Step | Hyp | Ref
| Expression |
1 | | simpl1 1190 |
. . . . . . . 8
⊢ (((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑤 ∈ 𝐴 ∧ 𝑈 <s 𝑤)) → ¬ ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) |
2 | | simpl2 1191 |
. . . . . . . 8
⊢ (((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑤 ∈ 𝐴 ∧ 𝑈 <s 𝑤)) → (𝐴 ⊆ No
∧ 𝐴 ∈
V)) |
3 | | simprl 768 |
. . . . . . . 8
⊢ (((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑤 ∈ 𝐴 ∧ 𝑈 <s 𝑤)) → 𝑤 ∈ 𝐴) |
4 | | simpl3 1192 |
. . . . . . . . 9
⊢ (((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑤 ∈ 𝐴 ∧ 𝑈 <s 𝑤)) → (𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) |
5 | | simprr 770 |
. . . . . . . . . . 11
⊢ (((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑤 ∈ 𝐴 ∧ 𝑈 <s 𝑤)) → 𝑈 <s 𝑤) |
6 | | simp2l 1198 |
. . . . . . . . . . . . 13
⊢ ((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) → 𝐴 ⊆ No
) |
7 | | simp3l 1200 |
. . . . . . . . . . . . 13
⊢ ((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) → 𝑈 ∈ 𝐴) |
8 | 6, 7 | sseldd 3922 |
. . . . . . . . . . . 12
⊢ ((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) → 𝑈 ∈ No
) |
9 | | simpl2l 1225 |
. . . . . . . . . . . . 13
⊢ (((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑤 ∈ 𝐴 ∧ 𝑈 <s 𝑤)) → 𝐴 ⊆ No
) |
10 | 9, 3 | sseldd 3922 |
. . . . . . . . . . . 12
⊢ (((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑤 ∈ 𝐴 ∧ 𝑈 <s 𝑤)) → 𝑤 ∈ No
) |
11 | | sltso 33879 |
. . . . . . . . . . . . 13
⊢ <s Or
No |
12 | | soasym 5534 |
. . . . . . . . . . . . 13
⊢ (( <s
Or No ∧ (𝑈 ∈ No
∧ 𝑤 ∈ No )) → (𝑈 <s 𝑤 → ¬ 𝑤 <s 𝑈)) |
13 | 11, 12 | mpan 687 |
. . . . . . . . . . . 12
⊢ ((𝑈 ∈
No ∧ 𝑤 ∈
No ) → (𝑈 <s 𝑤 → ¬ 𝑤 <s 𝑈)) |
14 | 8, 10, 13 | syl2an2r 682 |
. . . . . . . . . . 11
⊢ (((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑤 ∈ 𝐴 ∧ 𝑈 <s 𝑤)) → (𝑈 <s 𝑤 → ¬ 𝑤 <s 𝑈)) |
15 | 5, 14 | mpd 15 |
. . . . . . . . . 10
⊢ (((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑤 ∈ 𝐴 ∧ 𝑈 <s 𝑤)) → ¬ 𝑤 <s 𝑈) |
16 | 3, 15 | jca 512 |
. . . . . . . . 9
⊢ (((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑤 ∈ 𝐴 ∧ 𝑈 <s 𝑤)) → (𝑤 ∈ 𝐴 ∧ ¬ 𝑤 <s 𝑈)) |
17 | | nosupbnd1.1 |
. . . . . . . . . 10
⊢ 𝑆 = if(∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦, ((℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) ∪ {〈dom (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦), 2o〉}), (𝑔 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥∃𝑢 ∈ 𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥)))) |
18 | 17 | nosupbnd1lem2 33912 |
. . . . . . . . 9
⊢ ((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
((𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆) ∧ (𝑤 ∈ 𝐴 ∧ ¬ 𝑤 <s 𝑈))) → (𝑤 ↾ dom 𝑆) = 𝑆) |
19 | 1, 2, 4, 16, 18 | syl112anc 1373 |
. . . . . . . 8
⊢ (((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑤 ∈ 𝐴 ∧ 𝑈 <s 𝑤)) → (𝑤 ↾ dom 𝑆) = 𝑆) |
20 | 17 | nosupbnd1lem3 33913 |
. . . . . . . 8
⊢ ((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑤 ∈ 𝐴 ∧ (𝑤 ↾ dom 𝑆) = 𝑆)) → (𝑤‘dom 𝑆) ≠ 2o) |
21 | 1, 2, 3, 19, 20 | syl112anc 1373 |
. . . . . . 7
⊢ (((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑤 ∈ 𝐴 ∧ 𝑈 <s 𝑤)) → (𝑤‘dom 𝑆) ≠ 2o) |
22 | 21 | neneqd 2948 |
. . . . . 6
⊢ (((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑤 ∈ 𝐴 ∧ 𝑈 <s 𝑤)) → ¬ (𝑤‘dom 𝑆) = 2o) |
23 | 22 | expr 457 |
. . . . 5
⊢ (((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ 𝑤 ∈ 𝐴) → (𝑈 <s 𝑤 → ¬ (𝑤‘dom 𝑆) = 2o)) |
24 | | imnan 400 |
. . . . 5
⊢ ((𝑈 <s 𝑤 → ¬ (𝑤‘dom 𝑆) = 2o) ↔ ¬ (𝑈 <s 𝑤 ∧ (𝑤‘dom 𝑆) = 2o)) |
25 | 23, 24 | sylib 217 |
. . . 4
⊢ (((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ 𝑤 ∈ 𝐴) → ¬ (𝑈 <s 𝑤 ∧ (𝑤‘dom 𝑆) = 2o)) |
26 | 25 | nrexdv 3198 |
. . 3
⊢ ((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) → ¬ ∃𝑤 ∈ 𝐴 (𝑈 <s 𝑤 ∧ (𝑤‘dom 𝑆) = 2o)) |
27 | | simpl3l 1227 |
. . . . 5
⊢ (((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = ∅) → 𝑈 ∈ 𝐴) |
28 | | simpl1 1190 |
. . . . . 6
⊢ (((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = ∅) → ¬ ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) |
29 | | breq2 5078 |
. . . . . . . . . 10
⊢ (𝑤 = 𝑦 → (𝑢 <s 𝑤 ↔ 𝑢 <s 𝑦)) |
30 | 29 | cbvrexvw 3384 |
. . . . . . . . 9
⊢
(∃𝑤 ∈
𝐴 𝑢 <s 𝑤 ↔ ∃𝑦 ∈ 𝐴 𝑢 <s 𝑦) |
31 | | breq1 5077 |
. . . . . . . . . 10
⊢ (𝑢 = 𝑥 → (𝑢 <s 𝑦 ↔ 𝑥 <s 𝑦)) |
32 | 31 | rexbidv 3226 |
. . . . . . . . 9
⊢ (𝑢 = 𝑥 → (∃𝑦 ∈ 𝐴 𝑢 <s 𝑦 ↔ ∃𝑦 ∈ 𝐴 𝑥 <s 𝑦)) |
33 | 30, 32 | syl5bb 283 |
. . . . . . . 8
⊢ (𝑢 = 𝑥 → (∃𝑤 ∈ 𝐴 𝑢 <s 𝑤 ↔ ∃𝑦 ∈ 𝐴 𝑥 <s 𝑦)) |
34 | 33 | cbvralvw 3383 |
. . . . . . 7
⊢
(∀𝑢 ∈
𝐴 ∃𝑤 ∈ 𝐴 𝑢 <s 𝑤 ↔ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 𝑥 <s 𝑦) |
35 | | dfrex2 3170 |
. . . . . . . 8
⊢
(∃𝑦 ∈
𝐴 𝑥 <s 𝑦 ↔ ¬ ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) |
36 | 35 | ralbii 3092 |
. . . . . . 7
⊢
(∀𝑥 ∈
𝐴 ∃𝑦 ∈ 𝐴 𝑥 <s 𝑦 ↔ ∀𝑥 ∈ 𝐴 ¬ ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) |
37 | | ralnex 3167 |
. . . . . . 7
⊢
(∀𝑥 ∈
𝐴 ¬ ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ↔ ¬ ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) |
38 | 34, 36, 37 | 3bitri 297 |
. . . . . 6
⊢
(∀𝑢 ∈
𝐴 ∃𝑤 ∈ 𝐴 𝑢 <s 𝑤 ↔ ¬ ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) |
39 | 28, 38 | sylibr 233 |
. . . . 5
⊢ (((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = ∅) → ∀𝑢 ∈ 𝐴 ∃𝑤 ∈ 𝐴 𝑢 <s 𝑤) |
40 | | breq1 5077 |
. . . . . . 7
⊢ (𝑢 = 𝑈 → (𝑢 <s 𝑤 ↔ 𝑈 <s 𝑤)) |
41 | 40 | rexbidv 3226 |
. . . . . 6
⊢ (𝑢 = 𝑈 → (∃𝑤 ∈ 𝐴 𝑢 <s 𝑤 ↔ ∃𝑤 ∈ 𝐴 𝑈 <s 𝑤)) |
42 | 41 | rspcv 3557 |
. . . . 5
⊢ (𝑈 ∈ 𝐴 → (∀𝑢 ∈ 𝐴 ∃𝑤 ∈ 𝐴 𝑢 <s 𝑤 → ∃𝑤 ∈ 𝐴 𝑈 <s 𝑤)) |
43 | 27, 39, 42 | sylc 65 |
. . . 4
⊢ (((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = ∅) → ∃𝑤 ∈ 𝐴 𝑈 <s 𝑤) |
44 | | simpl2l 1225 |
. . . . . . . . . 10
⊢ (((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = ∅) → 𝐴 ⊆ No
) |
45 | 44, 27 | sseldd 3922 |
. . . . . . . . 9
⊢ (((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = ∅) → 𝑈 ∈ No
) |
46 | 45 | adantr 481 |
. . . . . . . 8
⊢ ((((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = ∅) ∧ (𝑤 ∈ 𝐴 ∧ 𝑈 <s 𝑤)) → 𝑈 ∈ No
) |
47 | 44 | adantr 481 |
. . . . . . . . 9
⊢ ((((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = ∅) ∧ (𝑤 ∈ 𝐴 ∧ 𝑈 <s 𝑤)) → 𝐴 ⊆ No
) |
48 | | simprl 768 |
. . . . . . . . 9
⊢ ((((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = ∅) ∧ (𝑤 ∈ 𝐴 ∧ 𝑈 <s 𝑤)) → 𝑤 ∈ 𝐴) |
49 | 47, 48 | sseldd 3922 |
. . . . . . . 8
⊢ ((((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = ∅) ∧ (𝑤 ∈ 𝐴 ∧ 𝑈 <s 𝑤)) → 𝑤 ∈ No
) |
50 | 17 | nosupno 33906 |
. . . . . . . . . . . 12
⊢ ((𝐴 ⊆
No ∧ 𝐴 ∈
V) → 𝑆 ∈ No ) |
51 | 50 | 3ad2ant2 1133 |
. . . . . . . . . . 11
⊢ ((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) → 𝑆 ∈ No
) |
52 | 51 | adantr 481 |
. . . . . . . . . 10
⊢ (((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = ∅) → 𝑆 ∈ No
) |
53 | 52 | adantr 481 |
. . . . . . . . 9
⊢ ((((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = ∅) ∧ (𝑤 ∈ 𝐴 ∧ 𝑈 <s 𝑤)) → 𝑆 ∈ No
) |
54 | | nodmon 33853 |
. . . . . . . . 9
⊢ (𝑆 ∈
No → dom 𝑆
∈ On) |
55 | 53, 54 | syl 17 |
. . . . . . . 8
⊢ ((((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = ∅) ∧ (𝑤 ∈ 𝐴 ∧ 𝑈 <s 𝑤)) → dom 𝑆 ∈ On) |
56 | | simpl3r 1228 |
. . . . . . . . . 10
⊢ (((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = ∅) → (𝑈 ↾ dom 𝑆) = 𝑆) |
57 | 56 | adantr 481 |
. . . . . . . . 9
⊢ ((((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = ∅) ∧ (𝑤 ∈ 𝐴 ∧ 𝑈 <s 𝑤)) → (𝑈 ↾ dom 𝑆) = 𝑆) |
58 | | simpll1 1211 |
. . . . . . . . . 10
⊢ ((((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = ∅) ∧ (𝑤 ∈ 𝐴 ∧ 𝑈 <s 𝑤)) → ¬ ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) |
59 | | simpll2 1212 |
. . . . . . . . . 10
⊢ ((((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = ∅) ∧ (𝑤 ∈ 𝐴 ∧ 𝑈 <s 𝑤)) → (𝐴 ⊆ No
∧ 𝐴 ∈
V)) |
60 | | simpll3 1213 |
. . . . . . . . . 10
⊢ ((((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = ∅) ∧ (𝑤 ∈ 𝐴 ∧ 𝑈 <s 𝑤)) → (𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) |
61 | | simprr 770 |
. . . . . . . . . . . 12
⊢ ((((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = ∅) ∧ (𝑤 ∈ 𝐴 ∧ 𝑈 <s 𝑤)) → 𝑈 <s 𝑤) |
62 | 45, 49, 13 | syl2an2r 682 |
. . . . . . . . . . . 12
⊢ ((((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = ∅) ∧ (𝑤 ∈ 𝐴 ∧ 𝑈 <s 𝑤)) → (𝑈 <s 𝑤 → ¬ 𝑤 <s 𝑈)) |
63 | 61, 62 | mpd 15 |
. . . . . . . . . . 11
⊢ ((((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = ∅) ∧ (𝑤 ∈ 𝐴 ∧ 𝑈 <s 𝑤)) → ¬ 𝑤 <s 𝑈) |
64 | 48, 63 | jca 512 |
. . . . . . . . . 10
⊢ ((((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = ∅) ∧ (𝑤 ∈ 𝐴 ∧ 𝑈 <s 𝑤)) → (𝑤 ∈ 𝐴 ∧ ¬ 𝑤 <s 𝑈)) |
65 | 58, 59, 60, 64, 18 | syl112anc 1373 |
. . . . . . . . 9
⊢ ((((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = ∅) ∧ (𝑤 ∈ 𝐴 ∧ 𝑈 <s 𝑤)) → (𝑤 ↾ dom 𝑆) = 𝑆) |
66 | 57, 65 | eqtr4d 2781 |
. . . . . . . 8
⊢ ((((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = ∅) ∧ (𝑤 ∈ 𝐴 ∧ 𝑈 <s 𝑤)) → (𝑈 ↾ dom 𝑆) = (𝑤 ↾ dom 𝑆)) |
67 | | simplr 766 |
. . . . . . . 8
⊢ ((((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = ∅) ∧ (𝑤 ∈ 𝐴 ∧ 𝑈 <s 𝑤)) → (𝑈‘dom 𝑆) = ∅) |
68 | | nolt02o 33898 |
. . . . . . . 8
⊢ (((𝑈 ∈
No ∧ 𝑤 ∈
No ∧ dom 𝑆 ∈ On) ∧ ((𝑈 ↾ dom 𝑆) = (𝑤 ↾ dom 𝑆) ∧ 𝑈 <s 𝑤) ∧ (𝑈‘dom 𝑆) = ∅) → (𝑤‘dom 𝑆) = 2o) |
69 | 46, 49, 55, 66, 61, 67, 68 | syl321anc 1391 |
. . . . . . 7
⊢ ((((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = ∅) ∧ (𝑤 ∈ 𝐴 ∧ 𝑈 <s 𝑤)) → (𝑤‘dom 𝑆) = 2o) |
70 | 69 | expr 457 |
. . . . . 6
⊢ ((((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = ∅) ∧ 𝑤 ∈ 𝐴) → (𝑈 <s 𝑤 → (𝑤‘dom 𝑆) = 2o)) |
71 | 70 | ancld 551 |
. . . . 5
⊢ ((((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = ∅) ∧ 𝑤 ∈ 𝐴) → (𝑈 <s 𝑤 → (𝑈 <s 𝑤 ∧ (𝑤‘dom 𝑆) = 2o))) |
72 | 71 | reximdva 3203 |
. . . 4
⊢ (((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = ∅) → (∃𝑤 ∈ 𝐴 𝑈 <s 𝑤 → ∃𝑤 ∈ 𝐴 (𝑈 <s 𝑤 ∧ (𝑤‘dom 𝑆) = 2o))) |
73 | 43, 72 | mpd 15 |
. . 3
⊢ (((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = ∅) → ∃𝑤 ∈ 𝐴 (𝑈 <s 𝑤 ∧ (𝑤‘dom 𝑆) = 2o)) |
74 | 26, 73 | mtand 813 |
. 2
⊢ ((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) → ¬ (𝑈‘dom 𝑆) = ∅) |
75 | 74 | neqned 2950 |
1
⊢ ((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) → (𝑈‘dom 𝑆) ≠ ∅) |