MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nosupbnd1lem4 Structured version   Visualization version   GIF version

Theorem nosupbnd1lem4 27771
Description: Lemma for nosupbnd1 27774. If 𝑈 is a prolongment of 𝑆 and in 𝐴, then (𝑈‘dom 𝑆) is not undefined. (Contributed by Scott Fenton, 6-Dec-2021.)
Hypothesis
Ref Expression
nosupbnd1.1 𝑆 = if(∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦, ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
Assertion
Ref Expression
nosupbnd1lem4 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) → (𝑈‘dom 𝑆) ≠ ∅)
Distinct variable groups:   𝐴,𝑔,𝑢,𝑣,𝑥,𝑦   𝑢,𝑈   𝑣,𝑢,𝑥,𝑦
Allowed substitution hints:   𝑆(𝑥,𝑦,𝑣,𝑢,𝑔)   𝑈(𝑥,𝑦,𝑣,𝑔)

Proof of Theorem nosupbnd1lem4
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 simpl1 1190 . . . . . . . 8 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑤𝐴𝑈 <s 𝑤)) → ¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)
2 simpl2 1191 . . . . . . . 8 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑤𝐴𝑈 <s 𝑤)) → (𝐴 No 𝐴 ∈ V))
3 simprl 771 . . . . . . . 8 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑤𝐴𝑈 <s 𝑤)) → 𝑤𝐴)
4 simpl3 1192 . . . . . . . . 9 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑤𝐴𝑈 <s 𝑤)) → (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆))
5 simprr 773 . . . . . . . . . . 11 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑤𝐴𝑈 <s 𝑤)) → 𝑈 <s 𝑤)
6 simp2l 1198 . . . . . . . . . . . . 13 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) → 𝐴 No )
7 simp3l 1200 . . . . . . . . . . . . 13 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) → 𝑈𝐴)
86, 7sseldd 3996 . . . . . . . . . . . 12 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) → 𝑈 No )
9 simpl2l 1225 . . . . . . . . . . . . 13 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑤𝐴𝑈 <s 𝑤)) → 𝐴 No )
109, 3sseldd 3996 . . . . . . . . . . . 12 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑤𝐴𝑈 <s 𝑤)) → 𝑤 No )
11 sltso 27736 . . . . . . . . . . . . 13 <s Or No
12 soasym 5629 . . . . . . . . . . . . 13 (( <s Or No ∧ (𝑈 No 𝑤 No )) → (𝑈 <s 𝑤 → ¬ 𝑤 <s 𝑈))
1311, 12mpan 690 . . . . . . . . . . . 12 ((𝑈 No 𝑤 No ) → (𝑈 <s 𝑤 → ¬ 𝑤 <s 𝑈))
148, 10, 13syl2an2r 685 . . . . . . . . . . 11 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑤𝐴𝑈 <s 𝑤)) → (𝑈 <s 𝑤 → ¬ 𝑤 <s 𝑈))
155, 14mpd 15 . . . . . . . . . 10 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑤𝐴𝑈 <s 𝑤)) → ¬ 𝑤 <s 𝑈)
163, 15jca 511 . . . . . . . . 9 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑤𝐴𝑈 <s 𝑤)) → (𝑤𝐴 ∧ ¬ 𝑤 <s 𝑈))
17 nosupbnd1.1 . . . . . . . . . 10 𝑆 = if(∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦, ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
1817nosupbnd1lem2 27769 . . . . . . . . 9 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ ((𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆) ∧ (𝑤𝐴 ∧ ¬ 𝑤 <s 𝑈))) → (𝑤 ↾ dom 𝑆) = 𝑆)
191, 2, 4, 16, 18syl112anc 1373 . . . . . . . 8 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑤𝐴𝑈 <s 𝑤)) → (𝑤 ↾ dom 𝑆) = 𝑆)
2017nosupbnd1lem3 27770 . . . . . . . 8 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑤𝐴 ∧ (𝑤 ↾ dom 𝑆) = 𝑆)) → (𝑤‘dom 𝑆) ≠ 2o)
211, 2, 3, 19, 20syl112anc 1373 . . . . . . 7 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑤𝐴𝑈 <s 𝑤)) → (𝑤‘dom 𝑆) ≠ 2o)
2221neneqd 2943 . . . . . 6 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑤𝐴𝑈 <s 𝑤)) → ¬ (𝑤‘dom 𝑆) = 2o)
2322expr 456 . . . . 5 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ 𝑤𝐴) → (𝑈 <s 𝑤 → ¬ (𝑤‘dom 𝑆) = 2o))
24 imnan 399 . . . . 5 ((𝑈 <s 𝑤 → ¬ (𝑤‘dom 𝑆) = 2o) ↔ ¬ (𝑈 <s 𝑤 ∧ (𝑤‘dom 𝑆) = 2o))
2523, 24sylib 218 . . . 4 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ 𝑤𝐴) → ¬ (𝑈 <s 𝑤 ∧ (𝑤‘dom 𝑆) = 2o))
2625nrexdv 3147 . . 3 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) → ¬ ∃𝑤𝐴 (𝑈 <s 𝑤 ∧ (𝑤‘dom 𝑆) = 2o))
27 simpl3l 1227 . . . . 5 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = ∅) → 𝑈𝐴)
28 simpl1 1190 . . . . . 6 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = ∅) → ¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)
29 breq2 5152 . . . . . . . . . 10 (𝑤 = 𝑦 → (𝑢 <s 𝑤𝑢 <s 𝑦))
3029cbvrexvw 3236 . . . . . . . . 9 (∃𝑤𝐴 𝑢 <s 𝑤 ↔ ∃𝑦𝐴 𝑢 <s 𝑦)
31 breq1 5151 . . . . . . . . . 10 (𝑢 = 𝑥 → (𝑢 <s 𝑦𝑥 <s 𝑦))
3231rexbidv 3177 . . . . . . . . 9 (𝑢 = 𝑥 → (∃𝑦𝐴 𝑢 <s 𝑦 ↔ ∃𝑦𝐴 𝑥 <s 𝑦))
3330, 32bitrid 283 . . . . . . . 8 (𝑢 = 𝑥 → (∃𝑤𝐴 𝑢 <s 𝑤 ↔ ∃𝑦𝐴 𝑥 <s 𝑦))
3433cbvralvw 3235 . . . . . . 7 (∀𝑢𝐴𝑤𝐴 𝑢 <s 𝑤 ↔ ∀𝑥𝐴𝑦𝐴 𝑥 <s 𝑦)
35 dfrex2 3071 . . . . . . . 8 (∃𝑦𝐴 𝑥 <s 𝑦 ↔ ¬ ∀𝑦𝐴 ¬ 𝑥 <s 𝑦)
3635ralbii 3091 . . . . . . 7 (∀𝑥𝐴𝑦𝐴 𝑥 <s 𝑦 ↔ ∀𝑥𝐴 ¬ ∀𝑦𝐴 ¬ 𝑥 <s 𝑦)
37 ralnex 3070 . . . . . . 7 (∀𝑥𝐴 ¬ ∀𝑦𝐴 ¬ 𝑥 <s 𝑦 ↔ ¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)
3834, 36, 373bitri 297 . . . . . 6 (∀𝑢𝐴𝑤𝐴 𝑢 <s 𝑤 ↔ ¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)
3928, 38sylibr 234 . . . . 5 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = ∅) → ∀𝑢𝐴𝑤𝐴 𝑢 <s 𝑤)
40 breq1 5151 . . . . . . 7 (𝑢 = 𝑈 → (𝑢 <s 𝑤𝑈 <s 𝑤))
4140rexbidv 3177 . . . . . 6 (𝑢 = 𝑈 → (∃𝑤𝐴 𝑢 <s 𝑤 ↔ ∃𝑤𝐴 𝑈 <s 𝑤))
4241rspcv 3618 . . . . 5 (𝑈𝐴 → (∀𝑢𝐴𝑤𝐴 𝑢 <s 𝑤 → ∃𝑤𝐴 𝑈 <s 𝑤))
4327, 39, 42sylc 65 . . . 4 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = ∅) → ∃𝑤𝐴 𝑈 <s 𝑤)
44 simpl2l 1225 . . . . . . . . . 10 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = ∅) → 𝐴 No )
4544, 27sseldd 3996 . . . . . . . . 9 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = ∅) → 𝑈 No )
4645adantr 480 . . . . . . . 8 ((((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = ∅) ∧ (𝑤𝐴𝑈 <s 𝑤)) → 𝑈 No )
4744adantr 480 . . . . . . . . 9 ((((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = ∅) ∧ (𝑤𝐴𝑈 <s 𝑤)) → 𝐴 No )
48 simprl 771 . . . . . . . . 9 ((((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = ∅) ∧ (𝑤𝐴𝑈 <s 𝑤)) → 𝑤𝐴)
4947, 48sseldd 3996 . . . . . . . 8 ((((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = ∅) ∧ (𝑤𝐴𝑈 <s 𝑤)) → 𝑤 No )
5017nosupno 27763 . . . . . . . . . . . 12 ((𝐴 No 𝐴 ∈ V) → 𝑆 No )
51503ad2ant2 1133 . . . . . . . . . . 11 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) → 𝑆 No )
5251adantr 480 . . . . . . . . . 10 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = ∅) → 𝑆 No )
5352adantr 480 . . . . . . . . 9 ((((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = ∅) ∧ (𝑤𝐴𝑈 <s 𝑤)) → 𝑆 No )
54 nodmon 27710 . . . . . . . . 9 (𝑆 No → dom 𝑆 ∈ On)
5553, 54syl 17 . . . . . . . 8 ((((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = ∅) ∧ (𝑤𝐴𝑈 <s 𝑤)) → dom 𝑆 ∈ On)
56 simpl3r 1228 . . . . . . . . . 10 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = ∅) → (𝑈 ↾ dom 𝑆) = 𝑆)
5756adantr 480 . . . . . . . . 9 ((((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = ∅) ∧ (𝑤𝐴𝑈 <s 𝑤)) → (𝑈 ↾ dom 𝑆) = 𝑆)
58 simpll1 1211 . . . . . . . . . 10 ((((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = ∅) ∧ (𝑤𝐴𝑈 <s 𝑤)) → ¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)
59 simpll2 1212 . . . . . . . . . 10 ((((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = ∅) ∧ (𝑤𝐴𝑈 <s 𝑤)) → (𝐴 No 𝐴 ∈ V))
60 simpll3 1213 . . . . . . . . . 10 ((((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = ∅) ∧ (𝑤𝐴𝑈 <s 𝑤)) → (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆))
61 simprr 773 . . . . . . . . . . . 12 ((((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = ∅) ∧ (𝑤𝐴𝑈 <s 𝑤)) → 𝑈 <s 𝑤)
6245, 49, 13syl2an2r 685 . . . . . . . . . . . 12 ((((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = ∅) ∧ (𝑤𝐴𝑈 <s 𝑤)) → (𝑈 <s 𝑤 → ¬ 𝑤 <s 𝑈))
6361, 62mpd 15 . . . . . . . . . . 11 ((((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = ∅) ∧ (𝑤𝐴𝑈 <s 𝑤)) → ¬ 𝑤 <s 𝑈)
6448, 63jca 511 . . . . . . . . . 10 ((((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = ∅) ∧ (𝑤𝐴𝑈 <s 𝑤)) → (𝑤𝐴 ∧ ¬ 𝑤 <s 𝑈))
6558, 59, 60, 64, 18syl112anc 1373 . . . . . . . . 9 ((((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = ∅) ∧ (𝑤𝐴𝑈 <s 𝑤)) → (𝑤 ↾ dom 𝑆) = 𝑆)
6657, 65eqtr4d 2778 . . . . . . . 8 ((((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = ∅) ∧ (𝑤𝐴𝑈 <s 𝑤)) → (𝑈 ↾ dom 𝑆) = (𝑤 ↾ dom 𝑆))
67 simplr 769 . . . . . . . 8 ((((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = ∅) ∧ (𝑤𝐴𝑈 <s 𝑤)) → (𝑈‘dom 𝑆) = ∅)
68 nolt02o 27755 . . . . . . . 8 (((𝑈 No 𝑤 No ∧ dom 𝑆 ∈ On) ∧ ((𝑈 ↾ dom 𝑆) = (𝑤 ↾ dom 𝑆) ∧ 𝑈 <s 𝑤) ∧ (𝑈‘dom 𝑆) = ∅) → (𝑤‘dom 𝑆) = 2o)
6946, 49, 55, 66, 61, 67, 68syl321anc 1391 . . . . . . 7 ((((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = ∅) ∧ (𝑤𝐴𝑈 <s 𝑤)) → (𝑤‘dom 𝑆) = 2o)
7069expr 456 . . . . . 6 ((((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = ∅) ∧ 𝑤𝐴) → (𝑈 <s 𝑤 → (𝑤‘dom 𝑆) = 2o))
7170ancld 550 . . . . 5 ((((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = ∅) ∧ 𝑤𝐴) → (𝑈 <s 𝑤 → (𝑈 <s 𝑤 ∧ (𝑤‘dom 𝑆) = 2o)))
7271reximdva 3166 . . . 4 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = ∅) → (∃𝑤𝐴 𝑈 <s 𝑤 → ∃𝑤𝐴 (𝑈 <s 𝑤 ∧ (𝑤‘dom 𝑆) = 2o)))
7343, 72mpd 15 . . 3 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = ∅) → ∃𝑤𝐴 (𝑈 <s 𝑤 ∧ (𝑤‘dom 𝑆) = 2o))
7426, 73mtand 816 . 2 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) → ¬ (𝑈‘dom 𝑆) = ∅)
7574neqned 2945 1 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) → (𝑈‘dom 𝑆) ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1537  wcel 2106  {cab 2712  wne 2938  wral 3059  wrex 3068  Vcvv 3478  cun 3961  wss 3963  c0 4339  ifcif 4531  {csn 4631  cop 4637   class class class wbr 5148  cmpt 5231   Or wor 5596  dom cdm 5689  cres 5691  Oncon0 6386  suc csuc 6388  cio 6514  cfv 6563  crio 7387  2oc2o 8499   No csur 27699   <s cslt 27700
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-int 4952  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-ord 6389  df-on 6390  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-fo 6569  df-fv 6571  df-riota 7388  df-1o 8505  df-2o 8506  df-no 27702  df-slt 27703  df-bday 27704
This theorem is referenced by:  nosupbnd1lem5  27772  nosupbnd1lem6  27773
  Copyright terms: Public domain W3C validator