MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nosupbnd1lem4 Structured version   Visualization version   GIF version

Theorem nosupbnd1lem4 27082
Description: Lemma for nosupbnd1 27085. If 𝑈 is a prolongment of 𝑆 and in 𝐴, then (𝑈‘dom 𝑆) is not undefined. (Contributed by Scott Fenton, 6-Dec-2021.)
Hypothesis
Ref Expression
nosupbnd1.1 𝑆 = if(∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦, ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
Assertion
Ref Expression
nosupbnd1lem4 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) → (𝑈‘dom 𝑆) ≠ ∅)
Distinct variable groups:   𝐴,𝑔,𝑢,𝑣,𝑥,𝑦   𝑢,𝑈   𝑣,𝑢,𝑥,𝑦
Allowed substitution hints:   𝑆(𝑥,𝑦,𝑣,𝑢,𝑔)   𝑈(𝑥,𝑦,𝑣,𝑔)

Proof of Theorem nosupbnd1lem4
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 simpl1 1192 . . . . . . . 8 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑤𝐴𝑈 <s 𝑤)) → ¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)
2 simpl2 1193 . . . . . . . 8 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑤𝐴𝑈 <s 𝑤)) → (𝐴 No 𝐴 ∈ V))
3 simprl 770 . . . . . . . 8 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑤𝐴𝑈 <s 𝑤)) → 𝑤𝐴)
4 simpl3 1194 . . . . . . . . 9 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑤𝐴𝑈 <s 𝑤)) → (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆))
5 simprr 772 . . . . . . . . . . 11 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑤𝐴𝑈 <s 𝑤)) → 𝑈 <s 𝑤)
6 simp2l 1200 . . . . . . . . . . . . 13 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) → 𝐴 No )
7 simp3l 1202 . . . . . . . . . . . . 13 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) → 𝑈𝐴)
86, 7sseldd 3949 . . . . . . . . . . . 12 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) → 𝑈 No )
9 simpl2l 1227 . . . . . . . . . . . . 13 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑤𝐴𝑈 <s 𝑤)) → 𝐴 No )
109, 3sseldd 3949 . . . . . . . . . . . 12 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑤𝐴𝑈 <s 𝑤)) → 𝑤 No )
11 sltso 27047 . . . . . . . . . . . . 13 <s Or No
12 soasym 5580 . . . . . . . . . . . . 13 (( <s Or No ∧ (𝑈 No 𝑤 No )) → (𝑈 <s 𝑤 → ¬ 𝑤 <s 𝑈))
1311, 12mpan 689 . . . . . . . . . . . 12 ((𝑈 No 𝑤 No ) → (𝑈 <s 𝑤 → ¬ 𝑤 <s 𝑈))
148, 10, 13syl2an2r 684 . . . . . . . . . . 11 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑤𝐴𝑈 <s 𝑤)) → (𝑈 <s 𝑤 → ¬ 𝑤 <s 𝑈))
155, 14mpd 15 . . . . . . . . . 10 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑤𝐴𝑈 <s 𝑤)) → ¬ 𝑤 <s 𝑈)
163, 15jca 513 . . . . . . . . 9 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑤𝐴𝑈 <s 𝑤)) → (𝑤𝐴 ∧ ¬ 𝑤 <s 𝑈))
17 nosupbnd1.1 . . . . . . . . . 10 𝑆 = if(∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦, ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
1817nosupbnd1lem2 27080 . . . . . . . . 9 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ ((𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆) ∧ (𝑤𝐴 ∧ ¬ 𝑤 <s 𝑈))) → (𝑤 ↾ dom 𝑆) = 𝑆)
191, 2, 4, 16, 18syl112anc 1375 . . . . . . . 8 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑤𝐴𝑈 <s 𝑤)) → (𝑤 ↾ dom 𝑆) = 𝑆)
2017nosupbnd1lem3 27081 . . . . . . . 8 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑤𝐴 ∧ (𝑤 ↾ dom 𝑆) = 𝑆)) → (𝑤‘dom 𝑆) ≠ 2o)
211, 2, 3, 19, 20syl112anc 1375 . . . . . . 7 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑤𝐴𝑈 <s 𝑤)) → (𝑤‘dom 𝑆) ≠ 2o)
2221neneqd 2945 . . . . . 6 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑤𝐴𝑈 <s 𝑤)) → ¬ (𝑤‘dom 𝑆) = 2o)
2322expr 458 . . . . 5 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ 𝑤𝐴) → (𝑈 <s 𝑤 → ¬ (𝑤‘dom 𝑆) = 2o))
24 imnan 401 . . . . 5 ((𝑈 <s 𝑤 → ¬ (𝑤‘dom 𝑆) = 2o) ↔ ¬ (𝑈 <s 𝑤 ∧ (𝑤‘dom 𝑆) = 2o))
2523, 24sylib 217 . . . 4 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ 𝑤𝐴) → ¬ (𝑈 <s 𝑤 ∧ (𝑤‘dom 𝑆) = 2o))
2625nrexdv 3143 . . 3 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) → ¬ ∃𝑤𝐴 (𝑈 <s 𝑤 ∧ (𝑤‘dom 𝑆) = 2o))
27 simpl3l 1229 . . . . 5 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = ∅) → 𝑈𝐴)
28 simpl1 1192 . . . . . 6 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = ∅) → ¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)
29 breq2 5113 . . . . . . . . . 10 (𝑤 = 𝑦 → (𝑢 <s 𝑤𝑢 <s 𝑦))
3029cbvrexvw 3225 . . . . . . . . 9 (∃𝑤𝐴 𝑢 <s 𝑤 ↔ ∃𝑦𝐴 𝑢 <s 𝑦)
31 breq1 5112 . . . . . . . . . 10 (𝑢 = 𝑥 → (𝑢 <s 𝑦𝑥 <s 𝑦))
3231rexbidv 3172 . . . . . . . . 9 (𝑢 = 𝑥 → (∃𝑦𝐴 𝑢 <s 𝑦 ↔ ∃𝑦𝐴 𝑥 <s 𝑦))
3330, 32bitrid 283 . . . . . . . 8 (𝑢 = 𝑥 → (∃𝑤𝐴 𝑢 <s 𝑤 ↔ ∃𝑦𝐴 𝑥 <s 𝑦))
3433cbvralvw 3224 . . . . . . 7 (∀𝑢𝐴𝑤𝐴 𝑢 <s 𝑤 ↔ ∀𝑥𝐴𝑦𝐴 𝑥 <s 𝑦)
35 dfrex2 3073 . . . . . . . 8 (∃𝑦𝐴 𝑥 <s 𝑦 ↔ ¬ ∀𝑦𝐴 ¬ 𝑥 <s 𝑦)
3635ralbii 3093 . . . . . . 7 (∀𝑥𝐴𝑦𝐴 𝑥 <s 𝑦 ↔ ∀𝑥𝐴 ¬ ∀𝑦𝐴 ¬ 𝑥 <s 𝑦)
37 ralnex 3072 . . . . . . 7 (∀𝑥𝐴 ¬ ∀𝑦𝐴 ¬ 𝑥 <s 𝑦 ↔ ¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)
3834, 36, 373bitri 297 . . . . . 6 (∀𝑢𝐴𝑤𝐴 𝑢 <s 𝑤 ↔ ¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)
3928, 38sylibr 233 . . . . 5 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = ∅) → ∀𝑢𝐴𝑤𝐴 𝑢 <s 𝑤)
40 breq1 5112 . . . . . . 7 (𝑢 = 𝑈 → (𝑢 <s 𝑤𝑈 <s 𝑤))
4140rexbidv 3172 . . . . . 6 (𝑢 = 𝑈 → (∃𝑤𝐴 𝑢 <s 𝑤 ↔ ∃𝑤𝐴 𝑈 <s 𝑤))
4241rspcv 3579 . . . . 5 (𝑈𝐴 → (∀𝑢𝐴𝑤𝐴 𝑢 <s 𝑤 → ∃𝑤𝐴 𝑈 <s 𝑤))
4327, 39, 42sylc 65 . . . 4 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = ∅) → ∃𝑤𝐴 𝑈 <s 𝑤)
44 simpl2l 1227 . . . . . . . . . 10 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = ∅) → 𝐴 No )
4544, 27sseldd 3949 . . . . . . . . 9 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = ∅) → 𝑈 No )
4645adantr 482 . . . . . . . 8 ((((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = ∅) ∧ (𝑤𝐴𝑈 <s 𝑤)) → 𝑈 No )
4744adantr 482 . . . . . . . . 9 ((((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = ∅) ∧ (𝑤𝐴𝑈 <s 𝑤)) → 𝐴 No )
48 simprl 770 . . . . . . . . 9 ((((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = ∅) ∧ (𝑤𝐴𝑈 <s 𝑤)) → 𝑤𝐴)
4947, 48sseldd 3949 . . . . . . . 8 ((((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = ∅) ∧ (𝑤𝐴𝑈 <s 𝑤)) → 𝑤 No )
5017nosupno 27074 . . . . . . . . . . . 12 ((𝐴 No 𝐴 ∈ V) → 𝑆 No )
51503ad2ant2 1135 . . . . . . . . . . 11 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) → 𝑆 No )
5251adantr 482 . . . . . . . . . 10 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = ∅) → 𝑆 No )
5352adantr 482 . . . . . . . . 9 ((((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = ∅) ∧ (𝑤𝐴𝑈 <s 𝑤)) → 𝑆 No )
54 nodmon 27021 . . . . . . . . 9 (𝑆 No → dom 𝑆 ∈ On)
5553, 54syl 17 . . . . . . . 8 ((((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = ∅) ∧ (𝑤𝐴𝑈 <s 𝑤)) → dom 𝑆 ∈ On)
56 simpl3r 1230 . . . . . . . . . 10 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = ∅) → (𝑈 ↾ dom 𝑆) = 𝑆)
5756adantr 482 . . . . . . . . 9 ((((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = ∅) ∧ (𝑤𝐴𝑈 <s 𝑤)) → (𝑈 ↾ dom 𝑆) = 𝑆)
58 simpll1 1213 . . . . . . . . . 10 ((((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = ∅) ∧ (𝑤𝐴𝑈 <s 𝑤)) → ¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)
59 simpll2 1214 . . . . . . . . . 10 ((((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = ∅) ∧ (𝑤𝐴𝑈 <s 𝑤)) → (𝐴 No 𝐴 ∈ V))
60 simpll3 1215 . . . . . . . . . 10 ((((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = ∅) ∧ (𝑤𝐴𝑈 <s 𝑤)) → (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆))
61 simprr 772 . . . . . . . . . . . 12 ((((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = ∅) ∧ (𝑤𝐴𝑈 <s 𝑤)) → 𝑈 <s 𝑤)
6245, 49, 13syl2an2r 684 . . . . . . . . . . . 12 ((((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = ∅) ∧ (𝑤𝐴𝑈 <s 𝑤)) → (𝑈 <s 𝑤 → ¬ 𝑤 <s 𝑈))
6361, 62mpd 15 . . . . . . . . . . 11 ((((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = ∅) ∧ (𝑤𝐴𝑈 <s 𝑤)) → ¬ 𝑤 <s 𝑈)
6448, 63jca 513 . . . . . . . . . 10 ((((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = ∅) ∧ (𝑤𝐴𝑈 <s 𝑤)) → (𝑤𝐴 ∧ ¬ 𝑤 <s 𝑈))
6558, 59, 60, 64, 18syl112anc 1375 . . . . . . . . 9 ((((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = ∅) ∧ (𝑤𝐴𝑈 <s 𝑤)) → (𝑤 ↾ dom 𝑆) = 𝑆)
6657, 65eqtr4d 2776 . . . . . . . 8 ((((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = ∅) ∧ (𝑤𝐴𝑈 <s 𝑤)) → (𝑈 ↾ dom 𝑆) = (𝑤 ↾ dom 𝑆))
67 simplr 768 . . . . . . . 8 ((((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = ∅) ∧ (𝑤𝐴𝑈 <s 𝑤)) → (𝑈‘dom 𝑆) = ∅)
68 nolt02o 27066 . . . . . . . 8 (((𝑈 No 𝑤 No ∧ dom 𝑆 ∈ On) ∧ ((𝑈 ↾ dom 𝑆) = (𝑤 ↾ dom 𝑆) ∧ 𝑈 <s 𝑤) ∧ (𝑈‘dom 𝑆) = ∅) → (𝑤‘dom 𝑆) = 2o)
6946, 49, 55, 66, 61, 67, 68syl321anc 1393 . . . . . . 7 ((((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = ∅) ∧ (𝑤𝐴𝑈 <s 𝑤)) → (𝑤‘dom 𝑆) = 2o)
7069expr 458 . . . . . 6 ((((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = ∅) ∧ 𝑤𝐴) → (𝑈 <s 𝑤 → (𝑤‘dom 𝑆) = 2o))
7170ancld 552 . . . . 5 ((((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = ∅) ∧ 𝑤𝐴) → (𝑈 <s 𝑤 → (𝑈 <s 𝑤 ∧ (𝑤‘dom 𝑆) = 2o)))
7271reximdva 3162 . . . 4 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = ∅) → (∃𝑤𝐴 𝑈 <s 𝑤 → ∃𝑤𝐴 (𝑈 <s 𝑤 ∧ (𝑤‘dom 𝑆) = 2o)))
7343, 72mpd 15 . . 3 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = ∅) → ∃𝑤𝐴 (𝑈 <s 𝑤 ∧ (𝑤‘dom 𝑆) = 2o))
7426, 73mtand 815 . 2 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) → ¬ (𝑈‘dom 𝑆) = ∅)
7574neqned 2947 1 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) → (𝑈‘dom 𝑆) ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 397  w3a 1088   = wceq 1542  wcel 2107  {cab 2710  wne 2940  wral 3061  wrex 3070  Vcvv 3447  cun 3912  wss 3914  c0 4286  ifcif 4490  {csn 4590  cop 4596   class class class wbr 5109  cmpt 5192   Or wor 5548  dom cdm 5637  cres 5639  Oncon0 6321  suc csuc 6323  cio 6450  cfv 6500  crio 7316  2oc2o 8410   No csur 27011   <s cslt 27012
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5246  ax-sep 5260  ax-nul 5267  ax-pr 5388  ax-un 7676
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3352  df-reu 3353  df-rab 3407  df-v 3449  df-sbc 3744  df-csb 3860  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3933  df-nul 4287  df-if 4491  df-pw 4566  df-sn 4591  df-pr 4593  df-tp 4595  df-op 4597  df-uni 4870  df-int 4912  df-iun 4960  df-br 5110  df-opab 5172  df-mpt 5193  df-tr 5227  df-id 5535  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5592  df-we 5594  df-xp 5643  df-rel 5644  df-cnv 5645  df-co 5646  df-dm 5647  df-rn 5648  df-res 5649  df-ima 5650  df-ord 6324  df-on 6325  df-suc 6327  df-iota 6452  df-fun 6502  df-fn 6503  df-f 6504  df-f1 6505  df-fo 6506  df-f1o 6507  df-fv 6508  df-riota 7317  df-1o 8416  df-2o 8417  df-no 27014  df-slt 27015  df-bday 27016
This theorem is referenced by:  nosupbnd1lem5  27083  nosupbnd1lem6  27084
  Copyright terms: Public domain W3C validator