Proof of Theorem cdlemg31b0a
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | simp1l 1198 | . . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ 𝑣 ≠ (𝑅‘𝐹))) → 𝐾 ∈ HL) | 
| 2 |  | simp21l 1291 | . . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ 𝑣 ≠ (𝑅‘𝐹))) → 𝑃 ∈ 𝐴) | 
| 3 |  | simp23l 1295 | . . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ 𝑣 ≠ (𝑅‘𝐹))) → 𝑣 ∈ 𝐴) | 
| 4 |  | simp22l 1293 | . . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ 𝑣 ≠ (𝑅‘𝐹))) → 𝑄 ∈ 𝐴) | 
| 5 |  | simp1 1137 | . . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ 𝑣 ≠ (𝑅‘𝐹))) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | 
| 6 |  | simp3l 1202 | . . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ 𝑣 ≠ (𝑅‘𝐹))) → 𝐹 ∈ 𝑇) | 
| 7 |  | eqid 2737 | . . . . 5
⊢
(0.‘𝐾) =
(0.‘𝐾) | 
| 8 |  | cdlemg12.a | . . . . 5
⊢ 𝐴 = (Atoms‘𝐾) | 
| 9 |  | cdlemg12.h | . . . . 5
⊢ 𝐻 = (LHyp‘𝐾) | 
| 10 |  | cdlemg12.t | . . . . 5
⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | 
| 11 |  | cdlemg12b.r | . . . . 5
⊢ 𝑅 = ((trL‘𝐾)‘𝑊) | 
| 12 | 7, 8, 9, 10, 11 | trlator0 40173 | . . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → ((𝑅‘𝐹) ∈ 𝐴 ∨ (𝑅‘𝐹) = (0.‘𝐾))) | 
| 13 | 5, 6, 12 | syl2anc 584 | . . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ 𝑣 ≠ (𝑅‘𝐹))) → ((𝑅‘𝐹) ∈ 𝐴 ∨ (𝑅‘𝐹) = (0.‘𝐾))) | 
| 14 |  | simp22 1208 | . . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ 𝑣 ≠ (𝑅‘𝐹))) → (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) | 
| 15 |  | cdlemg12.l | . . . . . . . 8
⊢  ≤ =
(le‘𝐾) | 
| 16 | 15, 9, 10, 11 | trlle 40186 | . . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → (𝑅‘𝐹) ≤ 𝑊) | 
| 17 | 5, 6, 16 | syl2anc 584 | . . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ 𝑣 ≠ (𝑅‘𝐹))) → (𝑅‘𝐹) ≤ 𝑊) | 
| 18 | 13, 17 | jca 511 | . . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ 𝑣 ≠ (𝑅‘𝐹))) → (((𝑅‘𝐹) ∈ 𝐴 ∨ (𝑅‘𝐹) = (0.‘𝐾)) ∧ (𝑅‘𝐹) ≤ 𝑊)) | 
| 19 |  | simp23 1209 | . . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ 𝑣 ≠ (𝑅‘𝐹))) → (𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊)) | 
| 20 |  | simp3r 1203 | . . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ 𝑣 ≠ (𝑅‘𝐹))) → 𝑣 ≠ (𝑅‘𝐹)) | 
| 21 | 20 | necomd 2996 | . . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ 𝑣 ≠ (𝑅‘𝐹))) → (𝑅‘𝐹) ≠ 𝑣) | 
| 22 |  | cdlemg12.j | . . . . . 6
⊢  ∨ =
(join‘𝐾) | 
| 23 | 15, 22, 7, 8, 9 | lhp2at0ne 40038 | . . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑃 ∈ 𝐴) ∧ ((((𝑅‘𝐹) ∈ 𝐴 ∨ (𝑅‘𝐹) = (0.‘𝐾)) ∧ (𝑅‘𝐹) ≤ 𝑊) ∧ (𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊)) ∧ (𝑅‘𝐹) ≠ 𝑣) → (𝑄 ∨ (𝑅‘𝐹)) ≠ (𝑃 ∨ 𝑣)) | 
| 24 | 5, 14, 2, 18, 19, 21, 23 | syl321anc 1394 | . . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ 𝑣 ≠ (𝑅‘𝐹))) → (𝑄 ∨ (𝑅‘𝐹)) ≠ (𝑃 ∨ 𝑣)) | 
| 25 | 24 | necomd 2996 | . . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ 𝑣 ≠ (𝑅‘𝐹))) → (𝑃 ∨ 𝑣) ≠ (𝑄 ∨ (𝑅‘𝐹))) | 
| 26 |  | cdlemg12.m | . . . 4
⊢  ∧ =
(meet‘𝐾) | 
| 27 | 22, 26, 7, 8 | 2at0mat0 39527 | . . 3
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ∧ (𝑄 ∈ 𝐴 ∧ ((𝑅‘𝐹) ∈ 𝐴 ∨ (𝑅‘𝐹) = (0.‘𝐾)) ∧ (𝑃 ∨ 𝑣) ≠ (𝑄 ∨ (𝑅‘𝐹)))) → (((𝑃 ∨ 𝑣) ∧ (𝑄 ∨ (𝑅‘𝐹))) ∈ 𝐴 ∨ ((𝑃 ∨ 𝑣) ∧ (𝑄 ∨ (𝑅‘𝐹))) = (0.‘𝐾))) | 
| 28 | 1, 2, 3, 4, 13, 25, 27 | syl33anc 1387 | . 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ 𝑣 ≠ (𝑅‘𝐹))) → (((𝑃 ∨ 𝑣) ∧ (𝑄 ∨ (𝑅‘𝐹))) ∈ 𝐴 ∨ ((𝑃 ∨ 𝑣) ∧ (𝑄 ∨ (𝑅‘𝐹))) = (0.‘𝐾))) | 
| 29 |  | cdlemg31.n | . . . 4
⊢ 𝑁 = ((𝑃 ∨ 𝑣) ∧ (𝑄 ∨ (𝑅‘𝐹))) | 
| 30 | 29 | eleq1i 2832 | . . 3
⊢ (𝑁 ∈ 𝐴 ↔ ((𝑃 ∨ 𝑣) ∧ (𝑄 ∨ (𝑅‘𝐹))) ∈ 𝐴) | 
| 31 | 29 | eqeq1i 2742 | . . 3
⊢ (𝑁 = (0.‘𝐾) ↔ ((𝑃 ∨ 𝑣) ∧ (𝑄 ∨ (𝑅‘𝐹))) = (0.‘𝐾)) | 
| 32 | 30, 31 | orbi12i 915 | . 2
⊢ ((𝑁 ∈ 𝐴 ∨ 𝑁 = (0.‘𝐾)) ↔ (((𝑃 ∨ 𝑣) ∧ (𝑄 ∨ (𝑅‘𝐹))) ∈ 𝐴 ∨ ((𝑃 ∨ 𝑣) ∧ (𝑄 ∨ (𝑅‘𝐹))) = (0.‘𝐾))) | 
| 33 | 28, 32 | sylibr 234 | 1
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ 𝑣 ≠ (𝑅‘𝐹))) → (𝑁 ∈ 𝐴 ∨ 𝑁 = (0.‘𝐾))) |