𝑆 → ran ran 𝐴)
263262adantr 481 . . . 4 ((:ω⟶𝑆 ∧ ∀𝑘 ∈ ω (‘suc 𝑘) ∈ (𝐺‘(𝑘))) → ran ran 𝐴)
264 df-fn 6436 . . . . 5 ( ran Fn ω ↔ (Fun ran ∧ dom ran = ω))
265 df-f 6437 . . . . . 6 ( ran :ω⟶𝐴 ↔ ( ran Fn ω ∧ ran ran 𝐴))
266265biimpri 227 . . . . 5 (( ran Fn ω ∧ ran ran 𝐴) → ran :ω⟶𝐴)
267264, 266sylanbr 582 . . . 4 (((Fun ran ∧ dom ran = ω) ∧ ran ran 𝐴) → ran :ω⟶𝐴)
268209, 247, 263, 267syl21anc 835 . . 3 ((:ω⟶𝑆 ∧ ∀𝑘 ∈ ω (‘suc 𝑘) ∈ (𝐺‘(𝑘))) → ran :ω⟶𝐴)
269 fnfvelrn 6958 . . . . . . . 8 (( Fn ω ∧ ∅ ∈ ω) → (‘∅) ∈ ran )
270146, 25, 269sylancl 586 . . . . . . 7 (:ω⟶𝑆 → (‘∅) ∈ ran )
271270adantr 481 . . . . . 6 ((:ω⟶𝑆 ∧ ∀𝑘 ∈ ω (‘suc 𝑘) ∈ (𝐺‘(𝑘))) → (‘∅) ∈ ran )
272 elssuni 4871 . . . . . 6 ((‘∅) ∈ ran → (‘∅) ⊆ ran )
273271, 272syl 17 . . . . 5 ((:ω⟶𝑆 ∧ ∀𝑘 ∈ ω (‘suc 𝑘) ∈ (𝐺‘(𝑘))) → (‘∅) ⊆ ran )
27454adantr 481 . . . . 5 ((:ω⟶𝑆 ∧ ∀𝑘 ∈ ω (‘suc 𝑘) ∈ (𝐺‘(𝑘))) → ∅ ∈ dom (‘∅))
275 funssfv 6795 . . . . 5 ((Fun ran ∧ (‘∅) ⊆ ran ∧ ∅ ∈ dom (‘∅)) → ( ran ‘∅) = ((‘∅)‘∅))
276209, 273, 274, 275syl3anc 1370 . . . 4 ((:ω⟶𝑆 ∧ ∀𝑘 ∈ ω (‘suc 𝑘) ∈ (𝐺‘(𝑘))) → ( ran ‘∅) = ((‘∅)‘∅))
277 simp2 1136 . . . . . . . . . . 11 ((𝑠:suc 𝑛𝐴 ∧ (𝑠‘∅) = 𝐶 ∧ ∀𝑘𝑛 (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠𝑘))) → (𝑠‘∅) = 𝐶)
278277rexlimivw 3211 . . . . . . . . . 10 (∃𝑛 ∈ ω (𝑠:suc 𝑛𝐴 ∧ (𝑠‘∅) = 𝐶 ∧ ∀𝑘𝑛 (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠𝑘))) → (𝑠‘∅) = 𝐶)
279278ss2abi 4000 . . . . . . . . 9 {𝑠 ∣ ∃𝑛 ∈ ω (𝑠:suc 𝑛𝐴 ∧ (𝑠‘∅) = 𝐶 ∧ ∀𝑘𝑛 (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠𝑘)))} ⊆ {𝑠 ∣ (𝑠‘∅) = 𝐶}
28028, 279eqsstri 3955 . . . . . . . 8 𝑆 ⊆ {𝑠 ∣ (𝑠‘∅) = 𝐶}
281133, 280sstrdi 3933 . . . . . . 7 (:ω⟶𝑆 → ran ⊆ {𝑠 ∣ (𝑠‘∅) = 𝐶})
282 ssel 3914 . . . . . . . 8 (ran ⊆ {𝑠 ∣ (𝑠‘∅) = 𝐶} → ((‘∅) ∈ ran → (‘∅) ∈ {𝑠 ∣ (𝑠‘∅) = 𝐶}))
283 fveq1 6773 . . . . . . . . . 10 (𝑠 = (‘∅) → (𝑠‘∅) = ((‘∅)‘∅))
284283eqeq1d 2740 . . . . . . . . 9 (𝑠 = (‘∅) → ((𝑠‘∅) = 𝐶 ↔ ((‘∅)‘∅) = 𝐶))
28546, 284elab 3609 . . . . . . . 8 ((‘∅) ∈ {𝑠 ∣ (𝑠‘∅) = 𝐶} ↔ ((‘∅)‘∅) = 𝐶)
286282, 285syl6ib 250 . . . . . . 7 (ran ⊆ {𝑠 ∣ (𝑠‘∅) = 𝐶} → ((‘∅) ∈ ran → ((‘∅)‘∅) = 𝐶))
287281, 286syl 17 . . . . . 6 (:ω⟶𝑆 → ((‘∅) ∈ ran → ((‘∅)‘∅) = 𝐶))
288287adantr 481 . . . . 5 ((:ω⟶𝑆 ∧ ∀𝑘 ∈ ω (‘suc 𝑘) ∈ (𝐺‘(𝑘))) → ((‘∅) ∈ ran → ((‘∅)‘∅) = 𝐶))
289271, 288mpd 15 . . . 4 ((:ω⟶𝑆 ∧ ∀𝑘 ∈ ω (‘suc 𝑘) ∈ (𝐺‘(𝑘))) → ((‘∅)‘∅) = 𝐶)
290276, 289eqtrd 2778 . . 3 ((:ω⟶𝑆 ∧ ∀𝑘 ∈ ω (‘suc 𝑘) ∈ (𝐺‘(𝑘))) → ( ran ‘∅) = 𝐶)
291 nfv 1917 . . . . 5 𝑘 :ω⟶𝑆
292 nfra1 3144 . . . . 5 𝑘𝑘 ∈ ω (‘suc 𝑘) ∈ (𝐺‘(𝑘))
293291, 292nfan 1902 . . . 4 𝑘(:ω⟶𝑆 ∧ ∀𝑘 ∈ ω (‘suc 𝑘) ∈ (𝐺‘(𝑘)))
294133ad2antrr 723 . . . . . . 7 (((:ω⟶𝑆 ∧ ∀𝑘 ∈ ω (‘suc 𝑘) ∈ (𝐺‘(𝑘))) ∧ 𝑘 ∈ ω) → ran 𝑆)
295 peano2 7737 . . . . . . . . 9 (𝑘 ∈ ω → suc 𝑘 ∈ ω)
296 fnfvelrn 6958 . . . . . . . . 9 (( Fn ω ∧ suc 𝑘 ∈ ω) → (‘suc 𝑘) ∈ ran )
297146, 295, 296syl2an 596 . . . . . . . 8 ((:ω⟶𝑆𝑘 ∈ ω) → (‘suc 𝑘) ∈ ran )
298297adantlr 712 . . . . . . 7 (((:ω⟶𝑆 ∧ ∀𝑘 ∈ ω (‘suc 𝑘) ∈ (𝐺‘(𝑘))) ∧ 𝑘 ∈ ω) → (‘suc 𝑘) ∈ ran )
299239expcom 414 . . . . . . . . 9 ((:ω⟶𝑆 ∧ ∀𝑘 ∈ ω (‘suc 𝑘) ∈ (𝐺‘(𝑘))) → (𝑚 ∈ ω → 𝑚 ∈ dom (𝑚)))
300299ralrimiv 3102 . . . . . . . 8 ((:ω⟶𝑆 ∧ ∀𝑘 ∈ ω (‘suc 𝑘) ∈ (𝐺‘(𝑘))) → ∀𝑚 ∈ ω 𝑚 ∈ dom (𝑚))
301 id 22 . . . . . . . . . . 11 (𝑚 = suc 𝑘𝑚 = suc 𝑘)
302 fveq2 6774 . . . . . . . . . . . 12 (𝑚 = suc 𝑘 → (𝑚) = (‘suc 𝑘))
303302dmeqd 5814 . . . . . . . . . . 11 (𝑚 = suc 𝑘 → dom (𝑚) = dom (‘suc 𝑘))
304301, 303eleq12d 2833 . . . . . . . . . 10 (𝑚 = suc 𝑘 → (𝑚 ∈ dom (𝑚) ↔ suc 𝑘 ∈ dom (‘suc 𝑘)))
305304rspcv 3557 . . . . . . . . 9 (suc 𝑘 ∈ ω → (∀𝑚 ∈ ω 𝑚 ∈ dom (𝑚) → suc 𝑘 ∈ dom (‘suc 𝑘)))
306295, 305syl 17 . . . . . . . 8 (𝑘 ∈ ω → (∀𝑚 ∈ ω 𝑚 ∈ dom (𝑚) → suc 𝑘 ∈ dom (‘suc 𝑘)))
307300, 306mpan9 507 . . . . . . 7 (((:ω⟶𝑆 ∧ ∀𝑘 ∈ ω (‘suc 𝑘) ∈ (𝐺‘(𝑘))) ∧ 𝑘 ∈ ω) → suc 𝑘 ∈ dom (‘suc 𝑘))
308 eleq2 2827 . . . . . . . . . . . . . . . . . . . . 21 (dom 𝑠 = suc 𝑛 → (suc 𝑘 ∈ dom 𝑠 ↔ suc 𝑘 ∈ suc 𝑛))
309308biimpa 477 . . . . . . . . . . . . . . . . . . . 20 ((dom 𝑠 = suc 𝑛 ∧ suc 𝑘 ∈ dom 𝑠) → suc 𝑘 ∈ suc 𝑛)
31029, 309sylan 580 . . . . . . . . . . . . . . . . . . 19 ((𝑠:suc 𝑛𝐴 ∧ suc 𝑘 ∈ dom 𝑠) → suc 𝑘 ∈ suc 𝑛)
311 ordsucelsuc 7669 . . . . . . . . . . . . . . . . . . . . . . 23 (Ord 𝑛 → (𝑘𝑛 ↔ suc 𝑘 ∈ suc 𝑛))
31230, 311syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (𝑛 ∈ ω → (𝑘𝑛 ↔ suc 𝑘 ∈ suc 𝑛))
313312biimprd 247 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 ∈ ω → (suc 𝑘 ∈ suc 𝑛𝑘𝑛))
314 rsp 3131 . . . . . . . . . . . . . . . . . . . . 21 (∀𝑘𝑛 (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠𝑘)) → (𝑘𝑛 → (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠𝑘))))
315313, 314syl9r 78 . . . . . . . . . . . . . . . . . . . 20 (∀𝑘𝑛 (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠𝑘)) → (𝑛 ∈ ω → (suc 𝑘 ∈ suc 𝑛 → (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠𝑘)))))
316315com13 88 . . . . . . . . . . . . . . . . . . 19 (suc 𝑘 ∈ suc 𝑛 → (𝑛 ∈ ω → (∀𝑘𝑛 (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠𝑘)) → (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠𝑘)))))
317310, 316syl 17 . . . . . . . . . . . . . . . . . 18 ((𝑠:suc 𝑛𝐴 ∧ suc 𝑘 ∈ dom 𝑠) → (𝑛 ∈ ω → (∀𝑘𝑛 (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠𝑘)) → (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠𝑘)))))
318317ex 413 . . . . . . . . . . . . . . . . 17 (𝑠:suc 𝑛𝐴 → (suc 𝑘 ∈ dom 𝑠 → (𝑛 ∈ ω → (∀𝑘𝑛 (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠𝑘)) → (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠𝑘))))))
319318com24 95 . . . . . . . . . . . . . . . 16 (𝑠:suc 𝑛𝐴 → (∀𝑘𝑛 (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠𝑘)) → (𝑛 ∈ ω → (suc 𝑘 ∈ dom 𝑠 → (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠𝑘))))))
320319imp 407 . . . . . . . . . . . . . . 15 ((𝑠:suc 𝑛𝐴 ∧ ∀𝑘𝑛 (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠𝑘))) → (𝑛 ∈ ω → (suc 𝑘 ∈ dom 𝑠 → (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠𝑘)))))
3213203adant2 1130 . . . . . . . . . . . . . 14 ((𝑠:suc 𝑛𝐴 ∧ (𝑠‘∅) = 𝐶 ∧ ∀𝑘𝑛 (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠𝑘))) → (𝑛 ∈ ω → (suc 𝑘 ∈ dom 𝑠 → (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠𝑘)))))
322321impcom 408 . . . . . . . . . . . . 13 ((𝑛 ∈ ω ∧ (𝑠:suc 𝑛𝐴 ∧ (𝑠‘∅) = 𝐶 ∧ ∀𝑘𝑛 (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠𝑘)))) → (suc 𝑘 ∈ dom 𝑠 → (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠𝑘))))
323322rexlimiva 3210 . . . . . . . . . . . 12 (∃𝑛 ∈ ω (𝑠:suc 𝑛𝐴 ∧ (𝑠‘∅) = 𝐶 ∧ ∀𝑘𝑛 (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠𝑘))) → (suc 𝑘 ∈ dom 𝑠 → (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠𝑘))))
324323ss2abi 4000 . . . . . . . . . . 11 {𝑠 ∣ ∃𝑛 ∈ ω (𝑠:suc 𝑛𝐴 ∧ (𝑠‘∅) = 𝐶 ∧ ∀𝑘𝑛 (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠𝑘)))} ⊆ {𝑠 ∣ (suc 𝑘 ∈ dom 𝑠 → (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠𝑘)))}
32528, 324eqsstri 3955 . . . . . . . . . 10 𝑆 ⊆ {𝑠 ∣ (suc 𝑘 ∈ dom 𝑠 → (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠𝑘)))}
326 sstr 3929 . . . . . . . . . 10 ((ran 𝑆𝑆 ⊆ {𝑠 ∣ (suc 𝑘 ∈ dom 𝑠 → (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠𝑘)))}) → ran ⊆ {𝑠 ∣ (suc 𝑘 ∈ dom 𝑠 → (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠𝑘)))})
327325, 326mpan2 688 . . . . . . . . 9 (ran 𝑆 → ran ⊆ {𝑠 ∣ (suc 𝑘 ∈ dom 𝑠 → (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠𝑘)))})
328327sseld 3920 . . . . . . . 8 (ran 𝑆 → ((‘suc 𝑘) ∈ ran → (‘suc 𝑘) ∈ {𝑠 ∣ (suc 𝑘 ∈ dom 𝑠 → (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠𝑘)))}))
329 fvex 6787 . . . . . . . . 9 (‘suc 𝑘) ∈ V
330 dmeq 5812 . . . . . . . . . . 11 (𝑠 = (‘suc 𝑘) → dom 𝑠 = dom (‘suc 𝑘))
331330eleq2d 2824 . . . . . . . . . 10 (𝑠 = (‘suc 𝑘) → (suc 𝑘 ∈ dom 𝑠 ↔ suc 𝑘 ∈ dom (‘suc 𝑘)))
332 fveq1 6773 . . . . . . . . . . 11 (𝑠 = (‘suc 𝑘) → (𝑠‘suc 𝑘) = ((‘suc 𝑘)‘suc 𝑘))
333 fveq1 6773 . . . . . . . . . . . 12 (𝑠 = (‘suc 𝑘) → (𝑠𝑘) = ((‘suc 𝑘)‘𝑘))
334333fveq2d 6778 . . . . . . . . . . 11 (𝑠 = (‘suc 𝑘) → (𝐹‘(𝑠𝑘)) = (𝐹‘((‘suc 𝑘)‘𝑘)))
335332, 334eleq12d 2833 . . . . . . . . . 10 (𝑠 = (‘suc 𝑘) → ((𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠𝑘)) ↔ ((‘suc 𝑘)‘suc 𝑘) ∈ (𝐹‘((‘suc 𝑘)‘𝑘))))
336331, 335imbi12d 345 . . . . . . . . 9 (𝑠 = (‘suc 𝑘) → ((suc 𝑘 ∈ dom 𝑠 → (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠𝑘))) ↔ (suc 𝑘 ∈ dom (‘suc 𝑘) → ((‘suc 𝑘)‘suc 𝑘) ∈ (𝐹‘((‘suc 𝑘)‘𝑘)))))
337329, 336elab 3609 . . . . . . . 8 ((‘suc 𝑘) ∈ {𝑠 ∣ (suc 𝑘 ∈ dom 𝑠 → (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠𝑘)))} ↔ (suc 𝑘 ∈ dom (‘suc 𝑘) → ((‘suc 𝑘)‘suc 𝑘) ∈ (𝐹‘((‘suc 𝑘)‘𝑘))))
338328, 337syl6ib 250 . . . . . . 7 (ran 𝑆 → ((‘suc 𝑘) ∈ ran → (suc 𝑘 ∈ dom (‘suc 𝑘) → ((‘suc 𝑘)‘suc 𝑘) ∈ (𝐹‘((‘suc 𝑘)‘𝑘)))))
339294, 298, 307, 338syl3c 66 . . . . . 6 (((:ω⟶𝑆 ∧ ∀𝑘 ∈ ω (‘suc 𝑘) ∈ (𝐺‘(𝑘))) ∧ 𝑘 ∈ ω) → ((‘suc 𝑘)‘suc 𝑘) ∈ (𝐹‘((‘suc 𝑘)‘𝑘)))
340209adantr 481 . . . . . . . 8 (((:ω⟶𝑆 ∧ ∀𝑘 ∈ ω (‘suc 𝑘) ∈ (𝐺‘(𝑘))) ∧ 𝑘 ∈ ω) → Fun ran )
341 elssuni 4871 . . . . . . . . . 10 ((‘suc 𝑘) ∈ ran → (‘suc 𝑘) ⊆ ran )
342297, 341syl 17 . . . . . . . . 9 ((:ω⟶𝑆𝑘 ∈ ω) → (‘suc 𝑘) ⊆ ran )
343342adantlr 712 . . . . . . . 8 (((:ω⟶𝑆 ∧ ∀𝑘 ∈ ω (‘suc 𝑘) ∈ (𝐺‘(𝑘))) ∧ 𝑘 ∈ ω) → (‘suc 𝑘) ⊆ ran )
344 funssfv 6795 . . . . . . . 8 ((Fun ran ∧ (‘suc 𝑘) ⊆ ran ∧ suc 𝑘 ∈ dom (‘suc 𝑘)) → ( ran ‘suc 𝑘) = ((‘suc 𝑘)‘suc 𝑘))
345340, 343, 307, 344syl3anc 1370 . . . . . . 7 (((:ω⟶𝑆 ∧ ∀𝑘 ∈ ω (‘suc 𝑘) ∈ (𝐺‘(𝑘))) ∧ 𝑘 ∈ ω) → ( ran ‘suc 𝑘) = ((‘suc 𝑘)‘suc 𝑘))
346215sseld 3920 . . . . . . . . . . . . . . 15 (:ω⟶𝑆 → ((‘suc 𝑘) ∈ ran → (‘suc 𝑘) ∈ {𝑠 ∣ (∅ ∈ dom 𝑠 ∧ dom 𝑠 ∈ ω)}))
347330eleq2d 2824 . . . . . . . . . . . . . . . . 17 (𝑠 = (‘suc 𝑘) → (∅ ∈ dom 𝑠 ↔ ∅ ∈ dom (‘suc 𝑘)))
348330eleq1d 2823 . . . . . . . . . . . . . . . . 17 (𝑠 = (‘suc 𝑘) → (dom 𝑠 ∈ ω ↔ dom (‘suc 𝑘) ∈ ω))
349347, 348anbi12d 631 . . . . . . . . . . . . . . . 16 (𝑠 = (‘suc 𝑘) → ((∅ ∈ dom 𝑠 ∧ dom 𝑠 ∈ ω) ↔ (∅ ∈ dom (‘suc 𝑘) ∧ dom (‘suc 𝑘) ∈ ω)))
350329, 349elab 3609 . . . . . . . . . . . . . . 15 ((‘suc 𝑘) ∈ {𝑠 ∣ (∅ ∈ dom 𝑠 ∧ dom 𝑠 ∈ ω)} ↔ (∅ ∈ dom (‘suc 𝑘) ∧ dom (‘suc 𝑘) ∈ ω))
351346, 350syl6ib 250 . . . . . . . . . . . . . 14 (:ω⟶𝑆 → ((‘suc 𝑘) ∈ ran → (∅ ∈ dom (‘suc 𝑘) ∧ dom (‘suc 𝑘) ∈ ω)))
352351adantr 481 . . . . . . . . . . . . 13 ((:ω⟶𝑆𝑘 ∈ ω) → ((‘suc 𝑘) ∈ ran → (∅ ∈ dom (‘suc 𝑘) ∧ dom (‘suc 𝑘) ∈ ω)))
353297, 352mpd 15 . . . . . . . . . . . 12 ((:ω⟶𝑆𝑘 ∈ ω) → (∅ ∈ dom (‘suc 𝑘) ∧ dom (‘suc 𝑘) ∈ ω))
354353simprd 496 . . . . . . . . . . 11 ((:ω⟶𝑆𝑘 ∈ ω) → dom (‘suc 𝑘) ∈ ω)
355 nnord 7720 . . . . . . . . . . 11 (dom (‘suc 𝑘) ∈ ω → Ord dom (‘suc 𝑘))
356 ordtr 6280 . . . . . . . . . . 11 (Ord dom (‘suc 𝑘) → Tr dom (‘suc 𝑘))
357 trsuc 6350 . . . . . . . . . . . 12 ((Tr dom (‘suc 𝑘) ∧ suc 𝑘 ∈ dom (‘suc 𝑘)) → 𝑘 ∈ dom (‘suc 𝑘))
358357ex 413 . . . . . . . . . . 11 (Tr dom (‘suc 𝑘) → (suc 𝑘 ∈ dom (‘suc 𝑘) → 𝑘 ∈ dom (‘suc 𝑘)))
359354, 355, 356, 3584syl 19 . . . . . . . . . 10 ((:ω⟶𝑆𝑘 ∈ ω) → (suc 𝑘 ∈ dom (‘suc 𝑘) → 𝑘 ∈ dom (‘suc 𝑘)))
360359adantlr 712 . . . . . . . . 9 (((:ω⟶𝑆 ∧ ∀𝑘 ∈ ω (‘suc 𝑘) ∈ (𝐺‘(𝑘))) ∧ 𝑘 ∈ ω) → (suc 𝑘 ∈ dom (‘suc 𝑘) → 𝑘 ∈ dom (‘suc 𝑘)))
361307, 360mpd 15 . . . . . . . 8 (((:ω⟶𝑆 ∧ ∀𝑘 ∈ ω (‘suc 𝑘) ∈ (𝐺‘(𝑘))) ∧ 𝑘 ∈ ω) → 𝑘 ∈ dom (‘suc 𝑘))
362 funssfv 6795 . . . . . . . 8 ((Fun ran ∧ (‘suc 𝑘) ⊆ ran 𝑘 ∈ dom (‘suc 𝑘)) → ( ran 𝑘) = ((‘suc 𝑘)‘𝑘))
363340, 343, 361, 362syl3anc 1370 . . . . . . 7 (((:ω⟶𝑆 ∧ ∀𝑘 ∈ ω (‘suc 𝑘) ∈ (𝐺‘(𝑘))) ∧ 𝑘 ∈ ω) → ( ran 𝑘) = ((‘suc 𝑘)‘𝑘))
364 simpl 483 . . . . . . . 8 ((( ran ‘suc 𝑘) = ((‘suc 𝑘)‘suc 𝑘) ∧ ( ran 𝑘) = ((‘suc 𝑘)‘𝑘)) → ( ran ‘suc 𝑘) = ((‘suc 𝑘)‘suc 𝑘))
365 simpr 485 . . . . . . . . 9 ((( ran ‘suc 𝑘) = ((‘suc 𝑘)‘suc 𝑘) ∧ ( ran 𝑘) = ((‘suc 𝑘)‘𝑘)) → ( ran 𝑘) = ((‘suc 𝑘)‘𝑘))
366365fveq2d 6778 . . . . . . . 8 ((( ran ‘suc 𝑘) = ((‘suc 𝑘)‘suc 𝑘) ∧ ( ran 𝑘) = ((‘suc 𝑘)‘𝑘)) → (𝐹‘( ran 𝑘)) = (𝐹‘((‘suc 𝑘)‘𝑘)))
367364, 366eleq12d 2833 . . . . . . 7 ((( ran ‘suc 𝑘) = ((‘suc 𝑘)‘suc 𝑘) ∧ ( ran 𝑘) = ((‘suc 𝑘)‘𝑘)) → (( ran ‘suc 𝑘) ∈ (𝐹‘( ran 𝑘)) ↔ ((‘suc 𝑘)‘suc 𝑘) ∈ (𝐹‘((‘suc 𝑘)‘𝑘))))
368345, 363, 367syl2anc 584 . . . . . 6 (((:ω⟶𝑆 ∧ ∀𝑘 ∈ ω (‘suc 𝑘) ∈ (𝐺‘(𝑘))) ∧ 𝑘 ∈ ω) → (( ran ‘suc 𝑘) ∈ (𝐹‘( ran 𝑘)) ↔ ((‘suc 𝑘)‘suc 𝑘) ∈ (𝐹‘((‘suc 𝑘)‘𝑘))))
369339, 368mpbird 256 . . . . 5 (((:ω⟶𝑆 ∧ ∀𝑘 ∈ ω (‘suc 𝑘) ∈ (𝐺‘(𝑘))) ∧ 𝑘 ∈ ω) → ( ran ‘suc 𝑘) ∈ (𝐹‘( ran 𝑘)))
370369ex 413 . . . 4 ((:ω⟶𝑆 ∧ ∀𝑘 ∈ ω (‘suc 𝑘) ∈ (𝐺‘(𝑘))) → (𝑘 ∈ ω → ( ran ‘suc 𝑘) ∈ (𝐹‘( ran 𝑘))))
371293, 370ralrimi 3141 . . 3 ((:ω⟶𝑆 ∧ ∀𝑘 ∈ ω (‘suc 𝑘) ∈ (𝐺‘(𝑘))) → ∀𝑘 ∈ ω ( ran ‘suc 𝑘) ∈ (𝐹‘( ran 𝑘)))
372 vex 3436 . . . . . 6 ∈ V
373372rnex 7759 . . . . 5 ran ∈ V
374373uniex 7594 . . . 4 ran ∈ V
375 feq1 6581 . . . . 5 (𝑔 = ran → (𝑔:ω⟶𝐴 ran :ω⟶𝐴))
376 fveq1 6773 . . . . . 6 (𝑔 = ran → (𝑔‘∅) = ( ran ‘∅))
377376eqeq1d 2740 . . . . 5 (𝑔 = ran → ((𝑔‘∅) = 𝐶 ↔ ( ran ‘∅) = 𝐶))
378 fveq1 6773 . . . . . . 7 (𝑔 = ran → (𝑔‘suc 𝑘) = ( ran ‘suc 𝑘))
379 fveq1 6773 . . . . . . . 8 (𝑔 = ran → (𝑔𝑘) = ( ran 𝑘))
380379fveq2d 6778 . . . . . . 7 (𝑔 = ran → (𝐹‘(𝑔𝑘)) = (𝐹‘( ran 𝑘)))
381378, 380eleq12d 2833 . . . . . 6 (𝑔 = ran → ((𝑔‘suc 𝑘) ∈ (𝐹‘(𝑔𝑘)) ↔ ( ran ‘suc 𝑘) ∈ (𝐹‘( ran 𝑘))))
382381ralbidv 3112 . . . . 5 (𝑔 = ran → (∀𝑘 ∈ ω (𝑔‘suc 𝑘) ∈ (𝐹‘(𝑔𝑘)) ↔ ∀𝑘 ∈ ω ( ran ‘suc 𝑘) ∈ (𝐹‘( ran 𝑘))))
383375, 377, 3823anbi123d 1435 . . . 4 (𝑔 = ran → ((𝑔:ω⟶𝐴 ∧ (𝑔‘∅) = 𝐶 ∧ ∀𝑘 ∈ ω (𝑔‘suc 𝑘) ∈ (𝐹‘(𝑔𝑘))) ↔ ( ran :ω⟶𝐴 ∧ ( ran ‘∅) = 𝐶 ∧ ∀𝑘 ∈ ω ( ran ‘suc 𝑘) ∈ (𝐹‘( ran 𝑘)))))
384374, 383spcev 3545 . . 3 (( ran :ω⟶𝐴 ∧ ( ran ‘∅) = 𝐶 ∧ ∀𝑘 ∈ ω ( ran ‘suc 𝑘) ∈ (𝐹‘( ran 𝑘))) → ∃𝑔(𝑔:ω⟶𝐴 ∧ (𝑔‘∅) = 𝐶 ∧ ∀𝑘 ∈ ω (𝑔‘suc 𝑘) ∈ (𝐹‘(𝑔𝑘))))
385268, 290, 371, 384syl3anc 1370 . 2 ((:ω⟶𝑆 ∧ ∀𝑘 ∈ ω (‘suc 𝑘) ∈ (𝐺‘(𝑘))) → ∃𝑔(𝑔:ω⟶𝐴 ∧ (𝑔‘∅) = 𝐶 ∧ ∀𝑘 ∈ ω (𝑔‘suc 𝑘) ∈ (𝐹‘(𝑔𝑘))))
386385exlimiv 1933 1 (∃(:ω⟶𝑆 ∧ ∀𝑘 ∈ ω (‘suc 𝑘) ∈ (𝐺‘(𝑘))) → ∃𝑔(𝑔:ω⟶𝐴 ∧ (𝑔‘∅) = 𝐶 ∧ ∀𝑘 ∈ ω (𝑔‘suc 𝑘) ∈ (𝐹‘(𝑔𝑘))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wo 844  w3o 1085  w3a 1086   = wceq 1539  wex 1782  wcel 2106  {cab 2715  wral 3064  wrex 3065  {crab 3068  Vcvv 3432  wss 3887  c0 4256  cop 4567   cuni 4839   ciun 4924  cmpt 5157  Tr wtr 5191  dom cdm 5589  ran crn 5590  cres 5591  Ord word 6265  suc csuc 6268  Fun wfun 6427   Fn wfn 6428  wf 6429  cfv 6433  ωcom 7712
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-dc 10202
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-fv 6441  df-om 7713  df-1o 8297
This theorem is referenced by:  axdc3lem4  10209
  Copyright terms: Public domain W3C validator