| Step | Hyp | Ref
| Expression |
| 1 | | simpl1 1192 |
. . . . . . . 8
⊢ (((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑤 ∈ 𝐴 ∧ 𝑈 <s 𝑤)) → ¬ ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) |
| 2 | | simpl2 1193 |
. . . . . . . 8
⊢ (((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑤 ∈ 𝐴 ∧ 𝑈 <s 𝑤)) → (𝐴 ⊆ No
∧ 𝐴 ∈
V)) |
| 3 | | simprl 770 |
. . . . . . . 8
⊢ (((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑤 ∈ 𝐴 ∧ 𝑈 <s 𝑤)) → 𝑤 ∈ 𝐴) |
| 4 | | simpl3 1194 |
. . . . . . . . 9
⊢ (((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑤 ∈ 𝐴 ∧ 𝑈 <s 𝑤)) → (𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) |
| 5 | | simprr 772 |
. . . . . . . . . . 11
⊢ (((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑤 ∈ 𝐴 ∧ 𝑈 <s 𝑤)) → 𝑈 <s 𝑤) |
| 6 | | simp2l 1200 |
. . . . . . . . . . . . 13
⊢ ((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) → 𝐴 ⊆ No
) |
| 7 | | simp3l 1202 |
. . . . . . . . . . . . 13
⊢ ((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) → 𝑈 ∈ 𝐴) |
| 8 | 6, 7 | sseldd 3959 |
. . . . . . . . . . . 12
⊢ ((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) → 𝑈 ∈ No
) |
| 9 | | simpl2l 1227 |
. . . . . . . . . . . . 13
⊢ (((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑤 ∈ 𝐴 ∧ 𝑈 <s 𝑤)) → 𝐴 ⊆ No
) |
| 10 | 9, 3 | sseldd 3959 |
. . . . . . . . . . . 12
⊢ (((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑤 ∈ 𝐴 ∧ 𝑈 <s 𝑤)) → 𝑤 ∈ No
) |
| 11 | | sltso 27640 |
. . . . . . . . . . . . 13
⊢ <s Or
No |
| 12 | | soasym 5594 |
. . . . . . . . . . . . 13
⊢ (( <s
Or No ∧ (𝑈 ∈ No
∧ 𝑤 ∈ No )) → (𝑈 <s 𝑤 → ¬ 𝑤 <s 𝑈)) |
| 13 | 11, 12 | mpan 690 |
. . . . . . . . . . . 12
⊢ ((𝑈 ∈
No ∧ 𝑤 ∈
No ) → (𝑈 <s 𝑤 → ¬ 𝑤 <s 𝑈)) |
| 14 | 8, 10, 13 | syl2an2r 685 |
. . . . . . . . . . 11
⊢ (((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑤 ∈ 𝐴 ∧ 𝑈 <s 𝑤)) → (𝑈 <s 𝑤 → ¬ 𝑤 <s 𝑈)) |
| 15 | 5, 14 | mpd 15 |
. . . . . . . . . 10
⊢ (((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑤 ∈ 𝐴 ∧ 𝑈 <s 𝑤)) → ¬ 𝑤 <s 𝑈) |
| 16 | 3, 15 | jca 511 |
. . . . . . . . 9
⊢ (((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑤 ∈ 𝐴 ∧ 𝑈 <s 𝑤)) → (𝑤 ∈ 𝐴 ∧ ¬ 𝑤 <s 𝑈)) |
| 17 | | nosupbnd1.1 |
. . . . . . . . . 10
⊢ 𝑆 = if(∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦, ((℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) ∪ {〈dom (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦), 2o〉}), (𝑔 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥∃𝑢 ∈ 𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥)))) |
| 18 | 17 | nosupbnd1lem2 27673 |
. . . . . . . . 9
⊢ ((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
((𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆) ∧ (𝑤 ∈ 𝐴 ∧ ¬ 𝑤 <s 𝑈))) → (𝑤 ↾ dom 𝑆) = 𝑆) |
| 19 | 1, 2, 4, 16, 18 | syl112anc 1376 |
. . . . . . . 8
⊢ (((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑤 ∈ 𝐴 ∧ 𝑈 <s 𝑤)) → (𝑤 ↾ dom 𝑆) = 𝑆) |
| 20 | 17 | nosupbnd1lem3 27674 |
. . . . . . . 8
⊢ ((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑤 ∈ 𝐴 ∧ (𝑤 ↾ dom 𝑆) = 𝑆)) → (𝑤‘dom 𝑆) ≠ 2o) |
| 21 | 1, 2, 3, 19, 20 | syl112anc 1376 |
. . . . . . 7
⊢ (((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑤 ∈ 𝐴 ∧ 𝑈 <s 𝑤)) → (𝑤‘dom 𝑆) ≠ 2o) |
| 22 | 21 | neneqd 2937 |
. . . . . 6
⊢ (((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑤 ∈ 𝐴 ∧ 𝑈 <s 𝑤)) → ¬ (𝑤‘dom 𝑆) = 2o) |
| 23 | 22 | expr 456 |
. . . . 5
⊢ (((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ 𝑤 ∈ 𝐴) → (𝑈 <s 𝑤 → ¬ (𝑤‘dom 𝑆) = 2o)) |
| 24 | | imnan 399 |
. . . . 5
⊢ ((𝑈 <s 𝑤 → ¬ (𝑤‘dom 𝑆) = 2o) ↔ ¬ (𝑈 <s 𝑤 ∧ (𝑤‘dom 𝑆) = 2o)) |
| 25 | 23, 24 | sylib 218 |
. . . 4
⊢ (((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ 𝑤 ∈ 𝐴) → ¬ (𝑈 <s 𝑤 ∧ (𝑤‘dom 𝑆) = 2o)) |
| 26 | 25 | nrexdv 3135 |
. . 3
⊢ ((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) → ¬ ∃𝑤 ∈ 𝐴 (𝑈 <s 𝑤 ∧ (𝑤‘dom 𝑆) = 2o)) |
| 27 | | simpl3l 1229 |
. . . . 5
⊢ (((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = ∅) → 𝑈 ∈ 𝐴) |
| 28 | | simpl1 1192 |
. . . . . 6
⊢ (((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = ∅) → ¬ ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) |
| 29 | | breq2 5123 |
. . . . . . . . . 10
⊢ (𝑤 = 𝑦 → (𝑢 <s 𝑤 ↔ 𝑢 <s 𝑦)) |
| 30 | 29 | cbvrexvw 3221 |
. . . . . . . . 9
⊢
(∃𝑤 ∈
𝐴 𝑢 <s 𝑤 ↔ ∃𝑦 ∈ 𝐴 𝑢 <s 𝑦) |
| 31 | | breq1 5122 |
. . . . . . . . . 10
⊢ (𝑢 = 𝑥 → (𝑢 <s 𝑦 ↔ 𝑥 <s 𝑦)) |
| 32 | 31 | rexbidv 3164 |
. . . . . . . . 9
⊢ (𝑢 = 𝑥 → (∃𝑦 ∈ 𝐴 𝑢 <s 𝑦 ↔ ∃𝑦 ∈ 𝐴 𝑥 <s 𝑦)) |
| 33 | 30, 32 | bitrid 283 |
. . . . . . . 8
⊢ (𝑢 = 𝑥 → (∃𝑤 ∈ 𝐴 𝑢 <s 𝑤 ↔ ∃𝑦 ∈ 𝐴 𝑥 <s 𝑦)) |
| 34 | 33 | cbvralvw 3220 |
. . . . . . 7
⊢
(∀𝑢 ∈
𝐴 ∃𝑤 ∈ 𝐴 𝑢 <s 𝑤 ↔ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 𝑥 <s 𝑦) |
| 35 | | dfrex2 3063 |
. . . . . . . 8
⊢
(∃𝑦 ∈
𝐴 𝑥 <s 𝑦 ↔ ¬ ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) |
| 36 | 35 | ralbii 3082 |
. . . . . . 7
⊢
(∀𝑥 ∈
𝐴 ∃𝑦 ∈ 𝐴 𝑥 <s 𝑦 ↔ ∀𝑥 ∈ 𝐴 ¬ ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) |
| 37 | | ralnex 3062 |
. . . . . . 7
⊢
(∀𝑥 ∈
𝐴 ¬ ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ↔ ¬ ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) |
| 38 | 34, 36, 37 | 3bitri 297 |
. . . . . 6
⊢
(∀𝑢 ∈
𝐴 ∃𝑤 ∈ 𝐴 𝑢 <s 𝑤 ↔ ¬ ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) |
| 39 | 28, 38 | sylibr 234 |
. . . . 5
⊢ (((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = ∅) → ∀𝑢 ∈ 𝐴 ∃𝑤 ∈ 𝐴 𝑢 <s 𝑤) |
| 40 | | breq1 5122 |
. . . . . . 7
⊢ (𝑢 = 𝑈 → (𝑢 <s 𝑤 ↔ 𝑈 <s 𝑤)) |
| 41 | 40 | rexbidv 3164 |
. . . . . 6
⊢ (𝑢 = 𝑈 → (∃𝑤 ∈ 𝐴 𝑢 <s 𝑤 ↔ ∃𝑤 ∈ 𝐴 𝑈 <s 𝑤)) |
| 42 | 41 | rspcv 3597 |
. . . . 5
⊢ (𝑈 ∈ 𝐴 → (∀𝑢 ∈ 𝐴 ∃𝑤 ∈ 𝐴 𝑢 <s 𝑤 → ∃𝑤 ∈ 𝐴 𝑈 <s 𝑤)) |
| 43 | 27, 39, 42 | sylc 65 |
. . . 4
⊢ (((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = ∅) → ∃𝑤 ∈ 𝐴 𝑈 <s 𝑤) |
| 44 | | simpl2l 1227 |
. . . . . . . . . 10
⊢ (((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = ∅) → 𝐴 ⊆ No
) |
| 45 | 44, 27 | sseldd 3959 |
. . . . . . . . 9
⊢ (((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = ∅) → 𝑈 ∈ No
) |
| 46 | 45 | adantr 480 |
. . . . . . . 8
⊢ ((((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = ∅) ∧ (𝑤 ∈ 𝐴 ∧ 𝑈 <s 𝑤)) → 𝑈 ∈ No
) |
| 47 | 44 | adantr 480 |
. . . . . . . . 9
⊢ ((((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = ∅) ∧ (𝑤 ∈ 𝐴 ∧ 𝑈 <s 𝑤)) → 𝐴 ⊆ No
) |
| 48 | | simprl 770 |
. . . . . . . . 9
⊢ ((((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = ∅) ∧ (𝑤 ∈ 𝐴 ∧ 𝑈 <s 𝑤)) → 𝑤 ∈ 𝐴) |
| 49 | 47, 48 | sseldd 3959 |
. . . . . . . 8
⊢ ((((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = ∅) ∧ (𝑤 ∈ 𝐴 ∧ 𝑈 <s 𝑤)) → 𝑤 ∈ No
) |
| 50 | 17 | nosupno 27667 |
. . . . . . . . . . . 12
⊢ ((𝐴 ⊆
No ∧ 𝐴 ∈
V) → 𝑆 ∈ No ) |
| 51 | 50 | 3ad2ant2 1134 |
. . . . . . . . . . 11
⊢ ((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) → 𝑆 ∈ No
) |
| 52 | 51 | adantr 480 |
. . . . . . . . . 10
⊢ (((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = ∅) → 𝑆 ∈ No
) |
| 53 | 52 | adantr 480 |
. . . . . . . . 9
⊢ ((((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = ∅) ∧ (𝑤 ∈ 𝐴 ∧ 𝑈 <s 𝑤)) → 𝑆 ∈ No
) |
| 54 | | nodmon 27614 |
. . . . . . . . 9
⊢ (𝑆 ∈
No → dom 𝑆
∈ On) |
| 55 | 53, 54 | syl 17 |
. . . . . . . 8
⊢ ((((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = ∅) ∧ (𝑤 ∈ 𝐴 ∧ 𝑈 <s 𝑤)) → dom 𝑆 ∈ On) |
| 56 | | simpl3r 1230 |
. . . . . . . . . 10
⊢ (((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = ∅) → (𝑈 ↾ dom 𝑆) = 𝑆) |
| 57 | 56 | adantr 480 |
. . . . . . . . 9
⊢ ((((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = ∅) ∧ (𝑤 ∈ 𝐴 ∧ 𝑈 <s 𝑤)) → (𝑈 ↾ dom 𝑆) = 𝑆) |
| 58 | | simpll1 1213 |
. . . . . . . . . 10
⊢ ((((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = ∅) ∧ (𝑤 ∈ 𝐴 ∧ 𝑈 <s 𝑤)) → ¬ ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) |
| 59 | | simpll2 1214 |
. . . . . . . . . 10
⊢ ((((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = ∅) ∧ (𝑤 ∈ 𝐴 ∧ 𝑈 <s 𝑤)) → (𝐴 ⊆ No
∧ 𝐴 ∈
V)) |
| 60 | | simpll3 1215 |
. . . . . . . . . 10
⊢ ((((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = ∅) ∧ (𝑤 ∈ 𝐴 ∧ 𝑈 <s 𝑤)) → (𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) |
| 61 | | simprr 772 |
. . . . . . . . . . . 12
⊢ ((((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = ∅) ∧ (𝑤 ∈ 𝐴 ∧ 𝑈 <s 𝑤)) → 𝑈 <s 𝑤) |
| 62 | 45, 49, 13 | syl2an2r 685 |
. . . . . . . . . . . 12
⊢ ((((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = ∅) ∧ (𝑤 ∈ 𝐴 ∧ 𝑈 <s 𝑤)) → (𝑈 <s 𝑤 → ¬ 𝑤 <s 𝑈)) |
| 63 | 61, 62 | mpd 15 |
. . . . . . . . . . 11
⊢ ((((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = ∅) ∧ (𝑤 ∈ 𝐴 ∧ 𝑈 <s 𝑤)) → ¬ 𝑤 <s 𝑈) |
| 64 | 48, 63 | jca 511 |
. . . . . . . . . 10
⊢ ((((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = ∅) ∧ (𝑤 ∈ 𝐴 ∧ 𝑈 <s 𝑤)) → (𝑤 ∈ 𝐴 ∧ ¬ 𝑤 <s 𝑈)) |
| 65 | 58, 59, 60, 64, 18 | syl112anc 1376 |
. . . . . . . . 9
⊢ ((((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = ∅) ∧ (𝑤 ∈ 𝐴 ∧ 𝑈 <s 𝑤)) → (𝑤 ↾ dom 𝑆) = 𝑆) |
| 66 | 57, 65 | eqtr4d 2773 |
. . . . . . . 8
⊢ ((((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = ∅) ∧ (𝑤 ∈ 𝐴 ∧ 𝑈 <s 𝑤)) → (𝑈 ↾ dom 𝑆) = (𝑤 ↾ dom 𝑆)) |
| 67 | | simplr 768 |
. . . . . . . 8
⊢ ((((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = ∅) ∧ (𝑤 ∈ 𝐴 ∧ 𝑈 <s 𝑤)) → (𝑈‘dom 𝑆) = ∅) |
| 68 | | nolt02o 27659 |
. . . . . . . 8
⊢ (((𝑈 ∈
No ∧ 𝑤 ∈
No ∧ dom 𝑆 ∈ On) ∧ ((𝑈 ↾ dom 𝑆) = (𝑤 ↾ dom 𝑆) ∧ 𝑈 <s 𝑤) ∧ (𝑈‘dom 𝑆) = ∅) → (𝑤‘dom 𝑆) = 2o) |
| 69 | 46, 49, 55, 66, 61, 67, 68 | syl321anc 1394 |
. . . . . . 7
⊢ ((((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = ∅) ∧ (𝑤 ∈ 𝐴 ∧ 𝑈 <s 𝑤)) → (𝑤‘dom 𝑆) = 2o) |
| 70 | 69 | expr 456 |
. . . . . 6
⊢ ((((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = ∅) ∧ 𝑤 ∈ 𝐴) → (𝑈 <s 𝑤 → (𝑤‘dom 𝑆) = 2o)) |
| 71 | 70 | ancld 550 |
. . . . 5
⊢ ((((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = ∅) ∧ 𝑤 ∈ 𝐴) → (𝑈 <s 𝑤 → (𝑈 <s 𝑤 ∧ (𝑤‘dom 𝑆) = 2o))) |
| 72 | 71 | reximdva 3153 |
. . . 4
⊢ (((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = ∅) → (∃𝑤 ∈ 𝐴 𝑈 <s 𝑤 → ∃𝑤 ∈ 𝐴 (𝑈 <s 𝑤 ∧ (𝑤‘dom 𝑆) = 2o))) |
| 73 | 43, 72 | mpd 15 |
. . 3
⊢ (((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = ∅) → ∃𝑤 ∈ 𝐴 (𝑈 <s 𝑤 ∧ (𝑤‘dom 𝑆) = 2o)) |
| 74 | 26, 73 | mtand 815 |
. 2
⊢ ((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) → ¬ (𝑈‘dom 𝑆) = ∅) |
| 75 | 74 | neqned 2939 |
1
⊢ ((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) → (𝑈‘dom 𝑆) ≠ ∅) |