Step | Hyp | Ref
| Expression |
1 | | noinfbnd1.1 |
. . . . . 6
⊢ 𝑇 = if(∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥, ((℩𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥) ∪ {〈dom (℩𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥), 1o〉}), (𝑔 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥∃𝑢 ∈ 𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥)))) |
2 | 1 | noinfno 33486 |
. . . . 5
⊢ ((𝐵 ⊆
No ∧ 𝐵 ∈
𝑉) → 𝑇 ∈ No
) |
3 | 2 | 3ad2ant2 1131 |
. . . 4
⊢ ((¬
∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉) ∧ (𝑈 ∈ 𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) → 𝑇 ∈ No
) |
4 | | nodmord 33421 |
. . . 4
⊢ (𝑇 ∈
No → Ord dom 𝑇) |
5 | | ordirr 6187 |
. . . 4
⊢ (Ord dom
𝑇 → ¬ dom 𝑇 ∈ dom 𝑇) |
6 | 3, 4, 5 | 3syl 18 |
. . 3
⊢ ((¬
∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉) ∧ (𝑈 ∈ 𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) → ¬ dom 𝑇 ∈ dom 𝑇) |
7 | | simpl3l 1225 |
. . . . 5
⊢ (((¬
∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉) ∧ (𝑈 ∈ 𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 1o) → 𝑈 ∈ 𝐵) |
8 | | ndmfv 6688 |
. . . . . . . 8
⊢ (¬
dom 𝑇 ∈ dom 𝑈 → (𝑈‘dom 𝑇) = ∅) |
9 | | 1n0 8129 |
. . . . . . . . . . 11
⊢
1o ≠ ∅ |
10 | 9 | necomi 3005 |
. . . . . . . . . 10
⊢ ∅
≠ 1o |
11 | | neeq1 3013 |
. . . . . . . . . 10
⊢ ((𝑈‘dom 𝑇) = ∅ → ((𝑈‘dom 𝑇) ≠ 1o ↔ ∅ ≠
1o)) |
12 | 10, 11 | mpbiri 261 |
. . . . . . . . 9
⊢ ((𝑈‘dom 𝑇) = ∅ → (𝑈‘dom 𝑇) ≠ 1o) |
13 | 12 | neneqd 2956 |
. . . . . . . 8
⊢ ((𝑈‘dom 𝑇) = ∅ → ¬ (𝑈‘dom 𝑇) = 1o) |
14 | 8, 13 | syl 17 |
. . . . . . 7
⊢ (¬
dom 𝑇 ∈ dom 𝑈 → ¬ (𝑈‘dom 𝑇) = 1o) |
15 | 14 | con4i 114 |
. . . . . 6
⊢ ((𝑈‘dom 𝑇) = 1o → dom 𝑇 ∈ dom 𝑈) |
16 | 15 | adantl 485 |
. . . . 5
⊢ (((¬
∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉) ∧ (𝑈 ∈ 𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 1o) → dom 𝑇 ∈ dom 𝑈) |
17 | | simpl2l 1223 |
. . . . . . . . . 10
⊢ (((¬
∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉) ∧ (𝑈 ∈ 𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 1o) → 𝐵 ⊆ No
) |
18 | 17, 7 | sseldd 3893 |
. . . . . . . . 9
⊢ (((¬
∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉) ∧ (𝑈 ∈ 𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 1o) → 𝑈 ∈ No
) |
19 | 18 | adantr 484 |
. . . . . . . 8
⊢ ((((¬
∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉) ∧ (𝑈 ∈ 𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 1o) ∧ (𝑞 ∈ 𝐵 ∧ ¬ 𝑈 <s 𝑞)) → 𝑈 ∈ No
) |
20 | 17 | adantr 484 |
. . . . . . . . 9
⊢ ((((¬
∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉) ∧ (𝑈 ∈ 𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 1o) ∧ (𝑞 ∈ 𝐵 ∧ ¬ 𝑈 <s 𝑞)) → 𝐵 ⊆ No
) |
21 | | simprl 770 |
. . . . . . . . 9
⊢ ((((¬
∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉) ∧ (𝑈 ∈ 𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 1o) ∧ (𝑞 ∈ 𝐵 ∧ ¬ 𝑈 <s 𝑞)) → 𝑞 ∈ 𝐵) |
22 | 20, 21 | sseldd 3893 |
. . . . . . . 8
⊢ ((((¬
∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉) ∧ (𝑈 ∈ 𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 1o) ∧ (𝑞 ∈ 𝐵 ∧ ¬ 𝑈 <s 𝑞)) → 𝑞 ∈ No
) |
23 | 3 | adantr 484 |
. . . . . . . . . 10
⊢ (((¬
∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉) ∧ (𝑈 ∈ 𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 1o) → 𝑇 ∈ No
) |
24 | | nodmon 33418 |
. . . . . . . . . 10
⊢ (𝑇 ∈
No → dom 𝑇
∈ On) |
25 | 23, 24 | syl 17 |
. . . . . . . . 9
⊢ (((¬
∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉) ∧ (𝑈 ∈ 𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 1o) → dom 𝑇 ∈ On) |
26 | 25 | adantr 484 |
. . . . . . . 8
⊢ ((((¬
∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉) ∧ (𝑈 ∈ 𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 1o) ∧ (𝑞 ∈ 𝐵 ∧ ¬ 𝑈 <s 𝑞)) → dom 𝑇 ∈ On) |
27 | | simpl3r 1226 |
. . . . . . . . . 10
⊢ (((¬
∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉) ∧ (𝑈 ∈ 𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 1o) → (𝑈 ↾ dom 𝑇) = 𝑇) |
28 | 27 | adantr 484 |
. . . . . . . . 9
⊢ ((((¬
∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉) ∧ (𝑈 ∈ 𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 1o) ∧ (𝑞 ∈ 𝐵 ∧ ¬ 𝑈 <s 𝑞)) → (𝑈 ↾ dom 𝑇) = 𝑇) |
29 | | simpll1 1209 |
. . . . . . . . . 10
⊢ ((((¬
∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉) ∧ (𝑈 ∈ 𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 1o) ∧ (𝑞 ∈ 𝐵 ∧ ¬ 𝑈 <s 𝑞)) → ¬ ∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥) |
30 | | simpll2 1210 |
. . . . . . . . . 10
⊢ ((((¬
∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉) ∧ (𝑈 ∈ 𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 1o) ∧ (𝑞 ∈ 𝐵 ∧ ¬ 𝑈 <s 𝑞)) → (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉)) |
31 | | simpll3 1211 |
. . . . . . . . . 10
⊢ ((((¬
∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉) ∧ (𝑈 ∈ 𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 1o) ∧ (𝑞 ∈ 𝐵 ∧ ¬ 𝑈 <s 𝑞)) → (𝑈 ∈ 𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) |
32 | | simpr 488 |
. . . . . . . . . 10
⊢ ((((¬
∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉) ∧ (𝑈 ∈ 𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 1o) ∧ (𝑞 ∈ 𝐵 ∧ ¬ 𝑈 <s 𝑞)) → (𝑞 ∈ 𝐵 ∧ ¬ 𝑈 <s 𝑞)) |
33 | 1 | noinfbnd1lem2 33492 |
. . . . . . . . . 10
⊢ ((¬
∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉) ∧ ((𝑈 ∈ 𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇) ∧ (𝑞 ∈ 𝐵 ∧ ¬ 𝑈 <s 𝑞))) → (𝑞 ↾ dom 𝑇) = 𝑇) |
34 | 29, 30, 31, 32, 33 | syl112anc 1371 |
. . . . . . . . 9
⊢ ((((¬
∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉) ∧ (𝑈 ∈ 𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 1o) ∧ (𝑞 ∈ 𝐵 ∧ ¬ 𝑈 <s 𝑞)) → (𝑞 ↾ dom 𝑇) = 𝑇) |
35 | 28, 34 | eqtr4d 2796 |
. . . . . . . 8
⊢ ((((¬
∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉) ∧ (𝑈 ∈ 𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 1o) ∧ (𝑞 ∈ 𝐵 ∧ ¬ 𝑈 <s 𝑞)) → (𝑈 ↾ dom 𝑇) = (𝑞 ↾ dom 𝑇)) |
36 | | simplr 768 |
. . . . . . . 8
⊢ ((((¬
∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉) ∧ (𝑈 ∈ 𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 1o) ∧ (𝑞 ∈ 𝐵 ∧ ¬ 𝑈 <s 𝑞)) → (𝑈‘dom 𝑇) = 1o) |
37 | | simprr 772 |
. . . . . . . 8
⊢ ((((¬
∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉) ∧ (𝑈 ∈ 𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 1o) ∧ (𝑞 ∈ 𝐵 ∧ ¬ 𝑈 <s 𝑞)) → ¬ 𝑈 <s 𝑞) |
38 | | nogesgn1ores 33442 |
. . . . . . . 8
⊢ (((𝑈 ∈
No ∧ 𝑞 ∈
No ∧ dom 𝑇 ∈ On) ∧ ((𝑈 ↾ dom 𝑇) = (𝑞 ↾ dom 𝑇) ∧ (𝑈‘dom 𝑇) = 1o) ∧ ¬ 𝑈 <s 𝑞) → (𝑈 ↾ suc dom 𝑇) = (𝑞 ↾ suc dom 𝑇)) |
39 | 19, 22, 26, 35, 36, 37, 38 | syl321anc 1389 |
. . . . . . 7
⊢ ((((¬
∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉) ∧ (𝑈 ∈ 𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 1o) ∧ (𝑞 ∈ 𝐵 ∧ ¬ 𝑈 <s 𝑞)) → (𝑈 ↾ suc dom 𝑇) = (𝑞 ↾ suc dom 𝑇)) |
40 | 39 | expr 460 |
. . . . . 6
⊢ ((((¬
∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉) ∧ (𝑈 ∈ 𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 1o) ∧ 𝑞 ∈ 𝐵) → (¬ 𝑈 <s 𝑞 → (𝑈 ↾ suc dom 𝑇) = (𝑞 ↾ suc dom 𝑇))) |
41 | 40 | ralrimiva 3113 |
. . . . 5
⊢ (((¬
∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉) ∧ (𝑈 ∈ 𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 1o) → ∀𝑞 ∈ 𝐵 (¬ 𝑈 <s 𝑞 → (𝑈 ↾ suc dom 𝑇) = (𝑞 ↾ suc dom 𝑇))) |
42 | | dmeq 5743 |
. . . . . . . 8
⊢ (𝑝 = 𝑈 → dom 𝑝 = dom 𝑈) |
43 | 42 | eleq2d 2837 |
. . . . . . 7
⊢ (𝑝 = 𝑈 → (dom 𝑇 ∈ dom 𝑝 ↔ dom 𝑇 ∈ dom 𝑈)) |
44 | | breq1 5035 |
. . . . . . . . . 10
⊢ (𝑝 = 𝑈 → (𝑝 <s 𝑞 ↔ 𝑈 <s 𝑞)) |
45 | 44 | notbid 321 |
. . . . . . . . 9
⊢ (𝑝 = 𝑈 → (¬ 𝑝 <s 𝑞 ↔ ¬ 𝑈 <s 𝑞)) |
46 | | reseq1 5817 |
. . . . . . . . . 10
⊢ (𝑝 = 𝑈 → (𝑝 ↾ suc dom 𝑇) = (𝑈 ↾ suc dom 𝑇)) |
47 | 46 | eqeq1d 2760 |
. . . . . . . . 9
⊢ (𝑝 = 𝑈 → ((𝑝 ↾ suc dom 𝑇) = (𝑞 ↾ suc dom 𝑇) ↔ (𝑈 ↾ suc dom 𝑇) = (𝑞 ↾ suc dom 𝑇))) |
48 | 45, 47 | imbi12d 348 |
. . . . . . . 8
⊢ (𝑝 = 𝑈 → ((¬ 𝑝 <s 𝑞 → (𝑝 ↾ suc dom 𝑇) = (𝑞 ↾ suc dom 𝑇)) ↔ (¬ 𝑈 <s 𝑞 → (𝑈 ↾ suc dom 𝑇) = (𝑞 ↾ suc dom 𝑇)))) |
49 | 48 | ralbidv 3126 |
. . . . . . 7
⊢ (𝑝 = 𝑈 → (∀𝑞 ∈ 𝐵 (¬ 𝑝 <s 𝑞 → (𝑝 ↾ suc dom 𝑇) = (𝑞 ↾ suc dom 𝑇)) ↔ ∀𝑞 ∈ 𝐵 (¬ 𝑈 <s 𝑞 → (𝑈 ↾ suc dom 𝑇) = (𝑞 ↾ suc dom 𝑇)))) |
50 | 43, 49 | anbi12d 633 |
. . . . . 6
⊢ (𝑝 = 𝑈 → ((dom 𝑇 ∈ dom 𝑝 ∧ ∀𝑞 ∈ 𝐵 (¬ 𝑝 <s 𝑞 → (𝑝 ↾ suc dom 𝑇) = (𝑞 ↾ suc dom 𝑇))) ↔ (dom 𝑇 ∈ dom 𝑈 ∧ ∀𝑞 ∈ 𝐵 (¬ 𝑈 <s 𝑞 → (𝑈 ↾ suc dom 𝑇) = (𝑞 ↾ suc dom 𝑇))))) |
51 | 50 | rspcev 3541 |
. . . . 5
⊢ ((𝑈 ∈ 𝐵 ∧ (dom 𝑇 ∈ dom 𝑈 ∧ ∀𝑞 ∈ 𝐵 (¬ 𝑈 <s 𝑞 → (𝑈 ↾ suc dom 𝑇) = (𝑞 ↾ suc dom 𝑇)))) → ∃𝑝 ∈ 𝐵 (dom 𝑇 ∈ dom 𝑝 ∧ ∀𝑞 ∈ 𝐵 (¬ 𝑝 <s 𝑞 → (𝑝 ↾ suc dom 𝑇) = (𝑞 ↾ suc dom 𝑇)))) |
52 | 7, 16, 41, 51 | syl12anc 835 |
. . . 4
⊢ (((¬
∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉) ∧ (𝑈 ∈ 𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 1o) → ∃𝑝 ∈ 𝐵 (dom 𝑇 ∈ dom 𝑝 ∧ ∀𝑞 ∈ 𝐵 (¬ 𝑝 <s 𝑞 → (𝑝 ↾ suc dom 𝑇) = (𝑞 ↾ suc dom 𝑇)))) |
53 | 1 | noinfdm 33487 |
. . . . . . . 8
⊢ (¬
∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 → dom 𝑇 = {𝑧 ∣ ∃𝑝 ∈ 𝐵 (𝑧 ∈ dom 𝑝 ∧ ∀𝑞 ∈ 𝐵 (¬ 𝑝 <s 𝑞 → (𝑝 ↾ suc 𝑧) = (𝑞 ↾ suc 𝑧)))}) |
54 | 53 | eleq2d 2837 |
. . . . . . 7
⊢ (¬
∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 → (dom 𝑇 ∈ dom 𝑇 ↔ dom 𝑇 ∈ {𝑧 ∣ ∃𝑝 ∈ 𝐵 (𝑧 ∈ dom 𝑝 ∧ ∀𝑞 ∈ 𝐵 (¬ 𝑝 <s 𝑞 → (𝑝 ↾ suc 𝑧) = (𝑞 ↾ suc 𝑧)))})) |
55 | 54 | 3ad2ant1 1130 |
. . . . . 6
⊢ ((¬
∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉) ∧ (𝑈 ∈ 𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) → (dom 𝑇 ∈ dom 𝑇 ↔ dom 𝑇 ∈ {𝑧 ∣ ∃𝑝 ∈ 𝐵 (𝑧 ∈ dom 𝑝 ∧ ∀𝑞 ∈ 𝐵 (¬ 𝑝 <s 𝑞 → (𝑝 ↾ suc 𝑧) = (𝑞 ↾ suc 𝑧)))})) |
56 | | eleq1 2839 |
. . . . . . . . . 10
⊢ (𝑧 = dom 𝑇 → (𝑧 ∈ dom 𝑝 ↔ dom 𝑇 ∈ dom 𝑝)) |
57 | | suceq 6234 |
. . . . . . . . . . . . . 14
⊢ (𝑧 = dom 𝑇 → suc 𝑧 = suc dom 𝑇) |
58 | 57 | reseq2d 5823 |
. . . . . . . . . . . . 13
⊢ (𝑧 = dom 𝑇 → (𝑝 ↾ suc 𝑧) = (𝑝 ↾ suc dom 𝑇)) |
59 | 57 | reseq2d 5823 |
. . . . . . . . . . . . 13
⊢ (𝑧 = dom 𝑇 → (𝑞 ↾ suc 𝑧) = (𝑞 ↾ suc dom 𝑇)) |
60 | 58, 59 | eqeq12d 2774 |
. . . . . . . . . . . 12
⊢ (𝑧 = dom 𝑇 → ((𝑝 ↾ suc 𝑧) = (𝑞 ↾ suc 𝑧) ↔ (𝑝 ↾ suc dom 𝑇) = (𝑞 ↾ suc dom 𝑇))) |
61 | 60 | imbi2d 344 |
. . . . . . . . . . 11
⊢ (𝑧 = dom 𝑇 → ((¬ 𝑝 <s 𝑞 → (𝑝 ↾ suc 𝑧) = (𝑞 ↾ suc 𝑧)) ↔ (¬ 𝑝 <s 𝑞 → (𝑝 ↾ suc dom 𝑇) = (𝑞 ↾ suc dom 𝑇)))) |
62 | 61 | ralbidv 3126 |
. . . . . . . . . 10
⊢ (𝑧 = dom 𝑇 → (∀𝑞 ∈ 𝐵 (¬ 𝑝 <s 𝑞 → (𝑝 ↾ suc 𝑧) = (𝑞 ↾ suc 𝑧)) ↔ ∀𝑞 ∈ 𝐵 (¬ 𝑝 <s 𝑞 → (𝑝 ↾ suc dom 𝑇) = (𝑞 ↾ suc dom 𝑇)))) |
63 | 56, 62 | anbi12d 633 |
. . . . . . . . 9
⊢ (𝑧 = dom 𝑇 → ((𝑧 ∈ dom 𝑝 ∧ ∀𝑞 ∈ 𝐵 (¬ 𝑝 <s 𝑞 → (𝑝 ↾ suc 𝑧) = (𝑞 ↾ suc 𝑧))) ↔ (dom 𝑇 ∈ dom 𝑝 ∧ ∀𝑞 ∈ 𝐵 (¬ 𝑝 <s 𝑞 → (𝑝 ↾ suc dom 𝑇) = (𝑞 ↾ suc dom 𝑇))))) |
64 | 63 | rexbidv 3221 |
. . . . . . . 8
⊢ (𝑧 = dom 𝑇 → (∃𝑝 ∈ 𝐵 (𝑧 ∈ dom 𝑝 ∧ ∀𝑞 ∈ 𝐵 (¬ 𝑝 <s 𝑞 → (𝑝 ↾ suc 𝑧) = (𝑞 ↾ suc 𝑧))) ↔ ∃𝑝 ∈ 𝐵 (dom 𝑇 ∈ dom 𝑝 ∧ ∀𝑞 ∈ 𝐵 (¬ 𝑝 <s 𝑞 → (𝑝 ↾ suc dom 𝑇) = (𝑞 ↾ suc dom 𝑇))))) |
65 | 64 | elabg 3587 |
. . . . . . 7
⊢ (dom
𝑇 ∈ On → (dom
𝑇 ∈ {𝑧 ∣ ∃𝑝 ∈ 𝐵 (𝑧 ∈ dom 𝑝 ∧ ∀𝑞 ∈ 𝐵 (¬ 𝑝 <s 𝑞 → (𝑝 ↾ suc 𝑧) = (𝑞 ↾ suc 𝑧)))} ↔ ∃𝑝 ∈ 𝐵 (dom 𝑇 ∈ dom 𝑝 ∧ ∀𝑞 ∈ 𝐵 (¬ 𝑝 <s 𝑞 → (𝑝 ↾ suc dom 𝑇) = (𝑞 ↾ suc dom 𝑇))))) |
66 | 3, 24, 65 | 3syl 18 |
. . . . . 6
⊢ ((¬
∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉) ∧ (𝑈 ∈ 𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) → (dom 𝑇 ∈ {𝑧 ∣ ∃𝑝 ∈ 𝐵 (𝑧 ∈ dom 𝑝 ∧ ∀𝑞 ∈ 𝐵 (¬ 𝑝 <s 𝑞 → (𝑝 ↾ suc 𝑧) = (𝑞 ↾ suc 𝑧)))} ↔ ∃𝑝 ∈ 𝐵 (dom 𝑇 ∈ dom 𝑝 ∧ ∀𝑞 ∈ 𝐵 (¬ 𝑝 <s 𝑞 → (𝑝 ↾ suc dom 𝑇) = (𝑞 ↾ suc dom 𝑇))))) |
67 | 55, 66 | bitrd 282 |
. . . . 5
⊢ ((¬
∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉) ∧ (𝑈 ∈ 𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) → (dom 𝑇 ∈ dom 𝑇 ↔ ∃𝑝 ∈ 𝐵 (dom 𝑇 ∈ dom 𝑝 ∧ ∀𝑞 ∈ 𝐵 (¬ 𝑝 <s 𝑞 → (𝑝 ↾ suc dom 𝑇) = (𝑞 ↾ suc dom 𝑇))))) |
68 | 67 | adantr 484 |
. . . 4
⊢ (((¬
∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉) ∧ (𝑈 ∈ 𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 1o) → (dom 𝑇 ∈ dom 𝑇 ↔ ∃𝑝 ∈ 𝐵 (dom 𝑇 ∈ dom 𝑝 ∧ ∀𝑞 ∈ 𝐵 (¬ 𝑝 <s 𝑞 → (𝑝 ↾ suc dom 𝑇) = (𝑞 ↾ suc dom 𝑇))))) |
69 | 52, 68 | mpbird 260 |
. . 3
⊢ (((¬
∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉) ∧ (𝑈 ∈ 𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 1o) → dom 𝑇 ∈ dom 𝑇) |
70 | 6, 69 | mtand 815 |
. 2
⊢ ((¬
∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉) ∧ (𝑈 ∈ 𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) → ¬ (𝑈‘dom 𝑇) = 1o) |
71 | 70 | neqned 2958 |
1
⊢ ((¬
∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉) ∧ (𝑈 ∈ 𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) → (𝑈‘dom 𝑇) ≠ 1o) |