MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nosupbnd1lem4 Structured version   Visualization version   GIF version

Theorem nosupbnd1lem4 27599
Description: Lemma for nosupbnd1 27602. If 𝑈 is a prolongment of 𝑆 and in 𝐴, then (𝑈‘dom 𝑆) is not undefined. (Contributed by Scott Fenton, 6-Dec-2021.)
Hypothesis
Ref Expression
nosupbnd1.1 𝑆 = if(∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦, ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
Assertion
Ref Expression
nosupbnd1lem4 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) → (𝑈‘dom 𝑆) ≠ ∅)
Distinct variable groups:   𝐴,𝑔,𝑢,𝑣,𝑥,𝑦   𝑢,𝑈   𝑣,𝑢,𝑥,𝑦
Allowed substitution hints:   𝑆(𝑥,𝑦,𝑣,𝑢,𝑔)   𝑈(𝑥,𝑦,𝑣,𝑔)

Proof of Theorem nosupbnd1lem4
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 simpl1 1188 . . . . . . . 8 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑤𝐴𝑈 <s 𝑤)) → ¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)
2 simpl2 1189 . . . . . . . 8 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑤𝐴𝑈 <s 𝑤)) → (𝐴 No 𝐴 ∈ V))
3 simprl 768 . . . . . . . 8 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑤𝐴𝑈 <s 𝑤)) → 𝑤𝐴)
4 simpl3 1190 . . . . . . . . 9 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑤𝐴𝑈 <s 𝑤)) → (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆))
5 simprr 770 . . . . . . . . . . 11 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑤𝐴𝑈 <s 𝑤)) → 𝑈 <s 𝑤)
6 simp2l 1196 . . . . . . . . . . . . 13 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) → 𝐴 No )
7 simp3l 1198 . . . . . . . . . . . . 13 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) → 𝑈𝐴)
86, 7sseldd 3978 . . . . . . . . . . . 12 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) → 𝑈 No )
9 simpl2l 1223 . . . . . . . . . . . . 13 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑤𝐴𝑈 <s 𝑤)) → 𝐴 No )
109, 3sseldd 3978 . . . . . . . . . . . 12 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑤𝐴𝑈 <s 𝑤)) → 𝑤 No )
11 sltso 27564 . . . . . . . . . . . . 13 <s Or No
12 soasym 5612 . . . . . . . . . . . . 13 (( <s Or No ∧ (𝑈 No 𝑤 No )) → (𝑈 <s 𝑤 → ¬ 𝑤 <s 𝑈))
1311, 12mpan 687 . . . . . . . . . . . 12 ((𝑈 No 𝑤 No ) → (𝑈 <s 𝑤 → ¬ 𝑤 <s 𝑈))
148, 10, 13syl2an2r 682 . . . . . . . . . . 11 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑤𝐴𝑈 <s 𝑤)) → (𝑈 <s 𝑤 → ¬ 𝑤 <s 𝑈))
155, 14mpd 15 . . . . . . . . . 10 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑤𝐴𝑈 <s 𝑤)) → ¬ 𝑤 <s 𝑈)
163, 15jca 511 . . . . . . . . 9 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑤𝐴𝑈 <s 𝑤)) → (𝑤𝐴 ∧ ¬ 𝑤 <s 𝑈))
17 nosupbnd1.1 . . . . . . . . . 10 𝑆 = if(∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦, ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
1817nosupbnd1lem2 27597 . . . . . . . . 9 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ ((𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆) ∧ (𝑤𝐴 ∧ ¬ 𝑤 <s 𝑈))) → (𝑤 ↾ dom 𝑆) = 𝑆)
191, 2, 4, 16, 18syl112anc 1371 . . . . . . . 8 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑤𝐴𝑈 <s 𝑤)) → (𝑤 ↾ dom 𝑆) = 𝑆)
2017nosupbnd1lem3 27598 . . . . . . . 8 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑤𝐴 ∧ (𝑤 ↾ dom 𝑆) = 𝑆)) → (𝑤‘dom 𝑆) ≠ 2o)
211, 2, 3, 19, 20syl112anc 1371 . . . . . . 7 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑤𝐴𝑈 <s 𝑤)) → (𝑤‘dom 𝑆) ≠ 2o)
2221neneqd 2939 . . . . . 6 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑤𝐴𝑈 <s 𝑤)) → ¬ (𝑤‘dom 𝑆) = 2o)
2322expr 456 . . . . 5 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ 𝑤𝐴) → (𝑈 <s 𝑤 → ¬ (𝑤‘dom 𝑆) = 2o))
24 imnan 399 . . . . 5 ((𝑈 <s 𝑤 → ¬ (𝑤‘dom 𝑆) = 2o) ↔ ¬ (𝑈 <s 𝑤 ∧ (𝑤‘dom 𝑆) = 2o))
2523, 24sylib 217 . . . 4 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ 𝑤𝐴) → ¬ (𝑈 <s 𝑤 ∧ (𝑤‘dom 𝑆) = 2o))
2625nrexdv 3143 . . 3 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) → ¬ ∃𝑤𝐴 (𝑈 <s 𝑤 ∧ (𝑤‘dom 𝑆) = 2o))
27 simpl3l 1225 . . . . 5 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = ∅) → 𝑈𝐴)
28 simpl1 1188 . . . . . 6 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = ∅) → ¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)
29 breq2 5145 . . . . . . . . . 10 (𝑤 = 𝑦 → (𝑢 <s 𝑤𝑢 <s 𝑦))
3029cbvrexvw 3229 . . . . . . . . 9 (∃𝑤𝐴 𝑢 <s 𝑤 ↔ ∃𝑦𝐴 𝑢 <s 𝑦)
31 breq1 5144 . . . . . . . . . 10 (𝑢 = 𝑥 → (𝑢 <s 𝑦𝑥 <s 𝑦))
3231rexbidv 3172 . . . . . . . . 9 (𝑢 = 𝑥 → (∃𝑦𝐴 𝑢 <s 𝑦 ↔ ∃𝑦𝐴 𝑥 <s 𝑦))
3330, 32bitrid 283 . . . . . . . 8 (𝑢 = 𝑥 → (∃𝑤𝐴 𝑢 <s 𝑤 ↔ ∃𝑦𝐴 𝑥 <s 𝑦))
3433cbvralvw 3228 . . . . . . 7 (∀𝑢𝐴𝑤𝐴 𝑢 <s 𝑤 ↔ ∀𝑥𝐴𝑦𝐴 𝑥 <s 𝑦)
35 dfrex2 3067 . . . . . . . 8 (∃𝑦𝐴 𝑥 <s 𝑦 ↔ ¬ ∀𝑦𝐴 ¬ 𝑥 <s 𝑦)
3635ralbii 3087 . . . . . . 7 (∀𝑥𝐴𝑦𝐴 𝑥 <s 𝑦 ↔ ∀𝑥𝐴 ¬ ∀𝑦𝐴 ¬ 𝑥 <s 𝑦)
37 ralnex 3066 . . . . . . 7 (∀𝑥𝐴 ¬ ∀𝑦𝐴 ¬ 𝑥 <s 𝑦 ↔ ¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)
3834, 36, 373bitri 297 . . . . . 6 (∀𝑢𝐴𝑤𝐴 𝑢 <s 𝑤 ↔ ¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)
3928, 38sylibr 233 . . . . 5 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = ∅) → ∀𝑢𝐴𝑤𝐴 𝑢 <s 𝑤)
40 breq1 5144 . . . . . . 7 (𝑢 = 𝑈 → (𝑢 <s 𝑤𝑈 <s 𝑤))
4140rexbidv 3172 . . . . . 6 (𝑢 = 𝑈 → (∃𝑤𝐴 𝑢 <s 𝑤 ↔ ∃𝑤𝐴 𝑈 <s 𝑤))
4241rspcv 3602 . . . . 5 (𝑈𝐴 → (∀𝑢𝐴𝑤𝐴 𝑢 <s 𝑤 → ∃𝑤𝐴 𝑈 <s 𝑤))
4327, 39, 42sylc 65 . . . 4 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = ∅) → ∃𝑤𝐴 𝑈 <s 𝑤)
44 simpl2l 1223 . . . . . . . . . 10 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = ∅) → 𝐴 No )
4544, 27sseldd 3978 . . . . . . . . 9 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = ∅) → 𝑈 No )
4645adantr 480 . . . . . . . 8 ((((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = ∅) ∧ (𝑤𝐴𝑈 <s 𝑤)) → 𝑈 No )
4744adantr 480 . . . . . . . . 9 ((((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = ∅) ∧ (𝑤𝐴𝑈 <s 𝑤)) → 𝐴 No )
48 simprl 768 . . . . . . . . 9 ((((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = ∅) ∧ (𝑤𝐴𝑈 <s 𝑤)) → 𝑤𝐴)
4947, 48sseldd 3978 . . . . . . . 8 ((((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = ∅) ∧ (𝑤𝐴𝑈 <s 𝑤)) → 𝑤 No )
5017nosupno 27591 . . . . . . . . . . . 12 ((𝐴 No 𝐴 ∈ V) → 𝑆 No )
51503ad2ant2 1131 . . . . . . . . . . 11 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) → 𝑆 No )
5251adantr 480 . . . . . . . . . 10 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = ∅) → 𝑆 No )
5352adantr 480 . . . . . . . . 9 ((((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = ∅) ∧ (𝑤𝐴𝑈 <s 𝑤)) → 𝑆 No )
54 nodmon 27538 . . . . . . . . 9 (𝑆 No → dom 𝑆 ∈ On)
5553, 54syl 17 . . . . . . . 8 ((((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = ∅) ∧ (𝑤𝐴𝑈 <s 𝑤)) → dom 𝑆 ∈ On)
56 simpl3r 1226 . . . . . . . . . 10 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = ∅) → (𝑈 ↾ dom 𝑆) = 𝑆)
5756adantr 480 . . . . . . . . 9 ((((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = ∅) ∧ (𝑤𝐴𝑈 <s 𝑤)) → (𝑈 ↾ dom 𝑆) = 𝑆)
58 simpll1 1209 . . . . . . . . . 10 ((((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = ∅) ∧ (𝑤𝐴𝑈 <s 𝑤)) → ¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)
59 simpll2 1210 . . . . . . . . . 10 ((((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = ∅) ∧ (𝑤𝐴𝑈 <s 𝑤)) → (𝐴 No 𝐴 ∈ V))
60 simpll3 1211 . . . . . . . . . 10 ((((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = ∅) ∧ (𝑤𝐴𝑈 <s 𝑤)) → (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆))
61 simprr 770 . . . . . . . . . . . 12 ((((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = ∅) ∧ (𝑤𝐴𝑈 <s 𝑤)) → 𝑈 <s 𝑤)
6245, 49, 13syl2an2r 682 . . . . . . . . . . . 12 ((((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = ∅) ∧ (𝑤𝐴𝑈 <s 𝑤)) → (𝑈 <s 𝑤 → ¬ 𝑤 <s 𝑈))
6361, 62mpd 15 . . . . . . . . . . 11 ((((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = ∅) ∧ (𝑤𝐴𝑈 <s 𝑤)) → ¬ 𝑤 <s 𝑈)
6448, 63jca 511 . . . . . . . . . 10 ((((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = ∅) ∧ (𝑤𝐴𝑈 <s 𝑤)) → (𝑤𝐴 ∧ ¬ 𝑤 <s 𝑈))
6558, 59, 60, 64, 18syl112anc 1371 . . . . . . . . 9 ((((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = ∅) ∧ (𝑤𝐴𝑈 <s 𝑤)) → (𝑤 ↾ dom 𝑆) = 𝑆)
6657, 65eqtr4d 2769 . . . . . . . 8 ((((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = ∅) ∧ (𝑤𝐴𝑈 <s 𝑤)) → (𝑈 ↾ dom 𝑆) = (𝑤 ↾ dom 𝑆))
67 simplr 766 . . . . . . . 8 ((((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = ∅) ∧ (𝑤𝐴𝑈 <s 𝑤)) → (𝑈‘dom 𝑆) = ∅)
68 nolt02o 27583 . . . . . . . 8 (((𝑈 No 𝑤 No ∧ dom 𝑆 ∈ On) ∧ ((𝑈 ↾ dom 𝑆) = (𝑤 ↾ dom 𝑆) ∧ 𝑈 <s 𝑤) ∧ (𝑈‘dom 𝑆) = ∅) → (𝑤‘dom 𝑆) = 2o)
6946, 49, 55, 66, 61, 67, 68syl321anc 1389 . . . . . . 7 ((((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = ∅) ∧ (𝑤𝐴𝑈 <s 𝑤)) → (𝑤‘dom 𝑆) = 2o)
7069expr 456 . . . . . 6 ((((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = ∅) ∧ 𝑤𝐴) → (𝑈 <s 𝑤 → (𝑤‘dom 𝑆) = 2o))
7170ancld 550 . . . . 5 ((((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = ∅) ∧ 𝑤𝐴) → (𝑈 <s 𝑤 → (𝑈 <s 𝑤 ∧ (𝑤‘dom 𝑆) = 2o)))
7271reximdva 3162 . . . 4 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = ∅) → (∃𝑤𝐴 𝑈 <s 𝑤 → ∃𝑤𝐴 (𝑈 <s 𝑤 ∧ (𝑤‘dom 𝑆) = 2o)))
7343, 72mpd 15 . . 3 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = ∅) → ∃𝑤𝐴 (𝑈 <s 𝑤 ∧ (𝑤‘dom 𝑆) = 2o))
7426, 73mtand 813 . 2 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) → ¬ (𝑈‘dom 𝑆) = ∅)
7574neqned 2941 1 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) → (𝑈‘dom 𝑆) ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1084   = wceq 1533  wcel 2098  {cab 2703  wne 2934  wral 3055  wrex 3064  Vcvv 3468  cun 3941  wss 3943  c0 4317  ifcif 4523  {csn 4623  cop 4629   class class class wbr 5141  cmpt 5224   Or wor 5580  dom cdm 5669  cres 5671  Oncon0 6358  suc csuc 6360  cio 6487  cfv 6537  crio 7360  2oc2o 8461   No csur 27528   <s cslt 27529
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pr 5420  ax-un 7722
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-ral 3056  df-rex 3065  df-rmo 3370  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-pss 3962  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-tp 4628  df-op 4630  df-uni 4903  df-int 4944  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-ord 6361  df-on 6362  df-suc 6364  df-iota 6489  df-fun 6539  df-fn 6540  df-f 6541  df-f1 6542  df-fo 6543  df-f1o 6544  df-fv 6545  df-riota 7361  df-1o 8467  df-2o 8468  df-no 27531  df-slt 27532  df-bday 27533
This theorem is referenced by:  nosupbnd1lem5  27600  nosupbnd1lem6  27601
  Copyright terms: Public domain W3C validator