MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axdc3lem2 Structured version   Visualization version   GIF version

Theorem axdc3lem2 10404
Description: Lemma for axdc3 10407. We have constructed a "candidate set" 𝑆, which consists of all finite sequences 𝑠 that satisfy our property of interest, namely 𝑠(𝑥 + 1) ∈ 𝐹(𝑠(𝑥)) on its domain, but with the added constraint that 𝑠(0) = 𝐶. These sets are possible "initial segments" of the infinite sequence satisfying these constraints, but we can leverage the standard ax-dc 10399 (with no initial condition) to select a sequence of ever-lengthening finite sequences, namely (𝑛):𝑚𝐴 (for some integer 𝑚). We let our "choice" function select a sequence whose domain is one more than the last one, and agrees with the previous one on its domain. Thus, the application of vanilla ax-dc 10399 yields a sequence of sequences whose domains increase without bound, and whose union is a function which has all the properties we want. In this lemma, we show that given the sequence , we can construct the sequence 𝑔 that we are after. (Contributed by Mario Carneiro, 30-Jan-2013.)
Hypotheses
Ref Expression
axdc3lem2.1 𝐴 ∈ V
axdc3lem2.2 𝑆 = {𝑠 ∣ ∃𝑛 ∈ ω (𝑠:suc 𝑛𝐴 ∧ (𝑠‘∅) = 𝐶 ∧ ∀𝑘𝑛 (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠𝑘)))}
axdc3lem2.3 𝐺 = (𝑥𝑆 ↦ {𝑦𝑆 ∣ (dom 𝑦 = suc dom 𝑥 ∧ (𝑦 ↾ dom 𝑥) = 𝑥)})
Assertion
Ref Expression
axdc3lem2 (∃(:ω⟶𝑆 ∧ ∀𝑘 ∈ ω (‘suc 𝑘) ∈ (𝐺‘(𝑘))) → ∃𝑔(𝑔:ω⟶𝐴 ∧ (𝑔‘∅) = 𝐶 ∧ ∀𝑘 ∈ ω (𝑔‘suc 𝑘) ∈ (𝐹‘(𝑔𝑘))))
Distinct variable groups:   𝐴,𝑔,   𝐴,𝑛,𝑠   𝐶,𝑔,   𝐶,𝑛,𝑠   𝑔,𝐹,   𝑛,𝐹,𝑠   𝑘,𝐺   𝑆,𝑘,𝑠   𝑥,𝑆,𝑦   𝑔,𝑘,   ,𝑠   𝑥,,𝑦   𝑘,𝑛
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑘)   𝐶(𝑥,𝑦,𝑘)   𝑆(𝑔,,𝑛)   𝐹(𝑥,𝑦,𝑘)   𝐺(𝑥,𝑦,𝑔,,𝑛,𝑠)

Proof of Theorem axdc3lem2
Dummy variables 𝑖 𝑗 𝑚 𝑢 𝑣 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 id 22 . . . . . . . . . . . . 13 (𝑚 = ∅ → 𝑚 = ∅)
2 fveq2 6858 . . . . . . . . . . . . . 14 (𝑚 = ∅ → (𝑚) = (‘∅))
32dmeqd 5869 . . . . . . . . . . . . 13 (𝑚 = ∅ → dom (𝑚) = dom (‘∅))
41, 3eleq12d 2822 . . . . . . . . . . . 12 (𝑚 = ∅ → (𝑚 ∈ dom (𝑚) ↔ ∅ ∈ dom (‘∅)))
5 eleq2 2817 . . . . . . . . . . . . 13 (𝑚 = ∅ → (𝑗𝑚𝑗 ∈ ∅))
62sseq2d 3979 . . . . . . . . . . . . 13 (𝑚 = ∅ → ((𝑗) ⊆ (𝑚) ↔ (𝑗) ⊆ (‘∅)))
75, 6imbi12d 344 . . . . . . . . . . . 12 (𝑚 = ∅ → ((𝑗𝑚 → (𝑗) ⊆ (𝑚)) ↔ (𝑗 ∈ ∅ → (𝑗) ⊆ (‘∅))))
84, 7anbi12d 632 . . . . . . . . . . 11 (𝑚 = ∅ → ((𝑚 ∈ dom (𝑚) ∧ (𝑗𝑚 → (𝑗) ⊆ (𝑚))) ↔ (∅ ∈ dom (‘∅) ∧ (𝑗 ∈ ∅ → (𝑗) ⊆ (‘∅)))))
9 id 22 . . . . . . . . . . . . 13 (𝑚 = 𝑖𝑚 = 𝑖)
10 fveq2 6858 . . . . . . . . . . . . . 14 (𝑚 = 𝑖 → (𝑚) = (𝑖))
1110dmeqd 5869 . . . . . . . . . . . . 13 (𝑚 = 𝑖 → dom (𝑚) = dom (𝑖))
129, 11eleq12d 2822 . . . . . . . . . . . 12 (𝑚 = 𝑖 → (𝑚 ∈ dom (𝑚) ↔ 𝑖 ∈ dom (𝑖)))
13 elequ2 2124 . . . . . . . . . . . . 13 (𝑚 = 𝑖 → (𝑗𝑚𝑗𝑖))
1410sseq2d 3979 . . . . . . . . . . . . 13 (𝑚 = 𝑖 → ((𝑗) ⊆ (𝑚) ↔ (𝑗) ⊆ (𝑖)))
1513, 14imbi12d 344 . . . . . . . . . . . 12 (𝑚 = 𝑖 → ((𝑗𝑚 → (𝑗) ⊆ (𝑚)) ↔ (𝑗𝑖 → (𝑗) ⊆ (𝑖))))
1612, 15anbi12d 632 . . . . . . . . . . 11 (𝑚 = 𝑖 → ((𝑚 ∈ dom (𝑚) ∧ (𝑗𝑚 → (𝑗) ⊆ (𝑚))) ↔ (𝑖 ∈ dom (𝑖) ∧ (𝑗𝑖 → (𝑗) ⊆ (𝑖)))))
17 id 22 . . . . . . . . . . . . 13 (𝑚 = suc 𝑖𝑚 = suc 𝑖)
18 fveq2 6858 . . . . . . . . . . . . . 14 (𝑚 = suc 𝑖 → (𝑚) = (‘suc 𝑖))
1918dmeqd 5869 . . . . . . . . . . . . 13 (𝑚 = suc 𝑖 → dom (𝑚) = dom (‘suc 𝑖))
2017, 19eleq12d 2822 . . . . . . . . . . . 12 (𝑚 = suc 𝑖 → (𝑚 ∈ dom (𝑚) ↔ suc 𝑖 ∈ dom (‘suc 𝑖)))
21 eleq2 2817 . . . . . . . . . . . . 13 (𝑚 = suc 𝑖 → (𝑗𝑚𝑗 ∈ suc 𝑖))
2218sseq2d 3979 . . . . . . . . . . . . 13 (𝑚 = suc 𝑖 → ((𝑗) ⊆ (𝑚) ↔ (𝑗) ⊆ (‘suc 𝑖)))
2321, 22imbi12d 344 . . . . . . . . . . . 12 (𝑚 = suc 𝑖 → ((𝑗𝑚 → (𝑗) ⊆ (𝑚)) ↔ (𝑗 ∈ suc 𝑖 → (𝑗) ⊆ (‘suc 𝑖))))
2420, 23anbi12d 632 . . . . . . . . . . 11 (𝑚 = suc 𝑖 → ((𝑚 ∈ dom (𝑚) ∧ (𝑗𝑚 → (𝑗) ⊆ (𝑚))) ↔ (suc 𝑖 ∈ dom (‘suc 𝑖) ∧ (𝑗 ∈ suc 𝑖 → (𝑗) ⊆ (‘suc 𝑖)))))
25 peano1 7865 . . . . . . . . . . . . . . 15 ∅ ∈ ω
26 ffvelcdm 7053 . . . . . . . . . . . . . . 15 ((:ω⟶𝑆 ∧ ∅ ∈ ω) → (‘∅) ∈ 𝑆)
2725, 26mpan2 691 . . . . . . . . . . . . . 14 (:ω⟶𝑆 → (‘∅) ∈ 𝑆)
28 axdc3lem2.2 . . . . . . . . . . . . . . . . . 18 𝑆 = {𝑠 ∣ ∃𝑛 ∈ ω (𝑠:suc 𝑛𝐴 ∧ (𝑠‘∅) = 𝐶 ∧ ∀𝑘𝑛 (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠𝑘)))}
29 fdm 6697 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑠:suc 𝑛𝐴 → dom 𝑠 = suc 𝑛)
30 nnord 7850 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑛 ∈ ω → Ord 𝑛)
31 0elsuc 7810 . . . . . . . . . . . . . . . . . . . . . . . . 25 (Ord 𝑛 → ∅ ∈ suc 𝑛)
3230, 31syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑛 ∈ ω → ∅ ∈ suc 𝑛)
33 peano2 7866 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑛 ∈ ω → suc 𝑛 ∈ ω)
34 eleq2 2817 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (dom 𝑠 = suc 𝑛 → (∅ ∈ dom 𝑠 ↔ ∅ ∈ suc 𝑛))
35 eleq1 2816 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (dom 𝑠 = suc 𝑛 → (dom 𝑠 ∈ ω ↔ suc 𝑛 ∈ ω))
3634, 35anbi12d 632 . . . . . . . . . . . . . . . . . . . . . . . . 25 (dom 𝑠 = suc 𝑛 → ((∅ ∈ dom 𝑠 ∧ dom 𝑠 ∈ ω) ↔ (∅ ∈ suc 𝑛 ∧ suc 𝑛 ∈ ω)))
3736biimprcd 250 . . . . . . . . . . . . . . . . . . . . . . . 24 ((∅ ∈ suc 𝑛 ∧ suc 𝑛 ∈ ω) → (dom 𝑠 = suc 𝑛 → (∅ ∈ dom 𝑠 ∧ dom 𝑠 ∈ ω)))
3832, 33, 37syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑛 ∈ ω → (dom 𝑠 = suc 𝑛 → (∅ ∈ dom 𝑠 ∧ dom 𝑠 ∈ ω)))
3929, 38syl5com 31 . . . . . . . . . . . . . . . . . . . . . 22 (𝑠:suc 𝑛𝐴 → (𝑛 ∈ ω → (∅ ∈ dom 𝑠 ∧ dom 𝑠 ∈ ω)))
40393ad2ant1 1133 . . . . . . . . . . . . . . . . . . . . 21 ((𝑠:suc 𝑛𝐴 ∧ (𝑠‘∅) = 𝐶 ∧ ∀𝑘𝑛 (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠𝑘))) → (𝑛 ∈ ω → (∅ ∈ dom 𝑠 ∧ dom 𝑠 ∈ ω)))
4140impcom 407 . . . . . . . . . . . . . . . . . . . 20 ((𝑛 ∈ ω ∧ (𝑠:suc 𝑛𝐴 ∧ (𝑠‘∅) = 𝐶 ∧ ∀𝑘𝑛 (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠𝑘)))) → (∅ ∈ dom 𝑠 ∧ dom 𝑠 ∈ ω))
4241rexlimiva 3126 . . . . . . . . . . . . . . . . . . 19 (∃𝑛 ∈ ω (𝑠:suc 𝑛𝐴 ∧ (𝑠‘∅) = 𝐶 ∧ ∀𝑘𝑛 (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠𝑘))) → (∅ ∈ dom 𝑠 ∧ dom 𝑠 ∈ ω))
4342ss2abi 4030 . . . . . . . . . . . . . . . . . 18 {𝑠 ∣ ∃𝑛 ∈ ω (𝑠:suc 𝑛𝐴 ∧ (𝑠‘∅) = 𝐶 ∧ ∀𝑘𝑛 (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠𝑘)))} ⊆ {𝑠 ∣ (∅ ∈ dom 𝑠 ∧ dom 𝑠 ∈ ω)}
4428, 43eqsstri 3993 . . . . . . . . . . . . . . . . 17 𝑆 ⊆ {𝑠 ∣ (∅ ∈ dom 𝑠 ∧ dom 𝑠 ∈ ω)}
4544sseli 3942 . . . . . . . . . . . . . . . 16 ((‘∅) ∈ 𝑆 → (‘∅) ∈ {𝑠 ∣ (∅ ∈ dom 𝑠 ∧ dom 𝑠 ∈ ω)})
46 fvex 6871 . . . . . . . . . . . . . . . . 17 (‘∅) ∈ V
47 dmeq 5867 . . . . . . . . . . . . . . . . . . 19 (𝑠 = (‘∅) → dom 𝑠 = dom (‘∅))
4847eleq2d 2814 . . . . . . . . . . . . . . . . . 18 (𝑠 = (‘∅) → (∅ ∈ dom 𝑠 ↔ ∅ ∈ dom (‘∅)))
4947eleq1d 2813 . . . . . . . . . . . . . . . . . 18 (𝑠 = (‘∅) → (dom 𝑠 ∈ ω ↔ dom (‘∅) ∈ ω))
5048, 49anbi12d 632 . . . . . . . . . . . . . . . . 17 (𝑠 = (‘∅) → ((∅ ∈ dom 𝑠 ∧ dom 𝑠 ∈ ω) ↔ (∅ ∈ dom (‘∅) ∧ dom (‘∅) ∈ ω)))
5146, 50elab 3646 . . . . . . . . . . . . . . . 16 ((‘∅) ∈ {𝑠 ∣ (∅ ∈ dom 𝑠 ∧ dom 𝑠 ∈ ω)} ↔ (∅ ∈ dom (‘∅) ∧ dom (‘∅) ∈ ω))
5245, 51sylib 218 . . . . . . . . . . . . . . 15 ((‘∅) ∈ 𝑆 → (∅ ∈ dom (‘∅) ∧ dom (‘∅) ∈ ω))
5352simpld 494 . . . . . . . . . . . . . 14 ((‘∅) ∈ 𝑆 → ∅ ∈ dom (‘∅))
5427, 53syl 17 . . . . . . . . . . . . 13 (:ω⟶𝑆 → ∅ ∈ dom (‘∅))
55 noel 4301 . . . . . . . . . . . . . 14 ¬ 𝑗 ∈ ∅
5655pm2.21i 119 . . . . . . . . . . . . 13 (𝑗 ∈ ∅ → (𝑗) ⊆ (‘∅))
5754, 56jctir 520 . . . . . . . . . . . 12 (:ω⟶𝑆 → (∅ ∈ dom (‘∅) ∧ (𝑗 ∈ ∅ → (𝑗) ⊆ (‘∅))))
5857adantr 480 . . . . . . . . . . 11 ((:ω⟶𝑆 ∧ ∀𝑘 ∈ ω (‘suc 𝑘) ∈ (𝐺‘(𝑘))) → (∅ ∈ dom (‘∅) ∧ (𝑗 ∈ ∅ → (𝑗) ⊆ (‘∅))))
59 ffvelcdm 7053 . . . . . . . . . . . . . . 15 ((:ω⟶𝑆𝑖 ∈ ω) → (𝑖) ∈ 𝑆)
6059ancoms 458 . . . . . . . . . . . . . 14 ((𝑖 ∈ ω ∧ :ω⟶𝑆) → (𝑖) ∈ 𝑆)
6160adantrr 717 . . . . . . . . . . . . 13 ((𝑖 ∈ ω ∧ (:ω⟶𝑆 ∧ ∀𝑘 ∈ ω (‘suc 𝑘) ∈ (𝐺‘(𝑘)))) → (𝑖) ∈ 𝑆)
62 suceq 6400 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑖 → suc 𝑘 = suc 𝑖)
6362fveq2d 6862 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑖 → (‘suc 𝑘) = (‘suc 𝑖))
64 2fveq3 6863 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑖 → (𝐺‘(𝑘)) = (𝐺‘(𝑖)))
6563, 64eleq12d 2822 . . . . . . . . . . . . . . 15 (𝑘 = 𝑖 → ((‘suc 𝑘) ∈ (𝐺‘(𝑘)) ↔ (‘suc 𝑖) ∈ (𝐺‘(𝑖))))
6665rspcva 3586 . . . . . . . . . . . . . 14 ((𝑖 ∈ ω ∧ ∀𝑘 ∈ ω (‘suc 𝑘) ∈ (𝐺‘(𝑘))) → (‘suc 𝑖) ∈ (𝐺‘(𝑖)))
6766adantrl 716 . . . . . . . . . . . . 13 ((𝑖 ∈ ω ∧ (:ω⟶𝑆 ∧ ∀𝑘 ∈ ω (‘suc 𝑘) ∈ (𝐺‘(𝑘)))) → (‘suc 𝑖) ∈ (𝐺‘(𝑖)))
6844sseli 3942 . . . . . . . . . . . . . . . . . . . 20 ((𝑖) ∈ 𝑆 → (𝑖) ∈ {𝑠 ∣ (∅ ∈ dom 𝑠 ∧ dom 𝑠 ∈ ω)})
69 fvex 6871 . . . . . . . . . . . . . . . . . . . . 21 (𝑖) ∈ V
70 dmeq 5867 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑠 = (𝑖) → dom 𝑠 = dom (𝑖))
7170eleq2d 2814 . . . . . . . . . . . . . . . . . . . . . 22 (𝑠 = (𝑖) → (∅ ∈ dom 𝑠 ↔ ∅ ∈ dom (𝑖)))
7270eleq1d 2813 . . . . . . . . . . . . . . . . . . . . . 22 (𝑠 = (𝑖) → (dom 𝑠 ∈ ω ↔ dom (𝑖) ∈ ω))
7371, 72anbi12d 632 . . . . . . . . . . . . . . . . . . . . 21 (𝑠 = (𝑖) → ((∅ ∈ dom 𝑠 ∧ dom 𝑠 ∈ ω) ↔ (∅ ∈ dom (𝑖) ∧ dom (𝑖) ∈ ω)))
7469, 73elab 3646 . . . . . . . . . . . . . . . . . . . 20 ((𝑖) ∈ {𝑠 ∣ (∅ ∈ dom 𝑠 ∧ dom 𝑠 ∈ ω)} ↔ (∅ ∈ dom (𝑖) ∧ dom (𝑖) ∈ ω))
7568, 74sylib 218 . . . . . . . . . . . . . . . . . . 19 ((𝑖) ∈ 𝑆 → (∅ ∈ dom (𝑖) ∧ dom (𝑖) ∈ ω))
7675simprd 495 . . . . . . . . . . . . . . . . . 18 ((𝑖) ∈ 𝑆 → dom (𝑖) ∈ ω)
77 nnord 7850 . . . . . . . . . . . . . . . . . 18 (dom (𝑖) ∈ ω → Ord dom (𝑖))
78 ordsucelsuc 7797 . . . . . . . . . . . . . . . . . 18 (Ord dom (𝑖) → (𝑖 ∈ dom (𝑖) ↔ suc 𝑖 ∈ suc dom (𝑖)))
7976, 77, 783syl 18 . . . . . . . . . . . . . . . . 17 ((𝑖) ∈ 𝑆 → (𝑖 ∈ dom (𝑖) ↔ suc 𝑖 ∈ suc dom (𝑖)))
8079adantr 480 . . . . . . . . . . . . . . . 16 (((𝑖) ∈ 𝑆 ∧ (‘suc 𝑖) ∈ (𝐺‘(𝑖))) → (𝑖 ∈ dom (𝑖) ↔ suc 𝑖 ∈ suc dom (𝑖)))
81 dmeq 5867 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑥 = (𝑖) → dom 𝑥 = dom (𝑖))
82 suceq 6400 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (dom 𝑥 = dom (𝑖) → suc dom 𝑥 = suc dom (𝑖))
8381, 82syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥 = (𝑖) → suc dom 𝑥 = suc dom (𝑖))
8483eqeq2d 2740 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 = (𝑖) → (dom 𝑦 = suc dom 𝑥 ↔ dom 𝑦 = suc dom (𝑖)))
8581reseq2d 5950 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥 = (𝑖) → (𝑦 ↾ dom 𝑥) = (𝑦 ↾ dom (𝑖)))
86 id 22 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥 = (𝑖) → 𝑥 = (𝑖))
8785, 86eqeq12d 2745 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 = (𝑖) → ((𝑦 ↾ dom 𝑥) = 𝑥 ↔ (𝑦 ↾ dom (𝑖)) = (𝑖)))
8884, 87anbi12d 632 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 = (𝑖) → ((dom 𝑦 = suc dom 𝑥 ∧ (𝑦 ↾ dom 𝑥) = 𝑥) ↔ (dom 𝑦 = suc dom (𝑖) ∧ (𝑦 ↾ dom (𝑖)) = (𝑖))))
8988rabbidv 3413 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = (𝑖) → {𝑦𝑆 ∣ (dom 𝑦 = suc dom 𝑥 ∧ (𝑦 ↾ dom 𝑥) = 𝑥)} = {𝑦𝑆 ∣ (dom 𝑦 = suc dom (𝑖) ∧ (𝑦 ↾ dom (𝑖)) = (𝑖))})
90 axdc3lem2.3 . . . . . . . . . . . . . . . . . . . . . 22 𝐺 = (𝑥𝑆 ↦ {𝑦𝑆 ∣ (dom 𝑦 = suc dom 𝑥 ∧ (𝑦 ↾ dom 𝑥) = 𝑥)})
91 axdc3lem2.1 . . . . . . . . . . . . . . . . . . . . . . . 24 𝐴 ∈ V
9291, 28axdc3lem 10403 . . . . . . . . . . . . . . . . . . . . . . 23 𝑆 ∈ V
9392rabex 5294 . . . . . . . . . . . . . . . . . . . . . 22 {𝑦𝑆 ∣ (dom 𝑦 = suc dom (𝑖) ∧ (𝑦 ↾ dom (𝑖)) = (𝑖))} ∈ V
9489, 90, 93fvmpt 6968 . . . . . . . . . . . . . . . . . . . . 21 ((𝑖) ∈ 𝑆 → (𝐺‘(𝑖)) = {𝑦𝑆 ∣ (dom 𝑦 = suc dom (𝑖) ∧ (𝑦 ↾ dom (𝑖)) = (𝑖))})
9594eleq2d 2814 . . . . . . . . . . . . . . . . . . . 20 ((𝑖) ∈ 𝑆 → ((‘suc 𝑖) ∈ (𝐺‘(𝑖)) ↔ (‘suc 𝑖) ∈ {𝑦𝑆 ∣ (dom 𝑦 = suc dom (𝑖) ∧ (𝑦 ↾ dom (𝑖)) = (𝑖))}))
96 dmeq 5867 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦 = (‘suc 𝑖) → dom 𝑦 = dom (‘suc 𝑖))
9796eqeq1d 2731 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 = (‘suc 𝑖) → (dom 𝑦 = suc dom (𝑖) ↔ dom (‘suc 𝑖) = suc dom (𝑖)))
98 reseq1 5944 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦 = (‘suc 𝑖) → (𝑦 ↾ dom (𝑖)) = ((‘suc 𝑖) ↾ dom (𝑖)))
9998eqeq1d 2731 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 = (‘suc 𝑖) → ((𝑦 ↾ dom (𝑖)) = (𝑖) ↔ ((‘suc 𝑖) ↾ dom (𝑖)) = (𝑖)))
10097, 99anbi12d 632 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 = (‘suc 𝑖) → ((dom 𝑦 = suc dom (𝑖) ∧ (𝑦 ↾ dom (𝑖)) = (𝑖)) ↔ (dom (‘suc 𝑖) = suc dom (𝑖) ∧ ((‘suc 𝑖) ↾ dom (𝑖)) = (𝑖))))
101100elrab 3659 . . . . . . . . . . . . . . . . . . . 20 ((‘suc 𝑖) ∈ {𝑦𝑆 ∣ (dom 𝑦 = suc dom (𝑖) ∧ (𝑦 ↾ dom (𝑖)) = (𝑖))} ↔ ((‘suc 𝑖) ∈ 𝑆 ∧ (dom (‘suc 𝑖) = suc dom (𝑖) ∧ ((‘suc 𝑖) ↾ dom (𝑖)) = (𝑖))))
10295, 101bitrdi 287 . . . . . . . . . . . . . . . . . . 19 ((𝑖) ∈ 𝑆 → ((‘suc 𝑖) ∈ (𝐺‘(𝑖)) ↔ ((‘suc 𝑖) ∈ 𝑆 ∧ (dom (‘suc 𝑖) = suc dom (𝑖) ∧ ((‘suc 𝑖) ↾ dom (𝑖)) = (𝑖)))))
103102simplbda 499 . . . . . . . . . . . . . . . . . 18 (((𝑖) ∈ 𝑆 ∧ (‘suc 𝑖) ∈ (𝐺‘(𝑖))) → (dom (‘suc 𝑖) = suc dom (𝑖) ∧ ((‘suc 𝑖) ↾ dom (𝑖)) = (𝑖)))
104103simpld 494 . . . . . . . . . . . . . . . . 17 (((𝑖) ∈ 𝑆 ∧ (‘suc 𝑖) ∈ (𝐺‘(𝑖))) → dom (‘suc 𝑖) = suc dom (𝑖))
105104eleq2d 2814 . . . . . . . . . . . . . . . 16 (((𝑖) ∈ 𝑆 ∧ (‘suc 𝑖) ∈ (𝐺‘(𝑖))) → (suc 𝑖 ∈ dom (‘suc 𝑖) ↔ suc 𝑖 ∈ suc dom (𝑖)))
10680, 105bitr4d 282 . . . . . . . . . . . . . . 15 (((𝑖) ∈ 𝑆 ∧ (‘suc 𝑖) ∈ (𝐺‘(𝑖))) → (𝑖 ∈ dom (𝑖) ↔ suc 𝑖 ∈ dom (‘suc 𝑖)))
107106biimpd 229 . . . . . . . . . . . . . 14 (((𝑖) ∈ 𝑆 ∧ (‘suc 𝑖) ∈ (𝐺‘(𝑖))) → (𝑖 ∈ dom (𝑖) → suc 𝑖 ∈ dom (‘suc 𝑖)))
108103simprd 495 . . . . . . . . . . . . . . 15 (((𝑖) ∈ 𝑆 ∧ (‘suc 𝑖) ∈ (𝐺‘(𝑖))) → ((‘suc 𝑖) ↾ dom (𝑖)) = (𝑖))
109 resss 5972 . . . . . . . . . . . . . . . 16 ((‘suc 𝑖) ↾ dom (𝑖)) ⊆ (‘suc 𝑖)
110 sseq1 3972 . . . . . . . . . . . . . . . 16 (((‘suc 𝑖) ↾ dom (𝑖)) = (𝑖) → (((‘suc 𝑖) ↾ dom (𝑖)) ⊆ (‘suc 𝑖) ↔ (𝑖) ⊆ (‘suc 𝑖)))
111109, 110mpbii 233 . . . . . . . . . . . . . . 15 (((‘suc 𝑖) ↾ dom (𝑖)) = (𝑖) → (𝑖) ⊆ (‘suc 𝑖))
112 elsuci 6401 . . . . . . . . . . . . . . . . 17 (𝑗 ∈ suc 𝑖 → (𝑗𝑖𝑗 = 𝑖))
113 pm2.27 42 . . . . . . . . . . . . . . . . . . 19 (𝑗𝑖 → ((𝑗𝑖 → (𝑗) ⊆ (𝑖)) → (𝑗) ⊆ (𝑖)))
114 sstr2 3953 . . . . . . . . . . . . . . . . . . 19 ((𝑗) ⊆ (𝑖) → ((𝑖) ⊆ (‘suc 𝑖) → (𝑗) ⊆ (‘suc 𝑖)))
115113, 114syl6 35 . . . . . . . . . . . . . . . . . 18 (𝑗𝑖 → ((𝑗𝑖 → (𝑗) ⊆ (𝑖)) → ((𝑖) ⊆ (‘suc 𝑖) → (𝑗) ⊆ (‘suc 𝑖))))
116 fveq2 6858 . . . . . . . . . . . . . . . . . . . . 21 (𝑗 = 𝑖 → (𝑗) = (𝑖))
117116sseq1d 3978 . . . . . . . . . . . . . . . . . . . 20 (𝑗 = 𝑖 → ((𝑗) ⊆ (‘suc 𝑖) ↔ (𝑖) ⊆ (‘suc 𝑖)))
118117biimprd 248 . . . . . . . . . . . . . . . . . . 19 (𝑗 = 𝑖 → ((𝑖) ⊆ (‘suc 𝑖) → (𝑗) ⊆ (‘suc 𝑖)))
119118a1d 25 . . . . . . . . . . . . . . . . . 18 (𝑗 = 𝑖 → ((𝑗𝑖 → (𝑗) ⊆ (𝑖)) → ((𝑖) ⊆ (‘suc 𝑖) → (𝑗) ⊆ (‘suc 𝑖))))
120115, 119jaoi 857 . . . . . . . . . . . . . . . . 17 ((𝑗𝑖𝑗 = 𝑖) → ((𝑗𝑖 → (𝑗) ⊆ (𝑖)) → ((𝑖) ⊆ (‘suc 𝑖) → (𝑗) ⊆ (‘suc 𝑖))))
121112, 120syl 17 . . . . . . . . . . . . . . . 16 (𝑗 ∈ suc 𝑖 → ((𝑗𝑖 → (𝑗) ⊆ (𝑖)) → ((𝑖) ⊆ (‘suc 𝑖) → (𝑗) ⊆ (‘suc 𝑖))))
122121com13 88 . . . . . . . . . . . . . . 15 ((𝑖) ⊆ (‘suc 𝑖) → ((𝑗𝑖 → (𝑗) ⊆ (𝑖)) → (𝑗 ∈ suc 𝑖 → (𝑗) ⊆ (‘suc 𝑖))))
123108, 111, 1223syl 18 . . . . . . . . . . . . . 14 (((𝑖) ∈ 𝑆 ∧ (‘suc 𝑖) ∈ (𝐺‘(𝑖))) → ((𝑗𝑖 → (𝑗) ⊆ (𝑖)) → (𝑗 ∈ suc 𝑖 → (𝑗) ⊆ (‘suc 𝑖))))
124107, 123anim12d 609 . . . . . . . . . . . . 13 (((𝑖) ∈ 𝑆 ∧ (‘suc 𝑖) ∈ (𝐺‘(𝑖))) → ((𝑖 ∈ dom (𝑖) ∧ (𝑗𝑖 → (𝑗) ⊆ (𝑖))) → (suc 𝑖 ∈ dom (‘suc 𝑖) ∧ (𝑗 ∈ suc 𝑖 → (𝑗) ⊆ (‘suc 𝑖)))))
12561, 67, 124syl2anc 584 . . . . . . . . . . . 12 ((𝑖 ∈ ω ∧ (:ω⟶𝑆 ∧ ∀𝑘 ∈ ω (‘suc 𝑘) ∈ (𝐺‘(𝑘)))) → ((𝑖 ∈ dom (𝑖) ∧ (𝑗𝑖 → (𝑗) ⊆ (𝑖))) → (suc 𝑖 ∈ dom (‘suc 𝑖) ∧ (𝑗 ∈ suc 𝑖 → (𝑗) ⊆ (‘suc 𝑖)))))
126125ex 412 . . . . . . . . . . 11 (𝑖 ∈ ω → ((:ω⟶𝑆 ∧ ∀𝑘 ∈ ω (‘suc 𝑘) ∈ (𝐺‘(𝑘))) → ((𝑖 ∈ dom (𝑖) ∧ (𝑗𝑖 → (𝑗) ⊆ (𝑖))) → (suc 𝑖 ∈ dom (‘suc 𝑖) ∧ (𝑗 ∈ suc 𝑖 → (𝑗) ⊆ (‘suc 𝑖))))))
1278, 16, 24, 58, 126finds2 7874 . . . . . . . . . 10 (𝑚 ∈ ω → ((:ω⟶𝑆 ∧ ∀𝑘 ∈ ω (‘suc 𝑘) ∈ (𝐺‘(𝑘))) → (𝑚 ∈ dom (𝑚) ∧ (𝑗𝑚 → (𝑗) ⊆ (𝑚)))))
128127imp 406 . . . . . . . . 9 ((𝑚 ∈ ω ∧ (:ω⟶𝑆 ∧ ∀𝑘 ∈ ω (‘suc 𝑘) ∈ (𝐺‘(𝑘)))) → (𝑚 ∈ dom (𝑚) ∧ (𝑗𝑚 → (𝑗) ⊆ (𝑚))))
129128simprd 495 . . . . . . . 8 ((𝑚 ∈ ω ∧ (:ω⟶𝑆 ∧ ∀𝑘 ∈ ω (‘suc 𝑘) ∈ (𝐺‘(𝑘)))) → (𝑗𝑚 → (𝑗) ⊆ (𝑚)))
130129expcom 413 . . . . . . 7 ((:ω⟶𝑆 ∧ ∀𝑘 ∈ ω (‘suc 𝑘) ∈ (𝐺‘(𝑘))) → (𝑚 ∈ ω → (𝑗𝑚 → (𝑗) ⊆ (𝑚))))
131130ralrimdv 3131 . . . . . 6 ((:ω⟶𝑆 ∧ ∀𝑘 ∈ ω (‘suc 𝑘) ∈ (𝐺‘(𝑘))) → (𝑚 ∈ ω → ∀𝑗𝑚 (𝑗) ⊆ (𝑚)))
132131ralrimiv 3124 . . . . 5 ((:ω⟶𝑆 ∧ ∀𝑘 ∈ ω (‘suc 𝑘) ∈ (𝐺‘(𝑘))) → ∀𝑚 ∈ ω ∀𝑗𝑚 (𝑗) ⊆ (𝑚))
133 frn 6695 . . . . . . . . . . . 12 (:ω⟶𝑆 → ran 𝑆)
134 ffun 6691 . . . . . . . . . . . . . . . 16 (𝑠:suc 𝑛𝐴 → Fun 𝑠)
1351343ad2ant1 1133 . . . . . . . . . . . . . . 15 ((𝑠:suc 𝑛𝐴 ∧ (𝑠‘∅) = 𝐶 ∧ ∀𝑘𝑛 (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠𝑘))) → Fun 𝑠)
136135rexlimivw 3130 . . . . . . . . . . . . . 14 (∃𝑛 ∈ ω (𝑠:suc 𝑛𝐴 ∧ (𝑠‘∅) = 𝐶 ∧ ∀𝑘𝑛 (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠𝑘))) → Fun 𝑠)
137136ss2abi 4030 . . . . . . . . . . . . 13 {𝑠 ∣ ∃𝑛 ∈ ω (𝑠:suc 𝑛𝐴 ∧ (𝑠‘∅) = 𝐶 ∧ ∀𝑘𝑛 (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠𝑘)))} ⊆ {𝑠 ∣ Fun 𝑠}
13828, 137eqsstri 3993 . . . . . . . . . . . 12 𝑆 ⊆ {𝑠 ∣ Fun 𝑠}
139133, 138sstrdi 3959 . . . . . . . . . . 11 (:ω⟶𝑆 → ran ⊆ {𝑠 ∣ Fun 𝑠})
140139sseld 3945 . . . . . . . . . 10 (:ω⟶𝑆 → (𝑢 ∈ ran 𝑢 ∈ {𝑠 ∣ Fun 𝑠}))
141 vex 3451 . . . . . . . . . . 11 𝑢 ∈ V
142 funeq 6536 . . . . . . . . . . 11 (𝑠 = 𝑢 → (Fun 𝑠 ↔ Fun 𝑢))
143141, 142elab 3646 . . . . . . . . . 10 (𝑢 ∈ {𝑠 ∣ Fun 𝑠} ↔ Fun 𝑢)
144140, 143imbitrdi 251 . . . . . . . . 9 (:ω⟶𝑆 → (𝑢 ∈ ran → Fun 𝑢))
145144adantr 480 . . . . . . . 8 ((:ω⟶𝑆 ∧ ∀𝑚 ∈ ω ∀𝑗𝑚 (𝑗) ⊆ (𝑚)) → (𝑢 ∈ ran → Fun 𝑢))
146 ffn 6688 . . . . . . . . 9 (:ω⟶𝑆 Fn ω)
147 fvelrnb 6921 . . . . . . . . . . . . 13 ( Fn ω → (𝑣 ∈ ran ↔ ∃𝑏 ∈ ω (𝑏) = 𝑣))
148 fvelrnb 6921 . . . . . . . . . . . . . . 15 ( Fn ω → (𝑢 ∈ ran ↔ ∃𝑎 ∈ ω (𝑎) = 𝑢))
149 nnord 7850 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑎 ∈ ω → Ord 𝑎)
150 nnord 7850 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑏 ∈ ω → Ord 𝑏)
151149, 150anim12i 613 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑎 ∈ ω ∧ 𝑏 ∈ ω) → (Ord 𝑎 ∧ Ord 𝑏))
152 ordtri3or 6364 . . . . . . . . . . . . . . . . . . . . . . 23 ((Ord 𝑎 ∧ Ord 𝑏) → (𝑎𝑏𝑎 = 𝑏𝑏𝑎))
153 fveq2 6858 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑚 = 𝑏 → (𝑚) = (𝑏))
154153sseq2d 3979 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑚 = 𝑏 → ((𝑗) ⊆ (𝑚) ↔ (𝑗) ⊆ (𝑏)))
155154raleqbi1dv 3311 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑚 = 𝑏 → (∀𝑗𝑚 (𝑗) ⊆ (𝑚) ↔ ∀𝑗𝑏 (𝑗) ⊆ (𝑏)))
156155rspcv 3584 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑏 ∈ ω → (∀𝑚 ∈ ω ∀𝑗𝑚 (𝑗) ⊆ (𝑚) → ∀𝑗𝑏 (𝑗) ⊆ (𝑏)))
157 fveq2 6858 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑗 = 𝑎 → (𝑗) = (𝑎))
158157sseq1d 3978 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑗 = 𝑎 → ((𝑗) ⊆ (𝑏) ↔ (𝑎) ⊆ (𝑏)))
159158rspccv 3585 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (∀𝑗𝑏 (𝑗) ⊆ (𝑏) → (𝑎𝑏 → (𝑎) ⊆ (𝑏)))
160156, 159syl6 35 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑏 ∈ ω → (∀𝑚 ∈ ω ∀𝑗𝑚 (𝑗) ⊆ (𝑚) → (𝑎𝑏 → (𝑎) ⊆ (𝑏))))
161160adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑎 ∈ ω ∧ 𝑏 ∈ ω) → (∀𝑚 ∈ ω ∀𝑗𝑚 (𝑗) ⊆ (𝑚) → (𝑎𝑏 → (𝑎) ⊆ (𝑏))))
1621613imp 1110 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑎 ∈ ω ∧ 𝑏 ∈ ω) ∧ ∀𝑚 ∈ ω ∀𝑗𝑚 (𝑗) ⊆ (𝑚) ∧ 𝑎𝑏) → (𝑎) ⊆ (𝑏))
163162orcd 873 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑎 ∈ ω ∧ 𝑏 ∈ ω) ∧ ∀𝑚 ∈ ω ∀𝑗𝑚 (𝑗) ⊆ (𝑚) ∧ 𝑎𝑏) → ((𝑎) ⊆ (𝑏) ∨ (𝑏) ⊆ (𝑎)))
1641633exp 1119 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑎 ∈ ω ∧ 𝑏 ∈ ω) → (∀𝑚 ∈ ω ∀𝑗𝑚 (𝑗) ⊆ (𝑚) → (𝑎𝑏 → ((𝑎) ⊆ (𝑏) ∨ (𝑏) ⊆ (𝑎)))))
165164com3r 87 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑎𝑏 → ((𝑎 ∈ ω ∧ 𝑏 ∈ ω) → (∀𝑚 ∈ ω ∀𝑗𝑚 (𝑗) ⊆ (𝑚) → ((𝑎) ⊆ (𝑏) ∨ (𝑏) ⊆ (𝑎)))))
166 fveq2 6858 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑎 = 𝑏 → (𝑎) = (𝑏))
167 eqimss 4005 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑎) = (𝑏) → (𝑎) ⊆ (𝑏))
168167orcd 873 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑎) = (𝑏) → ((𝑎) ⊆ (𝑏) ∨ (𝑏) ⊆ (𝑎)))
169166, 168syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑎 = 𝑏 → ((𝑎) ⊆ (𝑏) ∨ (𝑏) ⊆ (𝑎)))
1701692a1d 26 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑎 = 𝑏 → ((𝑎 ∈ ω ∧ 𝑏 ∈ ω) → (∀𝑚 ∈ ω ∀𝑗𝑚 (𝑗) ⊆ (𝑚) → ((𝑎) ⊆ (𝑏) ∨ (𝑏) ⊆ (𝑎)))))
171 fveq2 6858 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑚 = 𝑎 → (𝑚) = (𝑎))
172171sseq2d 3979 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑚 = 𝑎 → ((𝑗) ⊆ (𝑚) ↔ (𝑗) ⊆ (𝑎)))
173172raleqbi1dv 3311 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑚 = 𝑎 → (∀𝑗𝑚 (𝑗) ⊆ (𝑚) ↔ ∀𝑗𝑎 (𝑗) ⊆ (𝑎)))
174173rspcv 3584 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑎 ∈ ω → (∀𝑚 ∈ ω ∀𝑗𝑚 (𝑗) ⊆ (𝑚) → ∀𝑗𝑎 (𝑗) ⊆ (𝑎)))
175 fveq2 6858 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑗 = 𝑏 → (𝑗) = (𝑏))
176175sseq1d 3978 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑗 = 𝑏 → ((𝑗) ⊆ (𝑎) ↔ (𝑏) ⊆ (𝑎)))
177176rspccv 3585 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (∀𝑗𝑎 (𝑗) ⊆ (𝑎) → (𝑏𝑎 → (𝑏) ⊆ (𝑎)))
178174, 177syl6 35 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑎 ∈ ω → (∀𝑚 ∈ ω ∀𝑗𝑚 (𝑗) ⊆ (𝑚) → (𝑏𝑎 → (𝑏) ⊆ (𝑎))))
179178adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑎 ∈ ω ∧ 𝑏 ∈ ω) → (∀𝑚 ∈ ω ∀𝑗𝑚 (𝑗) ⊆ (𝑚) → (𝑏𝑎 → (𝑏) ⊆ (𝑎))))
1801793imp 1110 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑎 ∈ ω ∧ 𝑏 ∈ ω) ∧ ∀𝑚 ∈ ω ∀𝑗𝑚 (𝑗) ⊆ (𝑚) ∧ 𝑏𝑎) → (𝑏) ⊆ (𝑎))
181180olcd 874 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑎 ∈ ω ∧ 𝑏 ∈ ω) ∧ ∀𝑚 ∈ ω ∀𝑗𝑚 (𝑗) ⊆ (𝑚) ∧ 𝑏𝑎) → ((𝑎) ⊆ (𝑏) ∨ (𝑏) ⊆ (𝑎)))
1821813exp 1119 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑎 ∈ ω ∧ 𝑏 ∈ ω) → (∀𝑚 ∈ ω ∀𝑗𝑚 (𝑗) ⊆ (𝑚) → (𝑏𝑎 → ((𝑎) ⊆ (𝑏) ∨ (𝑏) ⊆ (𝑎)))))
183182com3r 87 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑏𝑎 → ((𝑎 ∈ ω ∧ 𝑏 ∈ ω) → (∀𝑚 ∈ ω ∀𝑗𝑚 (𝑗) ⊆ (𝑚) → ((𝑎) ⊆ (𝑏) ∨ (𝑏) ⊆ (𝑎)))))
184165, 170, 1833jaoi 1430 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑎𝑏𝑎 = 𝑏𝑏𝑎) → ((𝑎 ∈ ω ∧ 𝑏 ∈ ω) → (∀𝑚 ∈ ω ∀𝑗𝑚 (𝑗) ⊆ (𝑚) → ((𝑎) ⊆ (𝑏) ∨ (𝑏) ⊆ (𝑎)))))
185152, 184syl 17 . . . . . . . . . . . . . . . . . . . . . 22 ((Ord 𝑎 ∧ Ord 𝑏) → ((𝑎 ∈ ω ∧ 𝑏 ∈ ω) → (∀𝑚 ∈ ω ∀𝑗𝑚 (𝑗) ⊆ (𝑚) → ((𝑎) ⊆ (𝑏) ∨ (𝑏) ⊆ (𝑎)))))
186151, 185mpcom 38 . . . . . . . . . . . . . . . . . . . . 21 ((𝑎 ∈ ω ∧ 𝑏 ∈ ω) → (∀𝑚 ∈ ω ∀𝑗𝑚 (𝑗) ⊆ (𝑚) → ((𝑎) ⊆ (𝑏) ∨ (𝑏) ⊆ (𝑎))))
187 sseq12 3974 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑎) = 𝑢 ∧ (𝑏) = 𝑣) → ((𝑎) ⊆ (𝑏) ↔ 𝑢𝑣))
188 sseq12 3974 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑏) = 𝑣 ∧ (𝑎) = 𝑢) → ((𝑏) ⊆ (𝑎) ↔ 𝑣𝑢))
189188ancoms 458 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑎) = 𝑢 ∧ (𝑏) = 𝑣) → ((𝑏) ⊆ (𝑎) ↔ 𝑣𝑢))
190187, 189orbi12d 918 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑎) = 𝑢 ∧ (𝑏) = 𝑣) → (((𝑎) ⊆ (𝑏) ∨ (𝑏) ⊆ (𝑎)) ↔ (𝑢𝑣𝑣𝑢)))
191190biimpcd 249 . . . . . . . . . . . . . . . . . . . . 21 (((𝑎) ⊆ (𝑏) ∨ (𝑏) ⊆ (𝑎)) → (((𝑎) = 𝑢 ∧ (𝑏) = 𝑣) → (𝑢𝑣𝑣𝑢)))
192186, 191syl6 35 . . . . . . . . . . . . . . . . . . . 20 ((𝑎 ∈ ω ∧ 𝑏 ∈ ω) → (∀𝑚 ∈ ω ∀𝑗𝑚 (𝑗) ⊆ (𝑚) → (((𝑎) = 𝑢 ∧ (𝑏) = 𝑣) → (𝑢𝑣𝑣𝑢))))
193192com23 86 . . . . . . . . . . . . . . . . . . 19 ((𝑎 ∈ ω ∧ 𝑏 ∈ ω) → (((𝑎) = 𝑢 ∧ (𝑏) = 𝑣) → (∀𝑚 ∈ ω ∀𝑗𝑚 (𝑗) ⊆ (𝑚) → (𝑢𝑣𝑣𝑢))))
194193exp4b 430 . . . . . . . . . . . . . . . . . 18 (𝑎 ∈ ω → (𝑏 ∈ ω → ((𝑎) = 𝑢 → ((𝑏) = 𝑣 → (∀𝑚 ∈ ω ∀𝑗𝑚 (𝑗) ⊆ (𝑚) → (𝑢𝑣𝑣𝑢))))))
195194com23 86 . . . . . . . . . . . . . . . . 17 (𝑎 ∈ ω → ((𝑎) = 𝑢 → (𝑏 ∈ ω → ((𝑏) = 𝑣 → (∀𝑚 ∈ ω ∀𝑗𝑚 (𝑗) ⊆ (𝑚) → (𝑢𝑣𝑣𝑢))))))
196195rexlimiv 3127 . . . . . . . . . . . . . . . 16 (∃𝑎 ∈ ω (𝑎) = 𝑢 → (𝑏 ∈ ω → ((𝑏) = 𝑣 → (∀𝑚 ∈ ω ∀𝑗𝑚 (𝑗) ⊆ (𝑚) → (𝑢𝑣𝑣𝑢)))))
197196rexlimdv 3132 . . . . . . . . . . . . . . 15 (∃𝑎 ∈ ω (𝑎) = 𝑢 → (∃𝑏 ∈ ω (𝑏) = 𝑣 → (∀𝑚 ∈ ω ∀𝑗𝑚 (𝑗) ⊆ (𝑚) → (𝑢𝑣𝑣𝑢))))
198148, 197biimtrdi 253 . . . . . . . . . . . . . 14 ( Fn ω → (𝑢 ∈ ran → (∃𝑏 ∈ ω (𝑏) = 𝑣 → (∀𝑚 ∈ ω ∀𝑗𝑚 (𝑗) ⊆ (𝑚) → (𝑢𝑣𝑣𝑢)))))
199198com23 86 . . . . . . . . . . . . 13 ( Fn ω → (∃𝑏 ∈ ω (𝑏) = 𝑣 → (𝑢 ∈ ran → (∀𝑚 ∈ ω ∀𝑗𝑚 (𝑗) ⊆ (𝑚) → (𝑢𝑣𝑣𝑢)))))
200147, 199sylbid 240 . . . . . . . . . . . 12 ( Fn ω → (𝑣 ∈ ran → (𝑢 ∈ ran → (∀𝑚 ∈ ω ∀𝑗𝑚 (𝑗) ⊆ (𝑚) → (𝑢𝑣𝑣𝑢)))))
201200com24 95 . . . . . . . . . . 11 ( Fn ω → (∀𝑚 ∈ ω ∀𝑗𝑚 (𝑗) ⊆ (𝑚) → (𝑢 ∈ ran → (𝑣 ∈ ran → (𝑢𝑣𝑣𝑢)))))
202201imp 406 . . . . . . . . . 10 (( Fn ω ∧ ∀𝑚 ∈ ω ∀𝑗𝑚 (𝑗) ⊆ (𝑚)) → (𝑢 ∈ ran → (𝑣 ∈ ran → (𝑢𝑣𝑣𝑢))))
203202ralrimdv 3131 . . . . . . . . 9 (( Fn ω ∧ ∀𝑚 ∈ ω ∀𝑗𝑚 (𝑗) ⊆ (𝑚)) → (𝑢 ∈ ran → ∀𝑣 ∈ ran (𝑢𝑣𝑣𝑢)))
204146, 203sylan 580 . . . . . . . 8 ((:ω⟶𝑆 ∧ ∀𝑚 ∈ ω ∀𝑗𝑚 (𝑗) ⊆ (𝑚)) → (𝑢 ∈ ran → ∀𝑣 ∈ ran (𝑢𝑣𝑣𝑢)))
205145, 204jcad 512 . . . . . . 7 ((:ω⟶𝑆 ∧ ∀𝑚 ∈ ω ∀𝑗𝑚 (𝑗) ⊆ (𝑚)) → (𝑢 ∈ ran → (Fun 𝑢 ∧ ∀𝑣 ∈ ran (𝑢𝑣𝑣𝑢))))
206205ralrimiv 3124 . . . . . 6 ((:ω⟶𝑆 ∧ ∀𝑚 ∈ ω ∀𝑗𝑚 (𝑗) ⊆ (𝑚)) → ∀𝑢 ∈ ran (Fun 𝑢 ∧ ∀𝑣 ∈ ran (𝑢𝑣𝑣𝑢)))
207 fununi 6591 . . . . . 6 (∀𝑢 ∈ ran (Fun 𝑢 ∧ ∀𝑣 ∈ ran (𝑢𝑣𝑣𝑢)) → Fun ran )
208206, 207syl 17 . . . . 5 ((:ω⟶𝑆 ∧ ∀𝑚 ∈ ω ∀𝑗𝑚 (𝑗) ⊆ (𝑚)) → Fun ran )
209132, 208syldan 591 . . . 4 ((:ω⟶𝑆 ∧ ∀𝑘 ∈ ω (‘suc 𝑘) ∈ (𝐺‘(𝑘))) → Fun ran )
210 vex 3451 . . . . . . . . 9 𝑚 ∈ V
211210eldm2 5865 . . . . . . . 8 (𝑚 ∈ dom ran ↔ ∃𝑢𝑚, 𝑢⟩ ∈ ran )
212 eluni2 4875 . . . . . . . . . 10 (⟨𝑚, 𝑢⟩ ∈ ran ↔ ∃𝑣 ∈ ran 𝑚, 𝑢⟩ ∈ 𝑣)
213210, 141opeldm 5871 . . . . . . . . . . . . . . 15 (⟨𝑚, 𝑢⟩ ∈ 𝑣𝑚 ∈ dom 𝑣)
214213a1i 11 . . . . . . . . . . . . . 14 (:ω⟶𝑆 → (⟨𝑚, 𝑢⟩ ∈ 𝑣𝑚 ∈ dom 𝑣))
215133, 44sstrdi 3959 . . . . . . . . . . . . . . 15 (:ω⟶𝑆 → ran ⊆ {𝑠 ∣ (∅ ∈ dom 𝑠 ∧ dom 𝑠 ∈ ω)})
216 ssel 3940 . . . . . . . . . . . . . . . 16 (ran ⊆ {𝑠 ∣ (∅ ∈ dom 𝑠 ∧ dom 𝑠 ∈ ω)} → (𝑣 ∈ ran 𝑣 ∈ {𝑠 ∣ (∅ ∈ dom 𝑠 ∧ dom 𝑠 ∈ ω)}))
217 vex 3451 . . . . . . . . . . . . . . . . . 18 𝑣 ∈ V
218 dmeq 5867 . . . . . . . . . . . . . . . . . . . 20 (𝑠 = 𝑣 → dom 𝑠 = dom 𝑣)
219218eleq2d 2814 . . . . . . . . . . . . . . . . . . 19 (𝑠 = 𝑣 → (∅ ∈ dom 𝑠 ↔ ∅ ∈ dom 𝑣))
220218eleq1d 2813 . . . . . . . . . . . . . . . . . . 19 (𝑠 = 𝑣 → (dom 𝑠 ∈ ω ↔ dom 𝑣 ∈ ω))
221219, 220anbi12d 632 . . . . . . . . . . . . . . . . . 18 (𝑠 = 𝑣 → ((∅ ∈ dom 𝑠 ∧ dom 𝑠 ∈ ω) ↔ (∅ ∈ dom 𝑣 ∧ dom 𝑣 ∈ ω)))
222217, 221elab 3646 . . . . . . . . . . . . . . . . 17 (𝑣 ∈ {𝑠 ∣ (∅ ∈ dom 𝑠 ∧ dom 𝑠 ∈ ω)} ↔ (∅ ∈ dom 𝑣 ∧ dom 𝑣 ∈ ω))
223222simprbi 496 . . . . . . . . . . . . . . . 16 (𝑣 ∈ {𝑠 ∣ (∅ ∈ dom 𝑠 ∧ dom 𝑠 ∈ ω)} → dom 𝑣 ∈ ω)
224216, 223syl6 35 . . . . . . . . . . . . . . 15 (ran ⊆ {𝑠 ∣ (∅ ∈ dom 𝑠 ∧ dom 𝑠 ∈ ω)} → (𝑣 ∈ ran → dom 𝑣 ∈ ω))
225215, 224syl 17 . . . . . . . . . . . . . 14 (:ω⟶𝑆 → (𝑣 ∈ ran → dom 𝑣 ∈ ω))
226214, 225anim12d 609 . . . . . . . . . . . . 13 (:ω⟶𝑆 → ((⟨𝑚, 𝑢⟩ ∈ 𝑣𝑣 ∈ ran ) → (𝑚 ∈ dom 𝑣 ∧ dom 𝑣 ∈ ω)))
227 elnn 7853 . . . . . . . . . . . . 13 ((𝑚 ∈ dom 𝑣 ∧ dom 𝑣 ∈ ω) → 𝑚 ∈ ω)
228226, 227syl6 35 . . . . . . . . . . . 12 (:ω⟶𝑆 → ((⟨𝑚, 𝑢⟩ ∈ 𝑣𝑣 ∈ ran ) → 𝑚 ∈ ω))
229228expcomd 416 . . . . . . . . . . 11 (:ω⟶𝑆 → (𝑣 ∈ ran → (⟨𝑚, 𝑢⟩ ∈ 𝑣𝑚 ∈ ω)))
230229rexlimdv 3132 . . . . . . . . . 10 (:ω⟶𝑆 → (∃𝑣 ∈ ran 𝑚, 𝑢⟩ ∈ 𝑣𝑚 ∈ ω))
231212, 230biimtrid 242 . . . . . . . . 9 (:ω⟶𝑆 → (⟨𝑚, 𝑢⟩ ∈ ran 𝑚 ∈ ω))
232231exlimdv 1933 . . . . . . . 8 (:ω⟶𝑆 → (∃𝑢𝑚, 𝑢⟩ ∈ ran 𝑚 ∈ ω))
233211, 232biimtrid 242 . . . . . . 7 (:ω⟶𝑆 → (𝑚 ∈ dom ran 𝑚 ∈ ω))
234233adantr 480 . . . . . 6 ((:ω⟶𝑆 ∧ ∀𝑘 ∈ ω (‘suc 𝑘) ∈ (𝐺‘(𝑘))) → (𝑚 ∈ dom ran 𝑚 ∈ ω))
235 id 22 . . . . . . . . . . 11 (𝑚 ∈ ω → 𝑚 ∈ ω)
236 fnfvelrn 7052 . . . . . . . . . . 11 (( Fn ω ∧ 𝑚 ∈ ω) → (𝑚) ∈ ran )
237146, 235, 236syl2anr 597 . . . . . . . . . 10 ((𝑚 ∈ ω ∧ :ω⟶𝑆) → (𝑚) ∈ ran )
238237adantrr 717 . . . . . . . . 9 ((𝑚 ∈ ω ∧ (:ω⟶𝑆 ∧ ∀𝑘 ∈ ω (‘suc 𝑘) ∈ (𝐺‘(𝑘)))) → (𝑚) ∈ ran )
239128simpld 494 . . . . . . . . 9 ((𝑚 ∈ ω ∧ (:ω⟶𝑆 ∧ ∀𝑘 ∈ ω (‘suc 𝑘) ∈ (𝐺‘(𝑘)))) → 𝑚 ∈ dom (𝑚))
240 dmeq 5867 . . . . . . . . . 10 (𝑢 = (𝑚) → dom 𝑢 = dom (𝑚))
241240eliuni 4961 . . . . . . . . 9 (((𝑚) ∈ ran 𝑚 ∈ dom (𝑚)) → 𝑚 𝑢 ∈ ran dom 𝑢)
242238, 239, 241syl2anc 584 . . . . . . . 8 ((𝑚 ∈ ω ∧ (:ω⟶𝑆 ∧ ∀𝑘 ∈ ω (‘suc 𝑘) ∈ (𝐺‘(𝑘)))) → 𝑚 𝑢 ∈ ran dom 𝑢)
243 dmuni 5878 . . . . . . . 8 dom ran = 𝑢 ∈ ran dom 𝑢
244242, 243eleqtrrdi 2839 . . . . . . 7 ((𝑚 ∈ ω ∧ (:ω⟶𝑆 ∧ ∀𝑘 ∈ ω (‘suc 𝑘) ∈ (𝐺‘(𝑘)))) → 𝑚 ∈ dom ran )
245244expcom 413 . . . . . 6 ((:ω⟶𝑆 ∧ ∀𝑘 ∈ ω (‘suc 𝑘) ∈ (𝐺‘(𝑘))) → (𝑚 ∈ ω → 𝑚 ∈ dom ran ))
246234, 245impbid 212 . . . . 5 ((:ω⟶𝑆 ∧ ∀𝑘 ∈ ω (‘suc 𝑘) ∈ (𝐺‘(𝑘))) → (𝑚 ∈ dom ran 𝑚 ∈ ω))
247246eqrdv 2727 . . . 4 ((:ω⟶𝑆 ∧ ∀𝑘 ∈ ω (‘suc 𝑘) ∈ (𝐺‘(𝑘))) → dom ran = ω)
248 rnuni 6121 . . . . . 6 ran ran = 𝑠 ∈ ran ran 𝑠
249 frn 6695 . . . . . . . . . . . . . 14 (𝑠:suc 𝑛𝐴 → ran 𝑠𝐴)
2502493ad2ant1 1133 . . . . . . . . . . . . 13 ((𝑠:suc 𝑛𝐴 ∧ (𝑠‘∅) = 𝐶 ∧ ∀𝑘𝑛 (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠𝑘))) → ran 𝑠𝐴)
251250rexlimivw 3130 . . . . . . . . . . . 12 (∃𝑛 ∈ ω (𝑠:suc 𝑛𝐴 ∧ (𝑠‘∅) = 𝐶 ∧ ∀𝑘𝑛 (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠𝑘))) → ran 𝑠𝐴)
252251ss2abi 4030 . . . . . . . . . . 11 {𝑠 ∣ ∃𝑛 ∈ ω (𝑠:suc 𝑛𝐴 ∧ (𝑠‘∅) = 𝐶 ∧ ∀𝑘𝑛 (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠𝑘)))} ⊆ {𝑠 ∣ ran 𝑠𝐴}
25328, 252eqsstri 3993 . . . . . . . . . 10 𝑆 ⊆ {𝑠 ∣ ran 𝑠𝐴}
254133, 253sstrdi 3959 . . . . . . . . 9 (:ω⟶𝑆 → ran ⊆ {𝑠 ∣ ran 𝑠𝐴})
255 ssel 3940 . . . . . . . . . 10 (ran ⊆ {𝑠 ∣ ran 𝑠𝐴} → (𝑠 ∈ ran 𝑠 ∈ {𝑠 ∣ ran 𝑠𝐴}))
256 abid 2711 . . . . . . . . . 10 (𝑠 ∈ {𝑠 ∣ ran 𝑠𝐴} ↔ ran 𝑠𝐴)
257255, 256imbitrdi 251 . . . . . . . . 9 (ran ⊆ {𝑠 ∣ ran 𝑠𝐴} → (𝑠 ∈ ran → ran 𝑠𝐴))
258254, 257syl 17 . . . . . . . 8 (:ω⟶𝑆 → (𝑠 ∈ ran → ran 𝑠𝐴))
259258ralrimiv 3124 . . . . . . 7 (:ω⟶𝑆 → ∀𝑠 ∈ ran ran 𝑠𝐴)
260 iunss 5009 . . . . . . 7 ( 𝑠 ∈ ran ran 𝑠𝐴 ↔ ∀𝑠 ∈ ran ran 𝑠𝐴)
261259, 260sylibr 234 . . . . . 6 (:ω⟶𝑆 𝑠 ∈ ran ran 𝑠𝐴)
262248, 261eqsstrid 3985 . . . . 5 (:ω⟶𝑆 → ran ran 𝐴)
263262adantr 480 . . . 4 ((:ω⟶𝑆 ∧ ∀𝑘 ∈ ω (‘suc 𝑘) ∈ (𝐺‘(𝑘))) → ran ran 𝐴)
264 df-fn 6514 . . . . 5 ( ran Fn ω ↔ (Fun ran ∧ dom ran = ω))
265 df-f 6515 . . . . . 6 ( ran :ω⟶𝐴 ↔ ( ran Fn ω ∧ ran ran 𝐴))
266265biimpri 228 . . . . 5 (( ran Fn ω ∧ ran ran 𝐴) → ran :ω⟶𝐴)
267264, 266sylanbr 582 . . . 4 (((Fun ran ∧ dom ran = ω) ∧ ran ran 𝐴) → ran :ω⟶𝐴)
268209, 247, 263, 267syl21anc 837 . . 3 ((:ω⟶𝑆 ∧ ∀𝑘 ∈ ω (‘suc 𝑘) ∈ (𝐺‘(𝑘))) → ran :ω⟶𝐴)
269 fnfvelrn 7052 . . . . . . . 8 (( Fn ω ∧ ∅ ∈ ω) → (‘∅) ∈ ran )
270146, 25, 269sylancl 586 . . . . . . 7 (:ω⟶𝑆 → (‘∅) ∈ ran )
271270adantr 480 . . . . . 6 ((:ω⟶𝑆 ∧ ∀𝑘 ∈ ω (‘suc 𝑘) ∈ (𝐺‘(𝑘))) → (‘∅) ∈ ran )
272 elssuni 4901 . . . . . 6 ((‘∅) ∈ ran → (‘∅) ⊆ ran )
273271, 272syl 17 . . . . 5 ((:ω⟶𝑆 ∧ ∀𝑘 ∈ ω (‘suc 𝑘) ∈ (𝐺‘(𝑘))) → (‘∅) ⊆ ran )
27454adantr 480 . . . . 5 ((:ω⟶𝑆 ∧ ∀𝑘 ∈ ω (‘suc 𝑘) ∈ (𝐺‘(𝑘))) → ∅ ∈ dom (‘∅))
275 funssfv 6879 . . . . 5 ((Fun ran ∧ (‘∅) ⊆ ran ∧ ∅ ∈ dom (‘∅)) → ( ran ‘∅) = ((‘∅)‘∅))
276209, 273, 274, 275syl3anc 1373 . . . 4 ((:ω⟶𝑆 ∧ ∀𝑘 ∈ ω (‘suc 𝑘) ∈ (𝐺‘(𝑘))) → ( ran ‘∅) = ((‘∅)‘∅))
277 simp2 1137 . . . . . . . . . . 11 ((𝑠:suc 𝑛𝐴 ∧ (𝑠‘∅) = 𝐶 ∧ ∀𝑘𝑛 (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠𝑘))) → (𝑠‘∅) = 𝐶)
278277rexlimivw 3130 . . . . . . . . . 10 (∃𝑛 ∈ ω (𝑠:suc 𝑛𝐴 ∧ (𝑠‘∅) = 𝐶 ∧ ∀𝑘𝑛 (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠𝑘))) → (𝑠‘∅) = 𝐶)
279278ss2abi 4030 . . . . . . . . 9 {𝑠 ∣ ∃𝑛 ∈ ω (𝑠:suc 𝑛𝐴 ∧ (𝑠‘∅) = 𝐶 ∧ ∀𝑘𝑛 (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠𝑘)))} ⊆ {𝑠 ∣ (𝑠‘∅) = 𝐶}
28028, 279eqsstri 3993 . . . . . . . 8 𝑆 ⊆ {𝑠 ∣ (𝑠‘∅) = 𝐶}
281133, 280sstrdi 3959 . . . . . . 7 (:ω⟶𝑆 → ran ⊆ {𝑠 ∣ (𝑠‘∅) = 𝐶})
282 ssel 3940 . . . . . . . 8 (ran ⊆ {𝑠 ∣ (𝑠‘∅) = 𝐶} → ((‘∅) ∈ ran → (‘∅) ∈ {𝑠 ∣ (𝑠‘∅) = 𝐶}))
283 fveq1 6857 . . . . . . . . . 10 (𝑠 = (‘∅) → (𝑠‘∅) = ((‘∅)‘∅))
284283eqeq1d 2731 . . . . . . . . 9 (𝑠 = (‘∅) → ((𝑠‘∅) = 𝐶 ↔ ((‘∅)‘∅) = 𝐶))
28546, 284elab 3646 . . . . . . . 8 ((‘∅) ∈ {𝑠 ∣ (𝑠‘∅) = 𝐶} ↔ ((‘∅)‘∅) = 𝐶)
286282, 285imbitrdi 251 . . . . . . 7 (ran ⊆ {𝑠 ∣ (𝑠‘∅) = 𝐶} → ((‘∅) ∈ ran → ((‘∅)‘∅) = 𝐶))
287281, 286syl 17 . . . . . 6 (:ω⟶𝑆 → ((‘∅) ∈ ran → ((‘∅)‘∅) = 𝐶))
288287adantr 480 . . . . 5 ((:ω⟶𝑆 ∧ ∀𝑘 ∈ ω (‘suc 𝑘) ∈ (𝐺‘(𝑘))) → ((‘∅) ∈ ran → ((‘∅)‘∅) = 𝐶))
289271, 288mpd 15 . . . 4 ((:ω⟶𝑆 ∧ ∀𝑘 ∈ ω (‘suc 𝑘) ∈ (𝐺‘(𝑘))) → ((‘∅)‘∅) = 𝐶)
290276, 289eqtrd 2764 . . 3 ((:ω⟶𝑆 ∧ ∀𝑘 ∈ ω (‘suc 𝑘) ∈ (𝐺‘(𝑘))) → ( ran ‘∅) = 𝐶)
291 nfv 1914 . . . . 5 𝑘 :ω⟶𝑆
292 nfra1 3261 . . . . 5 𝑘𝑘 ∈ ω (‘suc 𝑘) ∈ (𝐺‘(𝑘))
293291, 292nfan 1899 . . . 4 𝑘(:ω⟶𝑆 ∧ ∀𝑘 ∈ ω (‘suc 𝑘) ∈ (𝐺‘(𝑘)))
294133ad2antrr 726 . . . . . . 7 (((:ω⟶𝑆 ∧ ∀𝑘 ∈ ω (‘suc 𝑘) ∈ (𝐺‘(𝑘))) ∧ 𝑘 ∈ ω) → ran 𝑆)
295 peano2 7866 . . . . . . . . 9 (𝑘 ∈ ω → suc 𝑘 ∈ ω)
296 fnfvelrn 7052 . . . . . . . . 9 (( Fn ω ∧ suc 𝑘 ∈ ω) → (‘suc 𝑘) ∈ ran )
297146, 295, 296syl2an 596 . . . . . . . 8 ((:ω⟶𝑆𝑘 ∈ ω) → (‘suc 𝑘) ∈ ran )
298297adantlr 715 . . . . . . 7 (((:ω⟶𝑆 ∧ ∀𝑘 ∈ ω (‘suc 𝑘) ∈ (𝐺‘(𝑘))) ∧ 𝑘 ∈ ω) → (‘suc 𝑘) ∈ ran )
299239expcom 413 . . . . . . . . 9 ((:ω⟶𝑆 ∧ ∀𝑘 ∈ ω (‘suc 𝑘) ∈ (𝐺‘(𝑘))) → (𝑚 ∈ ω → 𝑚 ∈ dom (𝑚)))
300299ralrimiv 3124 . . . . . . . 8 ((:ω⟶𝑆 ∧ ∀𝑘 ∈ ω (‘suc 𝑘) ∈ (𝐺‘(𝑘))) → ∀𝑚 ∈ ω 𝑚 ∈ dom (𝑚))
301 id 22 . . . . . . . . . . 11 (𝑚 = suc 𝑘𝑚 = suc 𝑘)
302 fveq2 6858 . . . . . . . . . . . 12 (𝑚 = suc 𝑘 → (𝑚) = (‘suc 𝑘))
303302dmeqd 5869 . . . . . . . . . . 11 (𝑚 = suc 𝑘 → dom (𝑚) = dom (‘suc 𝑘))
304301, 303eleq12d 2822 . . . . . . . . . 10 (𝑚 = suc 𝑘 → (𝑚 ∈ dom (𝑚) ↔ suc 𝑘 ∈ dom (‘suc 𝑘)))
305304rspcv 3584 . . . . . . . . 9 (suc 𝑘 ∈ ω → (∀𝑚 ∈ ω 𝑚 ∈ dom (𝑚) → suc 𝑘 ∈ dom (‘suc 𝑘)))
306295, 305syl 17 . . . . . . . 8 (𝑘 ∈ ω → (∀𝑚 ∈ ω 𝑚 ∈ dom (𝑚) → suc 𝑘 ∈ dom (‘suc 𝑘)))
307300, 306mpan9 506 . . . . . . 7 (((:ω⟶𝑆 ∧ ∀𝑘 ∈ ω (‘suc 𝑘) ∈ (𝐺‘(𝑘))) ∧ 𝑘 ∈ ω) → suc 𝑘 ∈ dom (‘suc 𝑘))
308 eleq2 2817 . . . . . . . . . . . . . . . . . . . . 21 (dom 𝑠 = suc 𝑛 → (suc 𝑘 ∈ dom 𝑠 ↔ suc 𝑘 ∈ suc 𝑛))
309308biimpa 476 . . . . . . . . . . . . . . . . . . . 20 ((dom 𝑠 = suc 𝑛 ∧ suc 𝑘 ∈ dom 𝑠) → suc 𝑘 ∈ suc 𝑛)
31029, 309sylan 580 . . . . . . . . . . . . . . . . . . 19 ((𝑠:suc 𝑛𝐴 ∧ suc 𝑘 ∈ dom 𝑠) → suc 𝑘 ∈ suc 𝑛)
311 ordsucelsuc 7797 . . . . . . . . . . . . . . . . . . . . . . 23 (Ord 𝑛 → (𝑘𝑛 ↔ suc 𝑘 ∈ suc 𝑛))
31230, 311syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (𝑛 ∈ ω → (𝑘𝑛 ↔ suc 𝑘 ∈ suc 𝑛))
313312biimprd 248 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 ∈ ω → (suc 𝑘 ∈ suc 𝑛𝑘𝑛))
314 rsp 3225 . . . . . . . . . . . . . . . . . . . . 21 (∀𝑘𝑛 (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠𝑘)) → (𝑘𝑛 → (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠𝑘))))
315313, 314syl9r 78 . . . . . . . . . . . . . . . . . . . 20 (∀𝑘𝑛 (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠𝑘)) → (𝑛 ∈ ω → (suc 𝑘 ∈ suc 𝑛 → (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠𝑘)))))
316315com13 88 . . . . . . . . . . . . . . . . . . 19 (suc 𝑘 ∈ suc 𝑛 → (𝑛 ∈ ω → (∀𝑘𝑛 (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠𝑘)) → (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠𝑘)))))
317310, 316syl 17 . . . . . . . . . . . . . . . . . 18 ((𝑠:suc 𝑛𝐴 ∧ suc 𝑘 ∈ dom 𝑠) → (𝑛 ∈ ω → (∀𝑘𝑛 (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠𝑘)) → (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠𝑘)))))
318317ex 412 . . . . . . . . . . . . . . . . 17 (𝑠:suc 𝑛𝐴 → (suc 𝑘 ∈ dom 𝑠 → (𝑛 ∈ ω → (∀𝑘𝑛 (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠𝑘)) → (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠𝑘))))))
319318com24 95 . . . . . . . . . . . . . . . 16 (𝑠:suc 𝑛𝐴 → (∀𝑘𝑛 (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠𝑘)) → (𝑛 ∈ ω → (suc 𝑘 ∈ dom 𝑠 → (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠𝑘))))))
320319imp 406 . . . . . . . . . . . . . . 15 ((𝑠:suc 𝑛𝐴 ∧ ∀𝑘𝑛 (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠𝑘))) → (𝑛 ∈ ω → (suc 𝑘 ∈ dom 𝑠 → (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠𝑘)))))
3213203adant2 1131 . . . . . . . . . . . . . 14 ((𝑠:suc 𝑛𝐴 ∧ (𝑠‘∅) = 𝐶 ∧ ∀𝑘𝑛 (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠𝑘))) → (𝑛 ∈ ω → (suc 𝑘 ∈ dom 𝑠 → (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠𝑘)))))
322321impcom 407 . . . . . . . . . . . . 13 ((𝑛 ∈ ω ∧ (𝑠:suc 𝑛𝐴 ∧ (𝑠‘∅) = 𝐶 ∧ ∀𝑘𝑛 (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠𝑘)))) → (suc 𝑘 ∈ dom 𝑠 → (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠𝑘))))
323322rexlimiva 3126 . . . . . . . . . . . 12 (∃𝑛 ∈ ω (𝑠:suc 𝑛𝐴 ∧ (𝑠‘∅) = 𝐶 ∧ ∀𝑘𝑛 (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠𝑘))) → (suc 𝑘 ∈ dom 𝑠 → (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠𝑘))))
324323ss2abi 4030 . . . . . . . . . . 11 {𝑠 ∣ ∃𝑛 ∈ ω (𝑠:suc 𝑛𝐴 ∧ (𝑠‘∅) = 𝐶 ∧ ∀𝑘𝑛 (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠𝑘)))} ⊆ {𝑠 ∣ (suc 𝑘 ∈ dom 𝑠 → (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠𝑘)))}
32528, 324eqsstri 3993 . . . . . . . . . 10 𝑆 ⊆ {𝑠 ∣ (suc 𝑘 ∈ dom 𝑠 → (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠𝑘)))}
326 sstr 3955 . . . . . . . . . 10 ((ran 𝑆𝑆 ⊆ {𝑠 ∣ (suc 𝑘 ∈ dom 𝑠 → (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠𝑘)))}) → ran ⊆ {𝑠 ∣ (suc 𝑘 ∈ dom 𝑠 → (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠𝑘)))})
327325, 326mpan2 691 . . . . . . . . 9 (ran 𝑆 → ran ⊆ {𝑠 ∣ (suc 𝑘 ∈ dom 𝑠 → (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠𝑘)))})
328327sseld 3945 . . . . . . . 8 (ran 𝑆 → ((‘suc 𝑘) ∈ ran → (‘suc 𝑘) ∈ {𝑠 ∣ (suc 𝑘 ∈ dom 𝑠 → (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠𝑘)))}))
329 fvex 6871 . . . . . . . . 9 (‘suc 𝑘) ∈ V
330 dmeq 5867 . . . . . . . . . . 11 (𝑠 = (‘suc 𝑘) → dom 𝑠 = dom (‘suc 𝑘))
331330eleq2d 2814 . . . . . . . . . 10 (𝑠 = (‘suc 𝑘) → (suc 𝑘 ∈ dom 𝑠 ↔ suc 𝑘 ∈ dom (‘suc 𝑘)))
332 fveq1 6857 . . . . . . . . . . 11 (𝑠 = (‘suc 𝑘) → (𝑠‘suc 𝑘) = ((‘suc 𝑘)‘suc 𝑘))
333 fveq1 6857 . . . . . . . . . . . 12 (𝑠 = (‘suc 𝑘) → (𝑠𝑘) = ((‘suc 𝑘)‘𝑘))
334333fveq2d 6862 . . . . . . . . . . 11 (𝑠 = (‘suc 𝑘) → (𝐹‘(𝑠𝑘)) = (𝐹‘((‘suc 𝑘)‘𝑘)))
335332, 334eleq12d 2822 . . . . . . . . . 10 (𝑠 = (‘suc 𝑘) → ((𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠𝑘)) ↔ ((‘suc 𝑘)‘suc 𝑘) ∈ (𝐹‘((‘suc 𝑘)‘𝑘))))
336331, 335imbi12d 344 . . . . . . . . 9 (𝑠 = (‘suc 𝑘) → ((suc 𝑘 ∈ dom 𝑠 → (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠𝑘))) ↔ (suc 𝑘 ∈ dom (‘suc 𝑘) → ((‘suc 𝑘)‘suc 𝑘) ∈ (𝐹‘((‘suc 𝑘)‘𝑘)))))
337329, 336elab 3646 . . . . . . . 8 ((‘suc 𝑘) ∈ {𝑠 ∣ (suc 𝑘 ∈ dom 𝑠 → (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠𝑘)))} ↔ (suc 𝑘 ∈ dom (‘suc 𝑘) → ((‘suc 𝑘)‘suc 𝑘) ∈ (𝐹‘((‘suc 𝑘)‘𝑘))))
338328, 337imbitrdi 251 . . . . . . 7 (ran 𝑆 → ((‘suc 𝑘) ∈ ran → (suc 𝑘 ∈ dom (‘suc 𝑘) → ((‘suc 𝑘)‘suc 𝑘) ∈ (𝐹‘((‘suc 𝑘)‘𝑘)))))
339294, 298, 307, 338syl3c 66 . . . . . 6 (((:ω⟶𝑆 ∧ ∀𝑘 ∈ ω (‘suc 𝑘) ∈ (𝐺‘(𝑘))) ∧ 𝑘 ∈ ω) → ((‘suc 𝑘)‘suc 𝑘) ∈ (𝐹‘((‘suc 𝑘)‘𝑘)))
340209adantr 480 . . . . . . . 8 (((:ω⟶𝑆 ∧ ∀𝑘 ∈ ω (‘suc 𝑘) ∈ (𝐺‘(𝑘))) ∧ 𝑘 ∈ ω) → Fun ran )
341 elssuni 4901 . . . . . . . . . 10 ((‘suc 𝑘) ∈ ran → (‘suc 𝑘) ⊆ ran )
342297, 341syl 17 . . . . . . . . 9 ((:ω⟶𝑆𝑘 ∈ ω) → (‘suc 𝑘) ⊆ ran )
343342adantlr 715 . . . . . . . 8 (((:ω⟶𝑆 ∧ ∀𝑘 ∈ ω (‘suc 𝑘) ∈ (𝐺‘(𝑘))) ∧ 𝑘 ∈ ω) → (‘suc 𝑘) ⊆ ran )
344 funssfv 6879 . . . . . . . 8 ((Fun ran ∧ (‘suc 𝑘) ⊆ ran ∧ suc 𝑘 ∈ dom (‘suc 𝑘)) → ( ran ‘suc 𝑘) = ((‘suc 𝑘)‘suc 𝑘))
345340, 343, 307, 344syl3anc 1373 . . . . . . 7 (((:ω⟶𝑆 ∧ ∀𝑘 ∈ ω (‘suc 𝑘) ∈ (𝐺‘(𝑘))) ∧ 𝑘 ∈ ω) → ( ran ‘suc 𝑘) = ((‘suc 𝑘)‘suc 𝑘))
346215sseld 3945 . . . . . . . . . . . . . . 15 (:ω⟶𝑆 → ((‘suc 𝑘) ∈ ran → (‘suc 𝑘) ∈ {𝑠 ∣ (∅ ∈ dom 𝑠 ∧ dom 𝑠 ∈ ω)}))
347330eleq2d 2814 . . . . . . . . . . . . . . . . 17 (𝑠 = (‘suc 𝑘) → (∅ ∈ dom 𝑠 ↔ ∅ ∈ dom (‘suc 𝑘)))
348330eleq1d 2813 . . . . . . . . . . . . . . . . 17 (𝑠 = (‘suc 𝑘) → (dom 𝑠 ∈ ω ↔ dom (‘suc 𝑘) ∈ ω))
349347, 348anbi12d 632 . . . . . . . . . . . . . . . 16 (𝑠 = (‘suc 𝑘) → ((∅ ∈ dom 𝑠 ∧ dom 𝑠 ∈ ω) ↔ (∅ ∈ dom (‘suc 𝑘) ∧ dom (‘suc 𝑘) ∈ ω)))
350329, 349elab 3646 . . . . . . . . . . . . . . 15 ((‘suc 𝑘) ∈ {𝑠 ∣ (∅ ∈ dom 𝑠 ∧ dom 𝑠 ∈ ω)} ↔ (∅ ∈ dom (‘suc 𝑘) ∧ dom (‘suc 𝑘) ∈ ω))
351346, 350imbitrdi 251 . . . . . . . . . . . . . 14 (:ω⟶𝑆 → ((‘suc 𝑘) ∈ ran → (∅ ∈ dom (‘suc 𝑘) ∧ dom (‘suc 𝑘) ∈ ω)))
352351adantr 480 . . . . . . . . . . . . 13 ((:ω⟶𝑆𝑘 ∈ ω) → ((‘suc 𝑘) ∈ ran → (∅ ∈ dom (‘suc 𝑘) ∧ dom (‘suc 𝑘) ∈ ω)))
353297, 352mpd 15 . . . . . . . . . . . 12 ((:ω⟶𝑆𝑘 ∈ ω) → (∅ ∈ dom (‘suc 𝑘) ∧ dom (‘suc 𝑘) ∈ ω))
354353simprd 495 . . . . . . . . . . 11 ((:ω⟶𝑆𝑘 ∈ ω) → dom (‘suc 𝑘) ∈ ω)
355 nnord 7850 . . . . . . . . . . 11 (dom (‘suc 𝑘) ∈ ω → Ord dom (‘suc 𝑘))
356 ordtr 6346 . . . . . . . . . . 11 (Ord dom (‘suc 𝑘) → Tr dom (‘suc 𝑘))
357 trsuc 6421 . . . . . . . . . . . 12 ((Tr dom (‘suc 𝑘) ∧ suc 𝑘 ∈ dom (‘suc 𝑘)) → 𝑘 ∈ dom (‘suc 𝑘))
358357ex 412 . . . . . . . . . . 11 (Tr dom (‘suc 𝑘) → (suc 𝑘 ∈ dom (‘suc 𝑘) → 𝑘 ∈ dom (‘suc 𝑘)))
359354, 355, 356, 3584syl 19 . . . . . . . . . 10 ((:ω⟶𝑆𝑘 ∈ ω) → (suc 𝑘 ∈ dom (‘suc 𝑘) → 𝑘 ∈ dom (‘suc 𝑘)))
360359adantlr 715 . . . . . . . . 9 (((:ω⟶𝑆 ∧ ∀𝑘 ∈ ω (‘suc 𝑘) ∈ (𝐺‘(𝑘))) ∧ 𝑘 ∈ ω) → (suc 𝑘 ∈ dom (‘suc 𝑘) → 𝑘 ∈ dom (‘suc 𝑘)))
361307, 360mpd 15 . . . . . . . 8 (((:ω⟶𝑆 ∧ ∀𝑘 ∈ ω (‘suc 𝑘) ∈ (𝐺‘(𝑘))) ∧ 𝑘 ∈ ω) → 𝑘 ∈ dom (‘suc 𝑘))
362 funssfv 6879 . . . . . . . 8 ((Fun ran ∧ (‘suc 𝑘) ⊆ ran 𝑘 ∈ dom (‘suc 𝑘)) → ( ran 𝑘) = ((‘suc 𝑘)‘𝑘))
363340, 343, 361, 362syl3anc 1373 . . . . . . 7 (((:ω⟶𝑆 ∧ ∀𝑘 ∈ ω (‘suc 𝑘) ∈ (𝐺‘(𝑘))) ∧ 𝑘 ∈ ω) → ( ran 𝑘) = ((‘suc 𝑘)‘𝑘))
364 simpl 482 . . . . . . . 8 ((( ran ‘suc 𝑘) = ((‘suc 𝑘)‘suc 𝑘) ∧ ( ran 𝑘) = ((‘suc 𝑘)‘𝑘)) → ( ran ‘suc 𝑘) = ((‘suc 𝑘)‘suc 𝑘))
365 simpr 484 . . . . . . . . 9 ((( ran ‘suc 𝑘) = ((‘suc 𝑘)‘suc 𝑘) ∧ ( ran 𝑘) = ((‘suc 𝑘)‘𝑘)) → ( ran 𝑘) = ((‘suc 𝑘)‘𝑘))
366365fveq2d 6862 . . . . . . . 8 ((( ran ‘suc 𝑘) = ((‘suc 𝑘)‘suc 𝑘) ∧ ( ran 𝑘) = ((‘suc 𝑘)‘𝑘)) → (𝐹‘( ran 𝑘)) = (𝐹‘((‘suc 𝑘)‘𝑘)))
367364, 366eleq12d 2822 . . . . . . 7 ((( ran ‘suc 𝑘) = ((‘suc 𝑘)‘suc 𝑘) ∧ ( ran 𝑘) = ((‘suc 𝑘)‘𝑘)) → (( ran ‘suc 𝑘) ∈ (𝐹‘( ran 𝑘)) ↔ ((‘suc 𝑘)‘suc 𝑘) ∈ (𝐹‘((‘suc 𝑘)‘𝑘))))
368345, 363, 367syl2anc 584 . . . . . 6 (((:ω⟶𝑆 ∧ ∀𝑘 ∈ ω (‘suc 𝑘) ∈ (𝐺‘(𝑘))) ∧ 𝑘 ∈ ω) → (( ran ‘suc 𝑘) ∈ (𝐹‘( ran 𝑘)) ↔ ((‘suc 𝑘)‘suc 𝑘) ∈ (𝐹‘((‘suc 𝑘)‘𝑘))))
369339, 368mpbird 257 . . . . 5 (((:ω⟶𝑆 ∧ ∀𝑘 ∈ ω (‘suc 𝑘) ∈ (𝐺‘(𝑘))) ∧ 𝑘 ∈ ω) → ( ran ‘suc 𝑘) ∈ (𝐹‘( ran 𝑘)))
370369ex 412 . . . 4 ((:ω⟶𝑆 ∧ ∀𝑘 ∈ ω (‘suc 𝑘) ∈ (𝐺‘(𝑘))) → (𝑘 ∈ ω → ( ran ‘suc 𝑘) ∈ (𝐹‘( ran 𝑘))))
371293, 370ralrimi 3235 . . 3 ((:ω⟶𝑆 ∧ ∀𝑘 ∈ ω (‘suc 𝑘) ∈ (𝐺‘(𝑘))) → ∀𝑘 ∈ ω ( ran ‘suc 𝑘) ∈ (𝐹‘( ran 𝑘)))
372 vex 3451 . . . . . 6 ∈ V
373372rnex 7886 . . . . 5 ran ∈ V
374373uniex 7717 . . . 4 ran ∈ V
375 feq1 6666 . . . . 5 (𝑔 = ran → (𝑔:ω⟶𝐴 ran :ω⟶𝐴))
376 fveq1 6857 . . . . . 6 (𝑔 = ran → (𝑔‘∅) = ( ran ‘∅))
377376eqeq1d 2731 . . . . 5 (𝑔 = ran → ((𝑔‘∅) = 𝐶 ↔ ( ran ‘∅) = 𝐶))
378 fveq1 6857 . . . . . . 7 (𝑔 = ran → (𝑔‘suc 𝑘) = ( ran ‘suc 𝑘))
379 fveq1 6857 . . . . . . . 8 (𝑔 = ran → (𝑔𝑘) = ( ran 𝑘))
380379fveq2d 6862 . . . . . . 7 (𝑔 = ran → (𝐹‘(𝑔𝑘)) = (𝐹‘( ran 𝑘)))
381378, 380eleq12d 2822 . . . . . 6 (𝑔 = ran → ((𝑔‘suc 𝑘) ∈ (𝐹‘(𝑔𝑘)) ↔ ( ran ‘suc 𝑘) ∈ (𝐹‘( ran 𝑘))))
382381ralbidv 3156 . . . . 5 (𝑔 = ran → (∀𝑘 ∈ ω (𝑔‘suc 𝑘) ∈ (𝐹‘(𝑔𝑘)) ↔ ∀𝑘 ∈ ω ( ran ‘suc 𝑘) ∈ (𝐹‘( ran 𝑘))))
383375, 377, 3823anbi123d 1438 . . . 4 (𝑔 = ran → ((𝑔:ω⟶𝐴 ∧ (𝑔‘∅) = 𝐶 ∧ ∀𝑘 ∈ ω (𝑔‘suc 𝑘) ∈ (𝐹‘(𝑔𝑘))) ↔ ( ran :ω⟶𝐴 ∧ ( ran ‘∅) = 𝐶 ∧ ∀𝑘 ∈ ω ( ran ‘suc 𝑘) ∈ (𝐹‘( ran 𝑘)))))
384374, 383spcev 3572 . . 3 (( ran :ω⟶𝐴 ∧ ( ran ‘∅) = 𝐶 ∧ ∀𝑘 ∈ ω ( ran ‘suc 𝑘) ∈ (𝐹‘( ran 𝑘))) → ∃𝑔(𝑔:ω⟶𝐴 ∧ (𝑔‘∅) = 𝐶 ∧ ∀𝑘 ∈ ω (𝑔‘suc 𝑘) ∈ (𝐹‘(𝑔𝑘))))
385268, 290, 371, 384syl3anc 1373 . 2 ((:ω⟶𝑆 ∧ ∀𝑘 ∈ ω (‘suc 𝑘) ∈ (𝐺‘(𝑘))) → ∃𝑔(𝑔:ω⟶𝐴 ∧ (𝑔‘∅) = 𝐶 ∧ ∀𝑘 ∈ ω (𝑔‘suc 𝑘) ∈ (𝐹‘(𝑔𝑘))))
386385exlimiv 1930 1 (∃(:ω⟶𝑆 ∧ ∀𝑘 ∈ ω (‘suc 𝑘) ∈ (𝐺‘(𝑘))) → ∃𝑔(𝑔:ω⟶𝐴 ∧ (𝑔‘∅) = 𝐶 ∧ ∀𝑘 ∈ ω (𝑔‘suc 𝑘) ∈ (𝐹‘(𝑔𝑘))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  w3o 1085  w3a 1086   = wceq 1540  wex 1779  wcel 2109  {cab 2707  wral 3044  wrex 3053  {crab 3405  Vcvv 3447  wss 3914  c0 4296  cop 4595   cuni 4871   ciun 4955  cmpt 5188  Tr wtr 5214  dom cdm 5638  ran crn 5639  cres 5640  Ord word 6331  suc csuc 6334  Fun wfun 6505   Fn wfn 6506  wf 6507  cfv 6511  ωcom 7842
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-dc 10399
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-fv 6519  df-om 7843  df-1o 8434
This theorem is referenced by:  axdc3lem4  10406
  Copyright terms: Public domain W3C validator