Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  noinfbnd1lem3 Structured version   Visualization version   GIF version

Theorem noinfbnd1lem3 33855
Description: Lemma for noinfbnd1 33859. If 𝑈 is a prolongment of 𝑇 and in 𝐵, then (𝑈‘dom 𝑇) is not 1o. (Contributed by Scott Fenton, 9-Aug-2024.)
Hypothesis
Ref Expression
noinfbnd1.1 𝑇 = if(∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥, ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
Assertion
Ref Expression
noinfbnd1lem3 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) → (𝑈‘dom 𝑇) ≠ 1o)
Distinct variable groups:   𝐵,𝑔,𝑢,𝑣,𝑥,𝑦   𝑣,𝑈   𝑥,𝑢,𝑦   𝑔,𝑉   𝑥,𝑣,𝑦
Allowed substitution hints:   𝑇(𝑥,𝑦,𝑣,𝑢,𝑔)   𝑈(𝑥,𝑦,𝑢,𝑔)   𝑉(𝑥,𝑦,𝑣,𝑢)

Proof of Theorem noinfbnd1lem3
Dummy variables 𝑝 𝑞 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 noinfbnd1.1 . . . . . 6 𝑇 = if(∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥, ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
21noinfno 33848 . . . . 5 ((𝐵 No 𝐵𝑉) → 𝑇 No )
323ad2ant2 1132 . . . 4 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) → 𝑇 No )
4 nodmord 33783 . . . 4 (𝑇 No → Ord dom 𝑇)
5 ordirr 6269 . . . 4 (Ord dom 𝑇 → ¬ dom 𝑇 ∈ dom 𝑇)
63, 4, 53syl 18 . . 3 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) → ¬ dom 𝑇 ∈ dom 𝑇)
7 simpl3l 1226 . . . . 5 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 1o) → 𝑈𝐵)
8 ndmfv 6786 . . . . . . . 8 (¬ dom 𝑇 ∈ dom 𝑈 → (𝑈‘dom 𝑇) = ∅)
9 1n0 8286 . . . . . . . . . . 11 1o ≠ ∅
109necomi 2997 . . . . . . . . . 10 ∅ ≠ 1o
11 neeq1 3005 . . . . . . . . . 10 ((𝑈‘dom 𝑇) = ∅ → ((𝑈‘dom 𝑇) ≠ 1o ↔ ∅ ≠ 1o))
1210, 11mpbiri 257 . . . . . . . . 9 ((𝑈‘dom 𝑇) = ∅ → (𝑈‘dom 𝑇) ≠ 1o)
1312neneqd 2947 . . . . . . . 8 ((𝑈‘dom 𝑇) = ∅ → ¬ (𝑈‘dom 𝑇) = 1o)
148, 13syl 17 . . . . . . 7 (¬ dom 𝑇 ∈ dom 𝑈 → ¬ (𝑈‘dom 𝑇) = 1o)
1514con4i 114 . . . . . 6 ((𝑈‘dom 𝑇) = 1o → dom 𝑇 ∈ dom 𝑈)
1615adantl 481 . . . . 5 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 1o) → dom 𝑇 ∈ dom 𝑈)
17 simpl2l 1224 . . . . . . . . . 10 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 1o) → 𝐵 No )
1817, 7sseldd 3918 . . . . . . . . 9 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 1o) → 𝑈 No )
1918adantr 480 . . . . . . . 8 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 1o) ∧ (𝑞𝐵 ∧ ¬ 𝑈 <s 𝑞)) → 𝑈 No )
2017adantr 480 . . . . . . . . 9 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 1o) ∧ (𝑞𝐵 ∧ ¬ 𝑈 <s 𝑞)) → 𝐵 No )
21 simprl 767 . . . . . . . . 9 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 1o) ∧ (𝑞𝐵 ∧ ¬ 𝑈 <s 𝑞)) → 𝑞𝐵)
2220, 21sseldd 3918 . . . . . . . 8 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 1o) ∧ (𝑞𝐵 ∧ ¬ 𝑈 <s 𝑞)) → 𝑞 No )
233adantr 480 . . . . . . . . . 10 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 1o) → 𝑇 No )
24 nodmon 33780 . . . . . . . . . 10 (𝑇 No → dom 𝑇 ∈ On)
2523, 24syl 17 . . . . . . . . 9 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 1o) → dom 𝑇 ∈ On)
2625adantr 480 . . . . . . . 8 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 1o) ∧ (𝑞𝐵 ∧ ¬ 𝑈 <s 𝑞)) → dom 𝑇 ∈ On)
27 simpl3r 1227 . . . . . . . . . 10 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 1o) → (𝑈 ↾ dom 𝑇) = 𝑇)
2827adantr 480 . . . . . . . . 9 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 1o) ∧ (𝑞𝐵 ∧ ¬ 𝑈 <s 𝑞)) → (𝑈 ↾ dom 𝑇) = 𝑇)
29 simpll1 1210 . . . . . . . . . 10 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 1o) ∧ (𝑞𝐵 ∧ ¬ 𝑈 <s 𝑞)) → ¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)
30 simpll2 1211 . . . . . . . . . 10 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 1o) ∧ (𝑞𝐵 ∧ ¬ 𝑈 <s 𝑞)) → (𝐵 No 𝐵𝑉))
31 simpll3 1212 . . . . . . . . . 10 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 1o) ∧ (𝑞𝐵 ∧ ¬ 𝑈 <s 𝑞)) → (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇))
32 simpr 484 . . . . . . . . . 10 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 1o) ∧ (𝑞𝐵 ∧ ¬ 𝑈 <s 𝑞)) → (𝑞𝐵 ∧ ¬ 𝑈 <s 𝑞))
331noinfbnd1lem2 33854 . . . . . . . . . 10 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ ((𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇) ∧ (𝑞𝐵 ∧ ¬ 𝑈 <s 𝑞))) → (𝑞 ↾ dom 𝑇) = 𝑇)
3429, 30, 31, 32, 33syl112anc 1372 . . . . . . . . 9 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 1o) ∧ (𝑞𝐵 ∧ ¬ 𝑈 <s 𝑞)) → (𝑞 ↾ dom 𝑇) = 𝑇)
3528, 34eqtr4d 2781 . . . . . . . 8 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 1o) ∧ (𝑞𝐵 ∧ ¬ 𝑈 <s 𝑞)) → (𝑈 ↾ dom 𝑇) = (𝑞 ↾ dom 𝑇))
36 simplr 765 . . . . . . . 8 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 1o) ∧ (𝑞𝐵 ∧ ¬ 𝑈 <s 𝑞)) → (𝑈‘dom 𝑇) = 1o)
37 simprr 769 . . . . . . . 8 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 1o) ∧ (𝑞𝐵 ∧ ¬ 𝑈 <s 𝑞)) → ¬ 𝑈 <s 𝑞)
38 nogesgn1ores 33804 . . . . . . . 8 (((𝑈 No 𝑞 No ∧ dom 𝑇 ∈ On) ∧ ((𝑈 ↾ dom 𝑇) = (𝑞 ↾ dom 𝑇) ∧ (𝑈‘dom 𝑇) = 1o) ∧ ¬ 𝑈 <s 𝑞) → (𝑈 ↾ suc dom 𝑇) = (𝑞 ↾ suc dom 𝑇))
3919, 22, 26, 35, 36, 37, 38syl321anc 1390 . . . . . . 7 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 1o) ∧ (𝑞𝐵 ∧ ¬ 𝑈 <s 𝑞)) → (𝑈 ↾ suc dom 𝑇) = (𝑞 ↾ suc dom 𝑇))
4039expr 456 . . . . . 6 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 1o) ∧ 𝑞𝐵) → (¬ 𝑈 <s 𝑞 → (𝑈 ↾ suc dom 𝑇) = (𝑞 ↾ suc dom 𝑇)))
4140ralrimiva 3107 . . . . 5 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 1o) → ∀𝑞𝐵𝑈 <s 𝑞 → (𝑈 ↾ suc dom 𝑇) = (𝑞 ↾ suc dom 𝑇)))
42 dmeq 5801 . . . . . . . 8 (𝑝 = 𝑈 → dom 𝑝 = dom 𝑈)
4342eleq2d 2824 . . . . . . 7 (𝑝 = 𝑈 → (dom 𝑇 ∈ dom 𝑝 ↔ dom 𝑇 ∈ dom 𝑈))
44 breq1 5073 . . . . . . . . . 10 (𝑝 = 𝑈 → (𝑝 <s 𝑞𝑈 <s 𝑞))
4544notbid 317 . . . . . . . . 9 (𝑝 = 𝑈 → (¬ 𝑝 <s 𝑞 ↔ ¬ 𝑈 <s 𝑞))
46 reseq1 5874 . . . . . . . . . 10 (𝑝 = 𝑈 → (𝑝 ↾ suc dom 𝑇) = (𝑈 ↾ suc dom 𝑇))
4746eqeq1d 2740 . . . . . . . . 9 (𝑝 = 𝑈 → ((𝑝 ↾ suc dom 𝑇) = (𝑞 ↾ suc dom 𝑇) ↔ (𝑈 ↾ suc dom 𝑇) = (𝑞 ↾ suc dom 𝑇)))
4845, 47imbi12d 344 . . . . . . . 8 (𝑝 = 𝑈 → ((¬ 𝑝 <s 𝑞 → (𝑝 ↾ suc dom 𝑇) = (𝑞 ↾ suc dom 𝑇)) ↔ (¬ 𝑈 <s 𝑞 → (𝑈 ↾ suc dom 𝑇) = (𝑞 ↾ suc dom 𝑇))))
4948ralbidv 3120 . . . . . . 7 (𝑝 = 𝑈 → (∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc dom 𝑇) = (𝑞 ↾ suc dom 𝑇)) ↔ ∀𝑞𝐵𝑈 <s 𝑞 → (𝑈 ↾ suc dom 𝑇) = (𝑞 ↾ suc dom 𝑇))))
5043, 49anbi12d 630 . . . . . 6 (𝑝 = 𝑈 → ((dom 𝑇 ∈ dom 𝑝 ∧ ∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc dom 𝑇) = (𝑞 ↾ suc dom 𝑇))) ↔ (dom 𝑇 ∈ dom 𝑈 ∧ ∀𝑞𝐵𝑈 <s 𝑞 → (𝑈 ↾ suc dom 𝑇) = (𝑞 ↾ suc dom 𝑇)))))
5150rspcev 3552 . . . . 5 ((𝑈𝐵 ∧ (dom 𝑇 ∈ dom 𝑈 ∧ ∀𝑞𝐵𝑈 <s 𝑞 → (𝑈 ↾ suc dom 𝑇) = (𝑞 ↾ suc dom 𝑇)))) → ∃𝑝𝐵 (dom 𝑇 ∈ dom 𝑝 ∧ ∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc dom 𝑇) = (𝑞 ↾ suc dom 𝑇))))
527, 16, 41, 51syl12anc 833 . . . 4 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 1o) → ∃𝑝𝐵 (dom 𝑇 ∈ dom 𝑝 ∧ ∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc dom 𝑇) = (𝑞 ↾ suc dom 𝑇))))
531noinfdm 33849 . . . . . . . 8 (¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 → dom 𝑇 = {𝑧 ∣ ∃𝑝𝐵 (𝑧 ∈ dom 𝑝 ∧ ∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc 𝑧) = (𝑞 ↾ suc 𝑧)))})
5453eleq2d 2824 . . . . . . 7 (¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 → (dom 𝑇 ∈ dom 𝑇 ↔ dom 𝑇 ∈ {𝑧 ∣ ∃𝑝𝐵 (𝑧 ∈ dom 𝑝 ∧ ∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc 𝑧) = (𝑞 ↾ suc 𝑧)))}))
55543ad2ant1 1131 . . . . . 6 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) → (dom 𝑇 ∈ dom 𝑇 ↔ dom 𝑇 ∈ {𝑧 ∣ ∃𝑝𝐵 (𝑧 ∈ dom 𝑝 ∧ ∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc 𝑧) = (𝑞 ↾ suc 𝑧)))}))
56 eleq1 2826 . . . . . . . . . 10 (𝑧 = dom 𝑇 → (𝑧 ∈ dom 𝑝 ↔ dom 𝑇 ∈ dom 𝑝))
57 suceq 6316 . . . . . . . . . . . . . 14 (𝑧 = dom 𝑇 → suc 𝑧 = suc dom 𝑇)
5857reseq2d 5880 . . . . . . . . . . . . 13 (𝑧 = dom 𝑇 → (𝑝 ↾ suc 𝑧) = (𝑝 ↾ suc dom 𝑇))
5957reseq2d 5880 . . . . . . . . . . . . 13 (𝑧 = dom 𝑇 → (𝑞 ↾ suc 𝑧) = (𝑞 ↾ suc dom 𝑇))
6058, 59eqeq12d 2754 . . . . . . . . . . . 12 (𝑧 = dom 𝑇 → ((𝑝 ↾ suc 𝑧) = (𝑞 ↾ suc 𝑧) ↔ (𝑝 ↾ suc dom 𝑇) = (𝑞 ↾ suc dom 𝑇)))
6160imbi2d 340 . . . . . . . . . . 11 (𝑧 = dom 𝑇 → ((¬ 𝑝 <s 𝑞 → (𝑝 ↾ suc 𝑧) = (𝑞 ↾ suc 𝑧)) ↔ (¬ 𝑝 <s 𝑞 → (𝑝 ↾ suc dom 𝑇) = (𝑞 ↾ suc dom 𝑇))))
6261ralbidv 3120 . . . . . . . . . 10 (𝑧 = dom 𝑇 → (∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc 𝑧) = (𝑞 ↾ suc 𝑧)) ↔ ∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc dom 𝑇) = (𝑞 ↾ suc dom 𝑇))))
6356, 62anbi12d 630 . . . . . . . . 9 (𝑧 = dom 𝑇 → ((𝑧 ∈ dom 𝑝 ∧ ∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc 𝑧) = (𝑞 ↾ suc 𝑧))) ↔ (dom 𝑇 ∈ dom 𝑝 ∧ ∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc dom 𝑇) = (𝑞 ↾ suc dom 𝑇)))))
6463rexbidv 3225 . . . . . . . 8 (𝑧 = dom 𝑇 → (∃𝑝𝐵 (𝑧 ∈ dom 𝑝 ∧ ∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc 𝑧) = (𝑞 ↾ suc 𝑧))) ↔ ∃𝑝𝐵 (dom 𝑇 ∈ dom 𝑝 ∧ ∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc dom 𝑇) = (𝑞 ↾ suc dom 𝑇)))))
6564elabg 3600 . . . . . . 7 (dom 𝑇 ∈ On → (dom 𝑇 ∈ {𝑧 ∣ ∃𝑝𝐵 (𝑧 ∈ dom 𝑝 ∧ ∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc 𝑧) = (𝑞 ↾ suc 𝑧)))} ↔ ∃𝑝𝐵 (dom 𝑇 ∈ dom 𝑝 ∧ ∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc dom 𝑇) = (𝑞 ↾ suc dom 𝑇)))))
663, 24, 653syl 18 . . . . . 6 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) → (dom 𝑇 ∈ {𝑧 ∣ ∃𝑝𝐵 (𝑧 ∈ dom 𝑝 ∧ ∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc 𝑧) = (𝑞 ↾ suc 𝑧)))} ↔ ∃𝑝𝐵 (dom 𝑇 ∈ dom 𝑝 ∧ ∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc dom 𝑇) = (𝑞 ↾ suc dom 𝑇)))))
6755, 66bitrd 278 . . . . 5 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) → (dom 𝑇 ∈ dom 𝑇 ↔ ∃𝑝𝐵 (dom 𝑇 ∈ dom 𝑝 ∧ ∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc dom 𝑇) = (𝑞 ↾ suc dom 𝑇)))))
6867adantr 480 . . . 4 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 1o) → (dom 𝑇 ∈ dom 𝑇 ↔ ∃𝑝𝐵 (dom 𝑇 ∈ dom 𝑝 ∧ ∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc dom 𝑇) = (𝑞 ↾ suc dom 𝑇)))))
6952, 68mpbird 256 . . 3 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 1o) → dom 𝑇 ∈ dom 𝑇)
706, 69mtand 812 . 2 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) → ¬ (𝑈‘dom 𝑇) = 1o)
7170neqned 2949 1 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) → (𝑈‘dom 𝑇) ≠ 1o)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  {cab 2715  wne 2942  wral 3063  wrex 3064  cun 3881  wss 3883  c0 4253  ifcif 4456  {csn 4558  cop 4564   class class class wbr 5070  cmpt 5153  dom cdm 5580  cres 5582  Ord word 6250  Oncon0 6251  suc csuc 6253  cio 6374  cfv 6418  crio 7211  1oc1o 8260   No csur 33770   <s cslt 33771
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-ord 6254  df-on 6255  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-1o 8267  df-2o 8268  df-no 33773  df-slt 33774  df-bday 33775
This theorem is referenced by:  noinfbnd1lem4  33856  noinfbnd1lem5  33857  noinfbnd1lem6  33858
  Copyright terms: Public domain W3C validator