Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lincext3 Structured version   Visualization version   GIF version

Theorem lincext3 46213
Description: Property 3 of an extension of a linear combination. (Contributed by AV, 23-Apr-2019.) (Revised by AV, 30-Jul-2019.)
Hypotheses
Ref Expression
lincext.b 𝐵 = (Base‘𝑀)
lincext.r 𝑅 = (Scalar‘𝑀)
lincext.e 𝐸 = (Base‘𝑅)
lincext.0 0 = (0g𝑅)
lincext.z 𝑍 = (0g𝑀)
lincext.n 𝑁 = (invg𝑅)
lincext.f 𝐹 = (𝑧𝑆 ↦ if(𝑧 = 𝑋, (𝑁𝑌), (𝐺𝑧)))
Assertion
Ref Expression
lincext3 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (𝑌𝐸𝑋𝑆𝐺 ∈ (𝐸m (𝑆 ∖ {𝑋}))) ∧ (𝐺 finSupp 0 ∧ (𝑌( ·𝑠𝑀)𝑋) = (𝐺( linC ‘𝑀)(𝑆 ∖ {𝑋})))) → (𝐹( linC ‘𝑀)𝑆) = 𝑍)
Distinct variable groups:   𝑧,𝐵   𝑧,𝐸   𝑧,𝐺   𝑧,𝑀   𝑧,𝑆   𝑧,𝑋   𝑧,𝑌   𝑧,𝑁
Allowed substitution hints:   𝑅(𝑧)   𝐹(𝑧)   0 (𝑧)   𝑍(𝑧)

Proof of Theorem lincext3
StepHypRef Expression
1 simp1l 1197 . . 3 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (𝑌𝐸𝑋𝑆𝐺 ∈ (𝐸m (𝑆 ∖ {𝑋}))) ∧ (𝐺 finSupp 0 ∧ (𝑌( ·𝑠𝑀)𝑋) = (𝐺( linC ‘𝑀)(𝑆 ∖ {𝑋})))) → 𝑀 ∈ LMod)
2 simp1r 1198 . . 3 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (𝑌𝐸𝑋𝑆𝐺 ∈ (𝐸m (𝑆 ∖ {𝑋}))) ∧ (𝐺 finSupp 0 ∧ (𝑌( ·𝑠𝑀)𝑋) = (𝐺( linC ‘𝑀)(𝑆 ∖ {𝑋})))) → 𝑆 ∈ 𝒫 𝐵)
3 simp2 1137 . . . 4 ((𝑌𝐸𝑋𝑆𝐺 ∈ (𝐸m (𝑆 ∖ {𝑋}))) → 𝑋𝑆)
433ad2ant2 1134 . . 3 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (𝑌𝐸𝑋𝑆𝐺 ∈ (𝐸m (𝑆 ∖ {𝑋}))) ∧ (𝐺 finSupp 0 ∧ (𝑌( ·𝑠𝑀)𝑋) = (𝐺( linC ‘𝑀)(𝑆 ∖ {𝑋})))) → 𝑋𝑆)
5 lincext.b . . . . 5 𝐵 = (Base‘𝑀)
6 lincext.r . . . . 5 𝑅 = (Scalar‘𝑀)
7 lincext.e . . . . 5 𝐸 = (Base‘𝑅)
8 lincext.0 . . . . 5 0 = (0g𝑅)
9 lincext.z . . . . 5 𝑍 = (0g𝑀)
10 lincext.n . . . . 5 𝑁 = (invg𝑅)
11 lincext.f . . . . 5 𝐹 = (𝑧𝑆 ↦ if(𝑧 = 𝑋, (𝑁𝑌), (𝐺𝑧)))
125, 6, 7, 8, 9, 10, 11lincext1 46211 . . . 4 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (𝑌𝐸𝑋𝑆𝐺 ∈ (𝐸m (𝑆 ∖ {𝑋})))) → 𝐹 ∈ (𝐸m 𝑆))
13123adant3 1132 . . 3 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (𝑌𝐸𝑋𝑆𝐺 ∈ (𝐸m (𝑆 ∖ {𝑋}))) ∧ (𝐺 finSupp 0 ∧ (𝑌( ·𝑠𝑀)𝑋) = (𝐺( linC ‘𝑀)(𝑆 ∖ {𝑋})))) → 𝐹 ∈ (𝐸m 𝑆))
145, 6, 7, 8, 9, 10, 11lincext2 46212 . . . 4 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (𝑌𝐸𝑋𝑆𝐺 ∈ (𝐸m (𝑆 ∖ {𝑋}))) ∧ 𝐺 finSupp 0 ) → 𝐹 finSupp 0 )
15143adant3r 1181 . . 3 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (𝑌𝐸𝑋𝑆𝐺 ∈ (𝐸m (𝑆 ∖ {𝑋}))) ∧ (𝐺 finSupp 0 ∧ (𝑌( ·𝑠𝑀)𝑋) = (𝐺( linC ‘𝑀)(𝑆 ∖ {𝑋})))) → 𝐹 finSupp 0 )
16 elmapi 8713 . . . . . 6 (𝐺 ∈ (𝐸m (𝑆 ∖ {𝑋})) → 𝐺:(𝑆 ∖ {𝑋})⟶𝐸)
1711fdmdifeqresdif 46093 . . . . . 6 (𝐺:(𝑆 ∖ {𝑋})⟶𝐸𝐺 = (𝐹 ↾ (𝑆 ∖ {𝑋})))
1816, 17syl 17 . . . . 5 (𝐺 ∈ (𝐸m (𝑆 ∖ {𝑋})) → 𝐺 = (𝐹 ↾ (𝑆 ∖ {𝑋})))
19183ad2ant3 1135 . . . 4 ((𝑌𝐸𝑋𝑆𝐺 ∈ (𝐸m (𝑆 ∖ {𝑋}))) → 𝐺 = (𝐹 ↾ (𝑆 ∖ {𝑋})))
20193ad2ant2 1134 . . 3 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (𝑌𝐸𝑋𝑆𝐺 ∈ (𝐸m (𝑆 ∖ {𝑋}))) ∧ (𝐺 finSupp 0 ∧ (𝑌( ·𝑠𝑀)𝑋) = (𝐺( linC ‘𝑀)(𝑆 ∖ {𝑋})))) → 𝐺 = (𝐹 ↾ (𝑆 ∖ {𝑋})))
21 eqid 2737 . . . 4 ( ·𝑠𝑀) = ( ·𝑠𝑀)
22 eqid 2737 . . . 4 (+g𝑀) = (+g𝑀)
235, 6, 7, 21, 22, 8lincdifsn 46181 . . 3 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ 𝐹 finSupp 0 ) ∧ 𝐺 = (𝐹 ↾ (𝑆 ∖ {𝑋}))) → (𝐹( linC ‘𝑀)𝑆) = ((𝐺( linC ‘𝑀)(𝑆 ∖ {𝑋}))(+g𝑀)((𝐹𝑋)( ·𝑠𝑀)𝑋)))
241, 2, 4, 13, 15, 20, 23syl321anc 1392 . 2 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (𝑌𝐸𝑋𝑆𝐺 ∈ (𝐸m (𝑆 ∖ {𝑋}))) ∧ (𝐺 finSupp 0 ∧ (𝑌( ·𝑠𝑀)𝑋) = (𝐺( linC ‘𝑀)(𝑆 ∖ {𝑋})))) → (𝐹( linC ‘𝑀)𝑆) = ((𝐺( linC ‘𝑀)(𝑆 ∖ {𝑋}))(+g𝑀)((𝐹𝑋)( ·𝑠𝑀)𝑋)))
25 oveq1 7349 . . . . . 6 ((𝐺( linC ‘𝑀)(𝑆 ∖ {𝑋})) = (𝑌( ·𝑠𝑀)𝑋) → ((𝐺( linC ‘𝑀)(𝑆 ∖ {𝑋}))(+g𝑀)((𝐹𝑋)( ·𝑠𝑀)𝑋)) = ((𝑌( ·𝑠𝑀)𝑋)(+g𝑀)((𝐹𝑋)( ·𝑠𝑀)𝑋)))
2625eqcoms 2745 . . . . 5 ((𝑌( ·𝑠𝑀)𝑋) = (𝐺( linC ‘𝑀)(𝑆 ∖ {𝑋})) → ((𝐺( linC ‘𝑀)(𝑆 ∖ {𝑋}))(+g𝑀)((𝐹𝑋)( ·𝑠𝑀)𝑋)) = ((𝑌( ·𝑠𝑀)𝑋)(+g𝑀)((𝐹𝑋)( ·𝑠𝑀)𝑋)))
2726adantl 483 . . . 4 ((𝐺 finSupp 0 ∧ (𝑌( ·𝑠𝑀)𝑋) = (𝐺( linC ‘𝑀)(𝑆 ∖ {𝑋}))) → ((𝐺( linC ‘𝑀)(𝑆 ∖ {𝑋}))(+g𝑀)((𝐹𝑋)( ·𝑠𝑀)𝑋)) = ((𝑌( ·𝑠𝑀)𝑋)(+g𝑀)((𝐹𝑋)( ·𝑠𝑀)𝑋)))
28273ad2ant3 1135 . . 3 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (𝑌𝐸𝑋𝑆𝐺 ∈ (𝐸m (𝑆 ∖ {𝑋}))) ∧ (𝐺 finSupp 0 ∧ (𝑌( ·𝑠𝑀)𝑋) = (𝐺( linC ‘𝑀)(𝑆 ∖ {𝑋})))) → ((𝐺( linC ‘𝑀)(𝑆 ∖ {𝑋}))(+g𝑀)((𝐹𝑋)( ·𝑠𝑀)𝑋)) = ((𝑌( ·𝑠𝑀)𝑋)(+g𝑀)((𝐹𝑋)( ·𝑠𝑀)𝑋)))
29 eqid 2737 . . . . . . . 8 (invg𝑀) = (invg𝑀)
30 simpll 765 . . . . . . . 8 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (𝑌𝐸𝑋𝑆𝐺 ∈ (𝐸m (𝑆 ∖ {𝑋})))) → 𝑀 ∈ LMod)
31 elelpwi 4562 . . . . . . . . . . . . 13 ((𝑋𝑆𝑆 ∈ 𝒫 𝐵) → 𝑋𝐵)
3231expcom 415 . . . . . . . . . . . 12 (𝑆 ∈ 𝒫 𝐵 → (𝑋𝑆𝑋𝐵))
3332adantl 483 . . . . . . . . . . 11 ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) → (𝑋𝑆𝑋𝐵))
3433com12 32 . . . . . . . . . 10 (𝑋𝑆 → ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) → 𝑋𝐵))
35343ad2ant2 1134 . . . . . . . . 9 ((𝑌𝐸𝑋𝑆𝐺 ∈ (𝐸m (𝑆 ∖ {𝑋}))) → ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) → 𝑋𝐵))
3635impcom 409 . . . . . . . 8 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (𝑌𝐸𝑋𝑆𝐺 ∈ (𝐸m (𝑆 ∖ {𝑋})))) → 𝑋𝐵)
37 simpr1 1194 . . . . . . . 8 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (𝑌𝐸𝑋𝑆𝐺 ∈ (𝐸m (𝑆 ∖ {𝑋})))) → 𝑌𝐸)
385, 6, 21, 29, 7, 10, 30, 36, 37lmodvsneg 20273 . . . . . . 7 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (𝑌𝐸𝑋𝑆𝐺 ∈ (𝐸m (𝑆 ∖ {𝑋})))) → ((invg𝑀)‘(𝑌( ·𝑠𝑀)𝑋)) = ((𝑁𝑌)( ·𝑠𝑀)𝑋))
39 iftrue 4484 . . . . . . . . . 10 (𝑧 = 𝑋 → if(𝑧 = 𝑋, (𝑁𝑌), (𝐺𝑧)) = (𝑁𝑌))
403adantl 483 . . . . . . . . . 10 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (𝑌𝐸𝑋𝑆𝐺 ∈ (𝐸m (𝑆 ∖ {𝑋})))) → 𝑋𝑆)
41 fvexd 6845 . . . . . . . . . 10 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (𝑌𝐸𝑋𝑆𝐺 ∈ (𝐸m (𝑆 ∖ {𝑋})))) → (𝑁𝑌) ∈ V)
4211, 39, 40, 41fvmptd3 6959 . . . . . . . . 9 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (𝑌𝐸𝑋𝑆𝐺 ∈ (𝐸m (𝑆 ∖ {𝑋})))) → (𝐹𝑋) = (𝑁𝑌))
4342eqcomd 2743 . . . . . . . 8 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (𝑌𝐸𝑋𝑆𝐺 ∈ (𝐸m (𝑆 ∖ {𝑋})))) → (𝑁𝑌) = (𝐹𝑋))
4443oveq1d 7357 . . . . . . 7 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (𝑌𝐸𝑋𝑆𝐺 ∈ (𝐸m (𝑆 ∖ {𝑋})))) → ((𝑁𝑌)( ·𝑠𝑀)𝑋) = ((𝐹𝑋)( ·𝑠𝑀)𝑋))
4538, 44eqtr2d 2778 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (𝑌𝐸𝑋𝑆𝐺 ∈ (𝐸m (𝑆 ∖ {𝑋})))) → ((𝐹𝑋)( ·𝑠𝑀)𝑋) = ((invg𝑀)‘(𝑌( ·𝑠𝑀)𝑋)))
4645oveq2d 7358 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (𝑌𝐸𝑋𝑆𝐺 ∈ (𝐸m (𝑆 ∖ {𝑋})))) → ((𝑌( ·𝑠𝑀)𝑋)(+g𝑀)((𝐹𝑋)( ·𝑠𝑀)𝑋)) = ((𝑌( ·𝑠𝑀)𝑋)(+g𝑀)((invg𝑀)‘(𝑌( ·𝑠𝑀)𝑋))))
475, 6, 21, 7lmodvscl 20246 . . . . . . 7 ((𝑀 ∈ LMod ∧ 𝑌𝐸𝑋𝐵) → (𝑌( ·𝑠𝑀)𝑋) ∈ 𝐵)
4830, 37, 36, 47syl3anc 1371 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (𝑌𝐸𝑋𝑆𝐺 ∈ (𝐸m (𝑆 ∖ {𝑋})))) → (𝑌( ·𝑠𝑀)𝑋) ∈ 𝐵)
495, 22, 9, 29lmodvnegid 20271 . . . . . 6 ((𝑀 ∈ LMod ∧ (𝑌( ·𝑠𝑀)𝑋) ∈ 𝐵) → ((𝑌( ·𝑠𝑀)𝑋)(+g𝑀)((invg𝑀)‘(𝑌( ·𝑠𝑀)𝑋))) = 𝑍)
5030, 48, 49syl2anc 585 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (𝑌𝐸𝑋𝑆𝐺 ∈ (𝐸m (𝑆 ∖ {𝑋})))) → ((𝑌( ·𝑠𝑀)𝑋)(+g𝑀)((invg𝑀)‘(𝑌( ·𝑠𝑀)𝑋))) = 𝑍)
5146, 50eqtrd 2777 . . . 4 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (𝑌𝐸𝑋𝑆𝐺 ∈ (𝐸m (𝑆 ∖ {𝑋})))) → ((𝑌( ·𝑠𝑀)𝑋)(+g𝑀)((𝐹𝑋)( ·𝑠𝑀)𝑋)) = 𝑍)
52513adant3 1132 . . 3 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (𝑌𝐸𝑋𝑆𝐺 ∈ (𝐸m (𝑆 ∖ {𝑋}))) ∧ (𝐺 finSupp 0 ∧ (𝑌( ·𝑠𝑀)𝑋) = (𝐺( linC ‘𝑀)(𝑆 ∖ {𝑋})))) → ((𝑌( ·𝑠𝑀)𝑋)(+g𝑀)((𝐹𝑋)( ·𝑠𝑀)𝑋)) = 𝑍)
5328, 52eqtrd 2777 . 2 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (𝑌𝐸𝑋𝑆𝐺 ∈ (𝐸m (𝑆 ∖ {𝑋}))) ∧ (𝐺 finSupp 0 ∧ (𝑌( ·𝑠𝑀)𝑋) = (𝐺( linC ‘𝑀)(𝑆 ∖ {𝑋})))) → ((𝐺( linC ‘𝑀)(𝑆 ∖ {𝑋}))(+g𝑀)((𝐹𝑋)( ·𝑠𝑀)𝑋)) = 𝑍)
5424, 53eqtrd 2777 1 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (𝑌𝐸𝑋𝑆𝐺 ∈ (𝐸m (𝑆 ∖ {𝑋}))) ∧ (𝐺 finSupp 0 ∧ (𝑌( ·𝑠𝑀)𝑋) = (𝐺( linC ‘𝑀)(𝑆 ∖ {𝑋})))) → (𝐹( linC ‘𝑀)𝑆) = 𝑍)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  w3a 1087   = wceq 1541  wcel 2106  Vcvv 3442  cdif 3899  ifcif 4478  𝒫 cpw 4552  {csn 4578   class class class wbr 5097  cmpt 5180  cres 5627  wf 6480  cfv 6484  (class class class)co 7342  m cmap 8691   finSupp cfsupp 9231  Basecbs 17010  +gcplusg 17060  Scalarcsca 17063   ·𝑠 cvsca 17064  0gc0g 17248  invgcminusg 18675  LModclmod 20229   linC clinc 46161
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2708  ax-rep 5234  ax-sep 5248  ax-nul 5255  ax-pow 5313  ax-pr 5377  ax-un 7655  ax-cnex 11033  ax-resscn 11034  ax-1cn 11035  ax-icn 11036  ax-addcl 11037  ax-addrcl 11038  ax-mulcl 11039  ax-mulrcl 11040  ax-mulcom 11041  ax-addass 11042  ax-mulass 11043  ax-distr 11044  ax-i2m1 11045  ax-1ne0 11046  ax-1rid 11047  ax-rnegex 11048  ax-rrecex 11049  ax-cnre 11050  ax-pre-lttri 11051  ax-pre-lttrn 11052  ax-pre-ltadd 11053  ax-pre-mulgt0 11054
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3350  df-reu 3351  df-rab 3405  df-v 3444  df-sbc 3732  df-csb 3848  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3921  df-nul 4275  df-if 4479  df-pw 4554  df-sn 4579  df-pr 4581  df-op 4585  df-uni 4858  df-int 4900  df-iun 4948  df-iin 4949  df-br 5098  df-opab 5160  df-mpt 5181  df-tr 5215  df-id 5523  df-eprel 5529  df-po 5537  df-so 5538  df-fr 5580  df-se 5581  df-we 5582  df-xp 5631  df-rel 5632  df-cnv 5633  df-co 5634  df-dm 5635  df-rn 5636  df-res 5637  df-ima 5638  df-pred 6243  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6436  df-fun 6486  df-fn 6487  df-f 6488  df-f1 6489  df-fo 6490  df-f1o 6491  df-fv 6492  df-isom 6493  df-riota 7298  df-ov 7345  df-oprab 7346  df-mpo 7347  df-of 7600  df-om 7786  df-1st 7904  df-2nd 7905  df-supp 8053  df-frecs 8172  df-wrecs 8203  df-recs 8277  df-rdg 8316  df-1o 8372  df-er 8574  df-map 8693  df-en 8810  df-dom 8811  df-sdom 8812  df-fin 8813  df-fsupp 9232  df-oi 9372  df-card 9801  df-pnf 11117  df-mnf 11118  df-xr 11119  df-ltxr 11120  df-le 11121  df-sub 11313  df-neg 11314  df-nn 12080  df-2 12142  df-n0 12340  df-z 12426  df-uz 12689  df-fz 13346  df-fzo 13489  df-seq 13828  df-hash 14151  df-sets 16963  df-slot 16981  df-ndx 16993  df-base 17011  df-ress 17040  df-plusg 17073  df-0g 17250  df-gsum 17251  df-mre 17393  df-mrc 17394  df-acs 17396  df-mgm 18424  df-sgrp 18473  df-mnd 18484  df-submnd 18529  df-grp 18677  df-minusg 18678  df-mulg 18798  df-cntz 19020  df-cmn 19484  df-abl 19485  df-mgp 19816  df-ur 19833  df-ring 19880  df-lmod 20231  df-linc 46163
This theorem is referenced by:  lindslinindsimp1  46214  islindeps2  46240
  Copyright terms: Public domain W3C validator