Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lincext3 Structured version   Visualization version   GIF version

Theorem lincext3 48441
Description: Property 3 of an extension of a linear combination. (Contributed by AV, 23-Apr-2019.) (Revised by AV, 30-Jul-2019.)
Hypotheses
Ref Expression
lincext.b 𝐵 = (Base‘𝑀)
lincext.r 𝑅 = (Scalar‘𝑀)
lincext.e 𝐸 = (Base‘𝑅)
lincext.0 0 = (0g𝑅)
lincext.z 𝑍 = (0g𝑀)
lincext.n 𝑁 = (invg𝑅)
lincext.f 𝐹 = (𝑧𝑆 ↦ if(𝑧 = 𝑋, (𝑁𝑌), (𝐺𝑧)))
Assertion
Ref Expression
lincext3 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (𝑌𝐸𝑋𝑆𝐺 ∈ (𝐸m (𝑆 ∖ {𝑋}))) ∧ (𝐺 finSupp 0 ∧ (𝑌( ·𝑠𝑀)𝑋) = (𝐺( linC ‘𝑀)(𝑆 ∖ {𝑋})))) → (𝐹( linC ‘𝑀)𝑆) = 𝑍)
Distinct variable groups:   𝑧,𝐵   𝑧,𝐸   𝑧,𝐺   𝑧,𝑀   𝑧,𝑆   𝑧,𝑋   𝑧,𝑌   𝑧,𝑁
Allowed substitution hints:   𝑅(𝑧)   𝐹(𝑧)   0 (𝑧)   𝑍(𝑧)

Proof of Theorem lincext3
StepHypRef Expression
1 simp1l 1198 . . 3 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (𝑌𝐸𝑋𝑆𝐺 ∈ (𝐸m (𝑆 ∖ {𝑋}))) ∧ (𝐺 finSupp 0 ∧ (𝑌( ·𝑠𝑀)𝑋) = (𝐺( linC ‘𝑀)(𝑆 ∖ {𝑋})))) → 𝑀 ∈ LMod)
2 simp1r 1199 . . 3 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (𝑌𝐸𝑋𝑆𝐺 ∈ (𝐸m (𝑆 ∖ {𝑋}))) ∧ (𝐺 finSupp 0 ∧ (𝑌( ·𝑠𝑀)𝑋) = (𝐺( linC ‘𝑀)(𝑆 ∖ {𝑋})))) → 𝑆 ∈ 𝒫 𝐵)
3 simp2 1137 . . . 4 ((𝑌𝐸𝑋𝑆𝐺 ∈ (𝐸m (𝑆 ∖ {𝑋}))) → 𝑋𝑆)
433ad2ant2 1134 . . 3 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (𝑌𝐸𝑋𝑆𝐺 ∈ (𝐸m (𝑆 ∖ {𝑋}))) ∧ (𝐺 finSupp 0 ∧ (𝑌( ·𝑠𝑀)𝑋) = (𝐺( linC ‘𝑀)(𝑆 ∖ {𝑋})))) → 𝑋𝑆)
5 lincext.b . . . . 5 𝐵 = (Base‘𝑀)
6 lincext.r . . . . 5 𝑅 = (Scalar‘𝑀)
7 lincext.e . . . . 5 𝐸 = (Base‘𝑅)
8 lincext.0 . . . . 5 0 = (0g𝑅)
9 lincext.z . . . . 5 𝑍 = (0g𝑀)
10 lincext.n . . . . 5 𝑁 = (invg𝑅)
11 lincext.f . . . . 5 𝐹 = (𝑧𝑆 ↦ if(𝑧 = 𝑋, (𝑁𝑌), (𝐺𝑧)))
125, 6, 7, 8, 9, 10, 11lincext1 48439 . . . 4 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (𝑌𝐸𝑋𝑆𝐺 ∈ (𝐸m (𝑆 ∖ {𝑋})))) → 𝐹 ∈ (𝐸m 𝑆))
13123adant3 1132 . . 3 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (𝑌𝐸𝑋𝑆𝐺 ∈ (𝐸m (𝑆 ∖ {𝑋}))) ∧ (𝐺 finSupp 0 ∧ (𝑌( ·𝑠𝑀)𝑋) = (𝐺( linC ‘𝑀)(𝑆 ∖ {𝑋})))) → 𝐹 ∈ (𝐸m 𝑆))
145, 6, 7, 8, 9, 10, 11lincext2 48440 . . . 4 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (𝑌𝐸𝑋𝑆𝐺 ∈ (𝐸m (𝑆 ∖ {𝑋}))) ∧ 𝐺 finSupp 0 ) → 𝐹 finSupp 0 )
15143adant3r 1182 . . 3 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (𝑌𝐸𝑋𝑆𝐺 ∈ (𝐸m (𝑆 ∖ {𝑋}))) ∧ (𝐺 finSupp 0 ∧ (𝑌( ·𝑠𝑀)𝑋) = (𝐺( linC ‘𝑀)(𝑆 ∖ {𝑋})))) → 𝐹 finSupp 0 )
16 elmapi 8776 . . . . . 6 (𝐺 ∈ (𝐸m (𝑆 ∖ {𝑋})) → 𝐺:(𝑆 ∖ {𝑋})⟶𝐸)
1711fdmdifeqresdif 48326 . . . . . 6 (𝐺:(𝑆 ∖ {𝑋})⟶𝐸𝐺 = (𝐹 ↾ (𝑆 ∖ {𝑋})))
1816, 17syl 17 . . . . 5 (𝐺 ∈ (𝐸m (𝑆 ∖ {𝑋})) → 𝐺 = (𝐹 ↾ (𝑆 ∖ {𝑋})))
19183ad2ant3 1135 . . . 4 ((𝑌𝐸𝑋𝑆𝐺 ∈ (𝐸m (𝑆 ∖ {𝑋}))) → 𝐺 = (𝐹 ↾ (𝑆 ∖ {𝑋})))
20193ad2ant2 1134 . . 3 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (𝑌𝐸𝑋𝑆𝐺 ∈ (𝐸m (𝑆 ∖ {𝑋}))) ∧ (𝐺 finSupp 0 ∧ (𝑌( ·𝑠𝑀)𝑋) = (𝐺( linC ‘𝑀)(𝑆 ∖ {𝑋})))) → 𝐺 = (𝐹 ↾ (𝑆 ∖ {𝑋})))
21 eqid 2729 . . . 4 ( ·𝑠𝑀) = ( ·𝑠𝑀)
22 eqid 2729 . . . 4 (+g𝑀) = (+g𝑀)
235, 6, 7, 21, 22, 8lincdifsn 48409 . . 3 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ 𝐹 finSupp 0 ) ∧ 𝐺 = (𝐹 ↾ (𝑆 ∖ {𝑋}))) → (𝐹( linC ‘𝑀)𝑆) = ((𝐺( linC ‘𝑀)(𝑆 ∖ {𝑋}))(+g𝑀)((𝐹𝑋)( ·𝑠𝑀)𝑋)))
241, 2, 4, 13, 15, 20, 23syl321anc 1394 . 2 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (𝑌𝐸𝑋𝑆𝐺 ∈ (𝐸m (𝑆 ∖ {𝑋}))) ∧ (𝐺 finSupp 0 ∧ (𝑌( ·𝑠𝑀)𝑋) = (𝐺( linC ‘𝑀)(𝑆 ∖ {𝑋})))) → (𝐹( linC ‘𝑀)𝑆) = ((𝐺( linC ‘𝑀)(𝑆 ∖ {𝑋}))(+g𝑀)((𝐹𝑋)( ·𝑠𝑀)𝑋)))
25 oveq1 7356 . . . . . 6 ((𝐺( linC ‘𝑀)(𝑆 ∖ {𝑋})) = (𝑌( ·𝑠𝑀)𝑋) → ((𝐺( linC ‘𝑀)(𝑆 ∖ {𝑋}))(+g𝑀)((𝐹𝑋)( ·𝑠𝑀)𝑋)) = ((𝑌( ·𝑠𝑀)𝑋)(+g𝑀)((𝐹𝑋)( ·𝑠𝑀)𝑋)))
2625eqcoms 2737 . . . . 5 ((𝑌( ·𝑠𝑀)𝑋) = (𝐺( linC ‘𝑀)(𝑆 ∖ {𝑋})) → ((𝐺( linC ‘𝑀)(𝑆 ∖ {𝑋}))(+g𝑀)((𝐹𝑋)( ·𝑠𝑀)𝑋)) = ((𝑌( ·𝑠𝑀)𝑋)(+g𝑀)((𝐹𝑋)( ·𝑠𝑀)𝑋)))
2726adantl 481 . . . 4 ((𝐺 finSupp 0 ∧ (𝑌( ·𝑠𝑀)𝑋) = (𝐺( linC ‘𝑀)(𝑆 ∖ {𝑋}))) → ((𝐺( linC ‘𝑀)(𝑆 ∖ {𝑋}))(+g𝑀)((𝐹𝑋)( ·𝑠𝑀)𝑋)) = ((𝑌( ·𝑠𝑀)𝑋)(+g𝑀)((𝐹𝑋)( ·𝑠𝑀)𝑋)))
28273ad2ant3 1135 . . 3 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (𝑌𝐸𝑋𝑆𝐺 ∈ (𝐸m (𝑆 ∖ {𝑋}))) ∧ (𝐺 finSupp 0 ∧ (𝑌( ·𝑠𝑀)𝑋) = (𝐺( linC ‘𝑀)(𝑆 ∖ {𝑋})))) → ((𝐺( linC ‘𝑀)(𝑆 ∖ {𝑋}))(+g𝑀)((𝐹𝑋)( ·𝑠𝑀)𝑋)) = ((𝑌( ·𝑠𝑀)𝑋)(+g𝑀)((𝐹𝑋)( ·𝑠𝑀)𝑋)))
29 eqid 2729 . . . . . . . 8 (invg𝑀) = (invg𝑀)
30 simpll 766 . . . . . . . 8 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (𝑌𝐸𝑋𝑆𝐺 ∈ (𝐸m (𝑆 ∖ {𝑋})))) → 𝑀 ∈ LMod)
31 elelpwi 4561 . . . . . . . . . . . . 13 ((𝑋𝑆𝑆 ∈ 𝒫 𝐵) → 𝑋𝐵)
3231expcom 413 . . . . . . . . . . . 12 (𝑆 ∈ 𝒫 𝐵 → (𝑋𝑆𝑋𝐵))
3332adantl 481 . . . . . . . . . . 11 ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) → (𝑋𝑆𝑋𝐵))
3433com12 32 . . . . . . . . . 10 (𝑋𝑆 → ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) → 𝑋𝐵))
35343ad2ant2 1134 . . . . . . . . 9 ((𝑌𝐸𝑋𝑆𝐺 ∈ (𝐸m (𝑆 ∖ {𝑋}))) → ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) → 𝑋𝐵))
3635impcom 407 . . . . . . . 8 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (𝑌𝐸𝑋𝑆𝐺 ∈ (𝐸m (𝑆 ∖ {𝑋})))) → 𝑋𝐵)
37 simpr1 1195 . . . . . . . 8 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (𝑌𝐸𝑋𝑆𝐺 ∈ (𝐸m (𝑆 ∖ {𝑋})))) → 𝑌𝐸)
385, 6, 21, 29, 7, 10, 30, 36, 37lmodvsneg 20809 . . . . . . 7 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (𝑌𝐸𝑋𝑆𝐺 ∈ (𝐸m (𝑆 ∖ {𝑋})))) → ((invg𝑀)‘(𝑌( ·𝑠𝑀)𝑋)) = ((𝑁𝑌)( ·𝑠𝑀)𝑋))
39 iftrue 4482 . . . . . . . . . 10 (𝑧 = 𝑋 → if(𝑧 = 𝑋, (𝑁𝑌), (𝐺𝑧)) = (𝑁𝑌))
403adantl 481 . . . . . . . . . 10 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (𝑌𝐸𝑋𝑆𝐺 ∈ (𝐸m (𝑆 ∖ {𝑋})))) → 𝑋𝑆)
41 fvexd 6837 . . . . . . . . . 10 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (𝑌𝐸𝑋𝑆𝐺 ∈ (𝐸m (𝑆 ∖ {𝑋})))) → (𝑁𝑌) ∈ V)
4211, 39, 40, 41fvmptd3 6953 . . . . . . . . 9 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (𝑌𝐸𝑋𝑆𝐺 ∈ (𝐸m (𝑆 ∖ {𝑋})))) → (𝐹𝑋) = (𝑁𝑌))
4342eqcomd 2735 . . . . . . . 8 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (𝑌𝐸𝑋𝑆𝐺 ∈ (𝐸m (𝑆 ∖ {𝑋})))) → (𝑁𝑌) = (𝐹𝑋))
4443oveq1d 7364 . . . . . . 7 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (𝑌𝐸𝑋𝑆𝐺 ∈ (𝐸m (𝑆 ∖ {𝑋})))) → ((𝑁𝑌)( ·𝑠𝑀)𝑋) = ((𝐹𝑋)( ·𝑠𝑀)𝑋))
4538, 44eqtr2d 2765 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (𝑌𝐸𝑋𝑆𝐺 ∈ (𝐸m (𝑆 ∖ {𝑋})))) → ((𝐹𝑋)( ·𝑠𝑀)𝑋) = ((invg𝑀)‘(𝑌( ·𝑠𝑀)𝑋)))
4645oveq2d 7365 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (𝑌𝐸𝑋𝑆𝐺 ∈ (𝐸m (𝑆 ∖ {𝑋})))) → ((𝑌( ·𝑠𝑀)𝑋)(+g𝑀)((𝐹𝑋)( ·𝑠𝑀)𝑋)) = ((𝑌( ·𝑠𝑀)𝑋)(+g𝑀)((invg𝑀)‘(𝑌( ·𝑠𝑀)𝑋))))
475, 6, 21, 7lmodvscl 20781 . . . . . . 7 ((𝑀 ∈ LMod ∧ 𝑌𝐸𝑋𝐵) → (𝑌( ·𝑠𝑀)𝑋) ∈ 𝐵)
4830, 37, 36, 47syl3anc 1373 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (𝑌𝐸𝑋𝑆𝐺 ∈ (𝐸m (𝑆 ∖ {𝑋})))) → (𝑌( ·𝑠𝑀)𝑋) ∈ 𝐵)
495, 22, 9, 29lmodvnegid 20807 . . . . . 6 ((𝑀 ∈ LMod ∧ (𝑌( ·𝑠𝑀)𝑋) ∈ 𝐵) → ((𝑌( ·𝑠𝑀)𝑋)(+g𝑀)((invg𝑀)‘(𝑌( ·𝑠𝑀)𝑋))) = 𝑍)
5030, 48, 49syl2anc 584 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (𝑌𝐸𝑋𝑆𝐺 ∈ (𝐸m (𝑆 ∖ {𝑋})))) → ((𝑌( ·𝑠𝑀)𝑋)(+g𝑀)((invg𝑀)‘(𝑌( ·𝑠𝑀)𝑋))) = 𝑍)
5146, 50eqtrd 2764 . . . 4 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (𝑌𝐸𝑋𝑆𝐺 ∈ (𝐸m (𝑆 ∖ {𝑋})))) → ((𝑌( ·𝑠𝑀)𝑋)(+g𝑀)((𝐹𝑋)( ·𝑠𝑀)𝑋)) = 𝑍)
52513adant3 1132 . . 3 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (𝑌𝐸𝑋𝑆𝐺 ∈ (𝐸m (𝑆 ∖ {𝑋}))) ∧ (𝐺 finSupp 0 ∧ (𝑌( ·𝑠𝑀)𝑋) = (𝐺( linC ‘𝑀)(𝑆 ∖ {𝑋})))) → ((𝑌( ·𝑠𝑀)𝑋)(+g𝑀)((𝐹𝑋)( ·𝑠𝑀)𝑋)) = 𝑍)
5328, 52eqtrd 2764 . 2 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (𝑌𝐸𝑋𝑆𝐺 ∈ (𝐸m (𝑆 ∖ {𝑋}))) ∧ (𝐺 finSupp 0 ∧ (𝑌( ·𝑠𝑀)𝑋) = (𝐺( linC ‘𝑀)(𝑆 ∖ {𝑋})))) → ((𝐺( linC ‘𝑀)(𝑆 ∖ {𝑋}))(+g𝑀)((𝐹𝑋)( ·𝑠𝑀)𝑋)) = 𝑍)
5424, 53eqtrd 2764 1 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (𝑌𝐸𝑋𝑆𝐺 ∈ (𝐸m (𝑆 ∖ {𝑋}))) ∧ (𝐺 finSupp 0 ∧ (𝑌( ·𝑠𝑀)𝑋) = (𝐺( linC ‘𝑀)(𝑆 ∖ {𝑋})))) → (𝐹( linC ‘𝑀)𝑆) = 𝑍)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  Vcvv 3436  cdif 3900  ifcif 4476  𝒫 cpw 4551  {csn 4577   class class class wbr 5092  cmpt 5173  cres 5621  wf 6478  cfv 6482  (class class class)co 7349  m cmap 8753   finSupp cfsupp 9251  Basecbs 17120  +gcplusg 17161  Scalarcsca 17164   ·𝑠 cvsca 17165  0gc0g 17343  invgcminusg 18813  LModclmod 20763   linC clinc 48389
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-iin 4944  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-of 7613  df-om 7800  df-1st 7924  df-2nd 7925  df-supp 8094  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-2o 8389  df-er 8625  df-map 8755  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-fsupp 9252  df-oi 9402  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-2 12191  df-n0 12385  df-z 12472  df-uz 12736  df-fz 13411  df-fzo 13558  df-seq 13909  df-hash 14238  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-0g 17345  df-gsum 17346  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-submnd 18658  df-grp 18815  df-minusg 18816  df-mulg 18947  df-cntz 19196  df-cmn 19661  df-abl 19662  df-mgp 20026  df-rng 20038  df-ur 20067  df-ring 20120  df-lmod 20765  df-linc 48391
This theorem is referenced by:  lindslinindsimp1  48442  islindeps2  48468
  Copyright terms: Public domain W3C validator