MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  noinfbnd1lem3 Structured version   Visualization version   GIF version

Theorem noinfbnd1lem3 27770
Description: Lemma for noinfbnd1 27774. If 𝑈 is a prolongment of 𝑇 and in 𝐵, then (𝑈‘dom 𝑇) is not 1o. (Contributed by Scott Fenton, 9-Aug-2024.)
Hypothesis
Ref Expression
noinfbnd1.1 𝑇 = if(∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥, ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
Assertion
Ref Expression
noinfbnd1lem3 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) → (𝑈‘dom 𝑇) ≠ 1o)
Distinct variable groups:   𝐵,𝑔,𝑢,𝑣,𝑥,𝑦   𝑣,𝑈   𝑔,𝑉
Allowed substitution hints:   𝑇(𝑥,𝑦,𝑣,𝑢,𝑔)   𝑈(𝑥,𝑦,𝑢,𝑔)   𝑉(𝑥,𝑦,𝑣,𝑢)

Proof of Theorem noinfbnd1lem3
Dummy variables 𝑝 𝑞 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 noinfbnd1.1 . . . . . 6 𝑇 = if(∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥, ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
21noinfno 27763 . . . . 5 ((𝐵 No 𝐵𝑉) → 𝑇 No )
323ad2ant2 1135 . . . 4 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) → 𝑇 No )
4 nodmord 27698 . . . 4 (𝑇 No → Ord dom 𝑇)
5 ordirr 6402 . . . 4 (Ord dom 𝑇 → ¬ dom 𝑇 ∈ dom 𝑇)
63, 4, 53syl 18 . . 3 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) → ¬ dom 𝑇 ∈ dom 𝑇)
7 simpl3l 1229 . . . . 5 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 1o) → 𝑈𝐵)
8 ndmfv 6941 . . . . . . . 8 (¬ dom 𝑇 ∈ dom 𝑈 → (𝑈‘dom 𝑇) = ∅)
9 1n0 8526 . . . . . . . . . . 11 1o ≠ ∅
109necomi 2995 . . . . . . . . . 10 ∅ ≠ 1o
11 neeq1 3003 . . . . . . . . . 10 ((𝑈‘dom 𝑇) = ∅ → ((𝑈‘dom 𝑇) ≠ 1o ↔ ∅ ≠ 1o))
1210, 11mpbiri 258 . . . . . . . . 9 ((𝑈‘dom 𝑇) = ∅ → (𝑈‘dom 𝑇) ≠ 1o)
1312neneqd 2945 . . . . . . . 8 ((𝑈‘dom 𝑇) = ∅ → ¬ (𝑈‘dom 𝑇) = 1o)
148, 13syl 17 . . . . . . 7 (¬ dom 𝑇 ∈ dom 𝑈 → ¬ (𝑈‘dom 𝑇) = 1o)
1514con4i 114 . . . . . 6 ((𝑈‘dom 𝑇) = 1o → dom 𝑇 ∈ dom 𝑈)
1615adantl 481 . . . . 5 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 1o) → dom 𝑇 ∈ dom 𝑈)
17 simpl2l 1227 . . . . . . . . . 10 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 1o) → 𝐵 No )
1817, 7sseldd 3984 . . . . . . . . 9 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 1o) → 𝑈 No )
1918adantr 480 . . . . . . . 8 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 1o) ∧ (𝑞𝐵 ∧ ¬ 𝑈 <s 𝑞)) → 𝑈 No )
2017adantr 480 . . . . . . . . 9 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 1o) ∧ (𝑞𝐵 ∧ ¬ 𝑈 <s 𝑞)) → 𝐵 No )
21 simprl 771 . . . . . . . . 9 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 1o) ∧ (𝑞𝐵 ∧ ¬ 𝑈 <s 𝑞)) → 𝑞𝐵)
2220, 21sseldd 3984 . . . . . . . 8 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 1o) ∧ (𝑞𝐵 ∧ ¬ 𝑈 <s 𝑞)) → 𝑞 No )
233adantr 480 . . . . . . . . . 10 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 1o) → 𝑇 No )
24 nodmon 27695 . . . . . . . . . 10 (𝑇 No → dom 𝑇 ∈ On)
2523, 24syl 17 . . . . . . . . 9 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 1o) → dom 𝑇 ∈ On)
2625adantr 480 . . . . . . . 8 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 1o) ∧ (𝑞𝐵 ∧ ¬ 𝑈 <s 𝑞)) → dom 𝑇 ∈ On)
27 simpl3r 1230 . . . . . . . . . 10 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 1o) → (𝑈 ↾ dom 𝑇) = 𝑇)
2827adantr 480 . . . . . . . . 9 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 1o) ∧ (𝑞𝐵 ∧ ¬ 𝑈 <s 𝑞)) → (𝑈 ↾ dom 𝑇) = 𝑇)
29 simpll1 1213 . . . . . . . . . 10 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 1o) ∧ (𝑞𝐵 ∧ ¬ 𝑈 <s 𝑞)) → ¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)
30 simpll2 1214 . . . . . . . . . 10 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 1o) ∧ (𝑞𝐵 ∧ ¬ 𝑈 <s 𝑞)) → (𝐵 No 𝐵𝑉))
31 simpll3 1215 . . . . . . . . . 10 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 1o) ∧ (𝑞𝐵 ∧ ¬ 𝑈 <s 𝑞)) → (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇))
32 simpr 484 . . . . . . . . . 10 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 1o) ∧ (𝑞𝐵 ∧ ¬ 𝑈 <s 𝑞)) → (𝑞𝐵 ∧ ¬ 𝑈 <s 𝑞))
331noinfbnd1lem2 27769 . . . . . . . . . 10 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ ((𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇) ∧ (𝑞𝐵 ∧ ¬ 𝑈 <s 𝑞))) → (𝑞 ↾ dom 𝑇) = 𝑇)
3429, 30, 31, 32, 33syl112anc 1376 . . . . . . . . 9 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 1o) ∧ (𝑞𝐵 ∧ ¬ 𝑈 <s 𝑞)) → (𝑞 ↾ dom 𝑇) = 𝑇)
3528, 34eqtr4d 2780 . . . . . . . 8 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 1o) ∧ (𝑞𝐵 ∧ ¬ 𝑈 <s 𝑞)) → (𝑈 ↾ dom 𝑇) = (𝑞 ↾ dom 𝑇))
36 simplr 769 . . . . . . . 8 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 1o) ∧ (𝑞𝐵 ∧ ¬ 𝑈 <s 𝑞)) → (𝑈‘dom 𝑇) = 1o)
37 simprr 773 . . . . . . . 8 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 1o) ∧ (𝑞𝐵 ∧ ¬ 𝑈 <s 𝑞)) → ¬ 𝑈 <s 𝑞)
38 nogesgn1ores 27719 . . . . . . . 8 (((𝑈 No 𝑞 No ∧ dom 𝑇 ∈ On) ∧ ((𝑈 ↾ dom 𝑇) = (𝑞 ↾ dom 𝑇) ∧ (𝑈‘dom 𝑇) = 1o) ∧ ¬ 𝑈 <s 𝑞) → (𝑈 ↾ suc dom 𝑇) = (𝑞 ↾ suc dom 𝑇))
3919, 22, 26, 35, 36, 37, 38syl321anc 1394 . . . . . . 7 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 1o) ∧ (𝑞𝐵 ∧ ¬ 𝑈 <s 𝑞)) → (𝑈 ↾ suc dom 𝑇) = (𝑞 ↾ suc dom 𝑇))
4039expr 456 . . . . . 6 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 1o) ∧ 𝑞𝐵) → (¬ 𝑈 <s 𝑞 → (𝑈 ↾ suc dom 𝑇) = (𝑞 ↾ suc dom 𝑇)))
4140ralrimiva 3146 . . . . 5 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 1o) → ∀𝑞𝐵𝑈 <s 𝑞 → (𝑈 ↾ suc dom 𝑇) = (𝑞 ↾ suc dom 𝑇)))
42 dmeq 5914 . . . . . . . 8 (𝑝 = 𝑈 → dom 𝑝 = dom 𝑈)
4342eleq2d 2827 . . . . . . 7 (𝑝 = 𝑈 → (dom 𝑇 ∈ dom 𝑝 ↔ dom 𝑇 ∈ dom 𝑈))
44 breq1 5146 . . . . . . . . . 10 (𝑝 = 𝑈 → (𝑝 <s 𝑞𝑈 <s 𝑞))
4544notbid 318 . . . . . . . . 9 (𝑝 = 𝑈 → (¬ 𝑝 <s 𝑞 ↔ ¬ 𝑈 <s 𝑞))
46 reseq1 5991 . . . . . . . . . 10 (𝑝 = 𝑈 → (𝑝 ↾ suc dom 𝑇) = (𝑈 ↾ suc dom 𝑇))
4746eqeq1d 2739 . . . . . . . . 9 (𝑝 = 𝑈 → ((𝑝 ↾ suc dom 𝑇) = (𝑞 ↾ suc dom 𝑇) ↔ (𝑈 ↾ suc dom 𝑇) = (𝑞 ↾ suc dom 𝑇)))
4845, 47imbi12d 344 . . . . . . . 8 (𝑝 = 𝑈 → ((¬ 𝑝 <s 𝑞 → (𝑝 ↾ suc dom 𝑇) = (𝑞 ↾ suc dom 𝑇)) ↔ (¬ 𝑈 <s 𝑞 → (𝑈 ↾ suc dom 𝑇) = (𝑞 ↾ suc dom 𝑇))))
4948ralbidv 3178 . . . . . . 7 (𝑝 = 𝑈 → (∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc dom 𝑇) = (𝑞 ↾ suc dom 𝑇)) ↔ ∀𝑞𝐵𝑈 <s 𝑞 → (𝑈 ↾ suc dom 𝑇) = (𝑞 ↾ suc dom 𝑇))))
5043, 49anbi12d 632 . . . . . 6 (𝑝 = 𝑈 → ((dom 𝑇 ∈ dom 𝑝 ∧ ∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc dom 𝑇) = (𝑞 ↾ suc dom 𝑇))) ↔ (dom 𝑇 ∈ dom 𝑈 ∧ ∀𝑞𝐵𝑈 <s 𝑞 → (𝑈 ↾ suc dom 𝑇) = (𝑞 ↾ suc dom 𝑇)))))
5150rspcev 3622 . . . . 5 ((𝑈𝐵 ∧ (dom 𝑇 ∈ dom 𝑈 ∧ ∀𝑞𝐵𝑈 <s 𝑞 → (𝑈 ↾ suc dom 𝑇) = (𝑞 ↾ suc dom 𝑇)))) → ∃𝑝𝐵 (dom 𝑇 ∈ dom 𝑝 ∧ ∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc dom 𝑇) = (𝑞 ↾ suc dom 𝑇))))
527, 16, 41, 51syl12anc 837 . . . 4 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 1o) → ∃𝑝𝐵 (dom 𝑇 ∈ dom 𝑝 ∧ ∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc dom 𝑇) = (𝑞 ↾ suc dom 𝑇))))
531noinfdm 27764 . . . . . . . 8 (¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 → dom 𝑇 = {𝑧 ∣ ∃𝑝𝐵 (𝑧 ∈ dom 𝑝 ∧ ∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc 𝑧) = (𝑞 ↾ suc 𝑧)))})
5453eleq2d 2827 . . . . . . 7 (¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 → (dom 𝑇 ∈ dom 𝑇 ↔ dom 𝑇 ∈ {𝑧 ∣ ∃𝑝𝐵 (𝑧 ∈ dom 𝑝 ∧ ∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc 𝑧) = (𝑞 ↾ suc 𝑧)))}))
55543ad2ant1 1134 . . . . . 6 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) → (dom 𝑇 ∈ dom 𝑇 ↔ dom 𝑇 ∈ {𝑧 ∣ ∃𝑝𝐵 (𝑧 ∈ dom 𝑝 ∧ ∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc 𝑧) = (𝑞 ↾ suc 𝑧)))}))
56 eleq1 2829 . . . . . . . . . 10 (𝑧 = dom 𝑇 → (𝑧 ∈ dom 𝑝 ↔ dom 𝑇 ∈ dom 𝑝))
57 suceq 6450 . . . . . . . . . . . . . 14 (𝑧 = dom 𝑇 → suc 𝑧 = suc dom 𝑇)
5857reseq2d 5997 . . . . . . . . . . . . 13 (𝑧 = dom 𝑇 → (𝑝 ↾ suc 𝑧) = (𝑝 ↾ suc dom 𝑇))
5957reseq2d 5997 . . . . . . . . . . . . 13 (𝑧 = dom 𝑇 → (𝑞 ↾ suc 𝑧) = (𝑞 ↾ suc dom 𝑇))
6058, 59eqeq12d 2753 . . . . . . . . . . . 12 (𝑧 = dom 𝑇 → ((𝑝 ↾ suc 𝑧) = (𝑞 ↾ suc 𝑧) ↔ (𝑝 ↾ suc dom 𝑇) = (𝑞 ↾ suc dom 𝑇)))
6160imbi2d 340 . . . . . . . . . . 11 (𝑧 = dom 𝑇 → ((¬ 𝑝 <s 𝑞 → (𝑝 ↾ suc 𝑧) = (𝑞 ↾ suc 𝑧)) ↔ (¬ 𝑝 <s 𝑞 → (𝑝 ↾ suc dom 𝑇) = (𝑞 ↾ suc dom 𝑇))))
6261ralbidv 3178 . . . . . . . . . 10 (𝑧 = dom 𝑇 → (∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc 𝑧) = (𝑞 ↾ suc 𝑧)) ↔ ∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc dom 𝑇) = (𝑞 ↾ suc dom 𝑇))))
6356, 62anbi12d 632 . . . . . . . . 9 (𝑧 = dom 𝑇 → ((𝑧 ∈ dom 𝑝 ∧ ∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc 𝑧) = (𝑞 ↾ suc 𝑧))) ↔ (dom 𝑇 ∈ dom 𝑝 ∧ ∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc dom 𝑇) = (𝑞 ↾ suc dom 𝑇)))))
6463rexbidv 3179 . . . . . . . 8 (𝑧 = dom 𝑇 → (∃𝑝𝐵 (𝑧 ∈ dom 𝑝 ∧ ∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc 𝑧) = (𝑞 ↾ suc 𝑧))) ↔ ∃𝑝𝐵 (dom 𝑇 ∈ dom 𝑝 ∧ ∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc dom 𝑇) = (𝑞 ↾ suc dom 𝑇)))))
6564elabg 3676 . . . . . . 7 (dom 𝑇 ∈ On → (dom 𝑇 ∈ {𝑧 ∣ ∃𝑝𝐵 (𝑧 ∈ dom 𝑝 ∧ ∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc 𝑧) = (𝑞 ↾ suc 𝑧)))} ↔ ∃𝑝𝐵 (dom 𝑇 ∈ dom 𝑝 ∧ ∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc dom 𝑇) = (𝑞 ↾ suc dom 𝑇)))))
663, 24, 653syl 18 . . . . . 6 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) → (dom 𝑇 ∈ {𝑧 ∣ ∃𝑝𝐵 (𝑧 ∈ dom 𝑝 ∧ ∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc 𝑧) = (𝑞 ↾ suc 𝑧)))} ↔ ∃𝑝𝐵 (dom 𝑇 ∈ dom 𝑝 ∧ ∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc dom 𝑇) = (𝑞 ↾ suc dom 𝑇)))))
6755, 66bitrd 279 . . . . 5 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) → (dom 𝑇 ∈ dom 𝑇 ↔ ∃𝑝𝐵 (dom 𝑇 ∈ dom 𝑝 ∧ ∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc dom 𝑇) = (𝑞 ↾ suc dom 𝑇)))))
6867adantr 480 . . . 4 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 1o) → (dom 𝑇 ∈ dom 𝑇 ↔ ∃𝑝𝐵 (dom 𝑇 ∈ dom 𝑝 ∧ ∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc dom 𝑇) = (𝑞 ↾ suc dom 𝑇)))))
6952, 68mpbird 257 . . 3 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 1o) → dom 𝑇 ∈ dom 𝑇)
706, 69mtand 816 . 2 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) → ¬ (𝑈‘dom 𝑇) = 1o)
7170neqned 2947 1 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) → (𝑈‘dom 𝑇) ≠ 1o)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1087   = wceq 1540  wcel 2108  {cab 2714  wne 2940  wral 3061  wrex 3070  cun 3949  wss 3951  c0 4333  ifcif 4525  {csn 4626  cop 4632   class class class wbr 5143  cmpt 5225  dom cdm 5685  cres 5687  Ord word 6383  Oncon0 6384  suc csuc 6386  cio 6512  cfv 6561  crio 7387  1oc1o 8499   No csur 27684   <s cslt 27685
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-int 4947  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-ord 6387  df-on 6388  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-fo 6567  df-fv 6569  df-riota 7388  df-1o 8506  df-2o 8507  df-no 27687  df-slt 27688  df-bday 27689
This theorem is referenced by:  noinfbnd1lem4  27771  noinfbnd1lem5  27772  noinfbnd1lem6  27773
  Copyright terms: Public domain W3C validator