Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  noinfbnd1lem3 Structured version   Visualization version   GIF version

Theorem noinfbnd1lem3 33493
Description: Lemma for noinfbnd1 33497. If 𝑈 is a prolongment of 𝑇 and in 𝐵, then (𝑈‘dom 𝑇) is not 1o. (Contributed by Scott Fenton, 9-Aug-2024.)
Hypothesis
Ref Expression
noinfbnd1.1 𝑇 = if(∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥, ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
Assertion
Ref Expression
noinfbnd1lem3 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) → (𝑈‘dom 𝑇) ≠ 1o)
Distinct variable groups:   𝐵,𝑔,𝑢,𝑣,𝑥,𝑦   𝑣,𝑈   𝑥,𝑢,𝑦   𝑔,𝑉   𝑥,𝑣,𝑦
Allowed substitution hints:   𝑇(𝑥,𝑦,𝑣,𝑢,𝑔)   𝑈(𝑥,𝑦,𝑢,𝑔)   𝑉(𝑥,𝑦,𝑣,𝑢)

Proof of Theorem noinfbnd1lem3
Dummy variables 𝑝 𝑞 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 noinfbnd1.1 . . . . . 6 𝑇 = if(∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥, ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
21noinfno 33486 . . . . 5 ((𝐵 No 𝐵𝑉) → 𝑇 No )
323ad2ant2 1131 . . . 4 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) → 𝑇 No )
4 nodmord 33421 . . . 4 (𝑇 No → Ord dom 𝑇)
5 ordirr 6187 . . . 4 (Ord dom 𝑇 → ¬ dom 𝑇 ∈ dom 𝑇)
63, 4, 53syl 18 . . 3 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) → ¬ dom 𝑇 ∈ dom 𝑇)
7 simpl3l 1225 . . . . 5 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 1o) → 𝑈𝐵)
8 ndmfv 6688 . . . . . . . 8 (¬ dom 𝑇 ∈ dom 𝑈 → (𝑈‘dom 𝑇) = ∅)
9 1n0 8129 . . . . . . . . . . 11 1o ≠ ∅
109necomi 3005 . . . . . . . . . 10 ∅ ≠ 1o
11 neeq1 3013 . . . . . . . . . 10 ((𝑈‘dom 𝑇) = ∅ → ((𝑈‘dom 𝑇) ≠ 1o ↔ ∅ ≠ 1o))
1210, 11mpbiri 261 . . . . . . . . 9 ((𝑈‘dom 𝑇) = ∅ → (𝑈‘dom 𝑇) ≠ 1o)
1312neneqd 2956 . . . . . . . 8 ((𝑈‘dom 𝑇) = ∅ → ¬ (𝑈‘dom 𝑇) = 1o)
148, 13syl 17 . . . . . . 7 (¬ dom 𝑇 ∈ dom 𝑈 → ¬ (𝑈‘dom 𝑇) = 1o)
1514con4i 114 . . . . . 6 ((𝑈‘dom 𝑇) = 1o → dom 𝑇 ∈ dom 𝑈)
1615adantl 485 . . . . 5 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 1o) → dom 𝑇 ∈ dom 𝑈)
17 simpl2l 1223 . . . . . . . . . 10 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 1o) → 𝐵 No )
1817, 7sseldd 3893 . . . . . . . . 9 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 1o) → 𝑈 No )
1918adantr 484 . . . . . . . 8 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 1o) ∧ (𝑞𝐵 ∧ ¬ 𝑈 <s 𝑞)) → 𝑈 No )
2017adantr 484 . . . . . . . . 9 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 1o) ∧ (𝑞𝐵 ∧ ¬ 𝑈 <s 𝑞)) → 𝐵 No )
21 simprl 770 . . . . . . . . 9 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 1o) ∧ (𝑞𝐵 ∧ ¬ 𝑈 <s 𝑞)) → 𝑞𝐵)
2220, 21sseldd 3893 . . . . . . . 8 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 1o) ∧ (𝑞𝐵 ∧ ¬ 𝑈 <s 𝑞)) → 𝑞 No )
233adantr 484 . . . . . . . . . 10 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 1o) → 𝑇 No )
24 nodmon 33418 . . . . . . . . . 10 (𝑇 No → dom 𝑇 ∈ On)
2523, 24syl 17 . . . . . . . . 9 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 1o) → dom 𝑇 ∈ On)
2625adantr 484 . . . . . . . 8 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 1o) ∧ (𝑞𝐵 ∧ ¬ 𝑈 <s 𝑞)) → dom 𝑇 ∈ On)
27 simpl3r 1226 . . . . . . . . . 10 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 1o) → (𝑈 ↾ dom 𝑇) = 𝑇)
2827adantr 484 . . . . . . . . 9 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 1o) ∧ (𝑞𝐵 ∧ ¬ 𝑈 <s 𝑞)) → (𝑈 ↾ dom 𝑇) = 𝑇)
29 simpll1 1209 . . . . . . . . . 10 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 1o) ∧ (𝑞𝐵 ∧ ¬ 𝑈 <s 𝑞)) → ¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)
30 simpll2 1210 . . . . . . . . . 10 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 1o) ∧ (𝑞𝐵 ∧ ¬ 𝑈 <s 𝑞)) → (𝐵 No 𝐵𝑉))
31 simpll3 1211 . . . . . . . . . 10 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 1o) ∧ (𝑞𝐵 ∧ ¬ 𝑈 <s 𝑞)) → (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇))
32 simpr 488 . . . . . . . . . 10 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 1o) ∧ (𝑞𝐵 ∧ ¬ 𝑈 <s 𝑞)) → (𝑞𝐵 ∧ ¬ 𝑈 <s 𝑞))
331noinfbnd1lem2 33492 . . . . . . . . . 10 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ ((𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇) ∧ (𝑞𝐵 ∧ ¬ 𝑈 <s 𝑞))) → (𝑞 ↾ dom 𝑇) = 𝑇)
3429, 30, 31, 32, 33syl112anc 1371 . . . . . . . . 9 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 1o) ∧ (𝑞𝐵 ∧ ¬ 𝑈 <s 𝑞)) → (𝑞 ↾ dom 𝑇) = 𝑇)
3528, 34eqtr4d 2796 . . . . . . . 8 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 1o) ∧ (𝑞𝐵 ∧ ¬ 𝑈 <s 𝑞)) → (𝑈 ↾ dom 𝑇) = (𝑞 ↾ dom 𝑇))
36 simplr 768 . . . . . . . 8 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 1o) ∧ (𝑞𝐵 ∧ ¬ 𝑈 <s 𝑞)) → (𝑈‘dom 𝑇) = 1o)
37 simprr 772 . . . . . . . 8 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 1o) ∧ (𝑞𝐵 ∧ ¬ 𝑈 <s 𝑞)) → ¬ 𝑈 <s 𝑞)
38 nogesgn1ores 33442 . . . . . . . 8 (((𝑈 No 𝑞 No ∧ dom 𝑇 ∈ On) ∧ ((𝑈 ↾ dom 𝑇) = (𝑞 ↾ dom 𝑇) ∧ (𝑈‘dom 𝑇) = 1o) ∧ ¬ 𝑈 <s 𝑞) → (𝑈 ↾ suc dom 𝑇) = (𝑞 ↾ suc dom 𝑇))
3919, 22, 26, 35, 36, 37, 38syl321anc 1389 . . . . . . 7 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 1o) ∧ (𝑞𝐵 ∧ ¬ 𝑈 <s 𝑞)) → (𝑈 ↾ suc dom 𝑇) = (𝑞 ↾ suc dom 𝑇))
4039expr 460 . . . . . 6 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 1o) ∧ 𝑞𝐵) → (¬ 𝑈 <s 𝑞 → (𝑈 ↾ suc dom 𝑇) = (𝑞 ↾ suc dom 𝑇)))
4140ralrimiva 3113 . . . . 5 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 1o) → ∀𝑞𝐵𝑈 <s 𝑞 → (𝑈 ↾ suc dom 𝑇) = (𝑞 ↾ suc dom 𝑇)))
42 dmeq 5743 . . . . . . . 8 (𝑝 = 𝑈 → dom 𝑝 = dom 𝑈)
4342eleq2d 2837 . . . . . . 7 (𝑝 = 𝑈 → (dom 𝑇 ∈ dom 𝑝 ↔ dom 𝑇 ∈ dom 𝑈))
44 breq1 5035 . . . . . . . . . 10 (𝑝 = 𝑈 → (𝑝 <s 𝑞𝑈 <s 𝑞))
4544notbid 321 . . . . . . . . 9 (𝑝 = 𝑈 → (¬ 𝑝 <s 𝑞 ↔ ¬ 𝑈 <s 𝑞))
46 reseq1 5817 . . . . . . . . . 10 (𝑝 = 𝑈 → (𝑝 ↾ suc dom 𝑇) = (𝑈 ↾ suc dom 𝑇))
4746eqeq1d 2760 . . . . . . . . 9 (𝑝 = 𝑈 → ((𝑝 ↾ suc dom 𝑇) = (𝑞 ↾ suc dom 𝑇) ↔ (𝑈 ↾ suc dom 𝑇) = (𝑞 ↾ suc dom 𝑇)))
4845, 47imbi12d 348 . . . . . . . 8 (𝑝 = 𝑈 → ((¬ 𝑝 <s 𝑞 → (𝑝 ↾ suc dom 𝑇) = (𝑞 ↾ suc dom 𝑇)) ↔ (¬ 𝑈 <s 𝑞 → (𝑈 ↾ suc dom 𝑇) = (𝑞 ↾ suc dom 𝑇))))
4948ralbidv 3126 . . . . . . 7 (𝑝 = 𝑈 → (∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc dom 𝑇) = (𝑞 ↾ suc dom 𝑇)) ↔ ∀𝑞𝐵𝑈 <s 𝑞 → (𝑈 ↾ suc dom 𝑇) = (𝑞 ↾ suc dom 𝑇))))
5043, 49anbi12d 633 . . . . . 6 (𝑝 = 𝑈 → ((dom 𝑇 ∈ dom 𝑝 ∧ ∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc dom 𝑇) = (𝑞 ↾ suc dom 𝑇))) ↔ (dom 𝑇 ∈ dom 𝑈 ∧ ∀𝑞𝐵𝑈 <s 𝑞 → (𝑈 ↾ suc dom 𝑇) = (𝑞 ↾ suc dom 𝑇)))))
5150rspcev 3541 . . . . 5 ((𝑈𝐵 ∧ (dom 𝑇 ∈ dom 𝑈 ∧ ∀𝑞𝐵𝑈 <s 𝑞 → (𝑈 ↾ suc dom 𝑇) = (𝑞 ↾ suc dom 𝑇)))) → ∃𝑝𝐵 (dom 𝑇 ∈ dom 𝑝 ∧ ∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc dom 𝑇) = (𝑞 ↾ suc dom 𝑇))))
527, 16, 41, 51syl12anc 835 . . . 4 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 1o) → ∃𝑝𝐵 (dom 𝑇 ∈ dom 𝑝 ∧ ∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc dom 𝑇) = (𝑞 ↾ suc dom 𝑇))))
531noinfdm 33487 . . . . . . . 8 (¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 → dom 𝑇 = {𝑧 ∣ ∃𝑝𝐵 (𝑧 ∈ dom 𝑝 ∧ ∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc 𝑧) = (𝑞 ↾ suc 𝑧)))})
5453eleq2d 2837 . . . . . . 7 (¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 → (dom 𝑇 ∈ dom 𝑇 ↔ dom 𝑇 ∈ {𝑧 ∣ ∃𝑝𝐵 (𝑧 ∈ dom 𝑝 ∧ ∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc 𝑧) = (𝑞 ↾ suc 𝑧)))}))
55543ad2ant1 1130 . . . . . 6 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) → (dom 𝑇 ∈ dom 𝑇 ↔ dom 𝑇 ∈ {𝑧 ∣ ∃𝑝𝐵 (𝑧 ∈ dom 𝑝 ∧ ∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc 𝑧) = (𝑞 ↾ suc 𝑧)))}))
56 eleq1 2839 . . . . . . . . . 10 (𝑧 = dom 𝑇 → (𝑧 ∈ dom 𝑝 ↔ dom 𝑇 ∈ dom 𝑝))
57 suceq 6234 . . . . . . . . . . . . . 14 (𝑧 = dom 𝑇 → suc 𝑧 = suc dom 𝑇)
5857reseq2d 5823 . . . . . . . . . . . . 13 (𝑧 = dom 𝑇 → (𝑝 ↾ suc 𝑧) = (𝑝 ↾ suc dom 𝑇))
5957reseq2d 5823 . . . . . . . . . . . . 13 (𝑧 = dom 𝑇 → (𝑞 ↾ suc 𝑧) = (𝑞 ↾ suc dom 𝑇))
6058, 59eqeq12d 2774 . . . . . . . . . . . 12 (𝑧 = dom 𝑇 → ((𝑝 ↾ suc 𝑧) = (𝑞 ↾ suc 𝑧) ↔ (𝑝 ↾ suc dom 𝑇) = (𝑞 ↾ suc dom 𝑇)))
6160imbi2d 344 . . . . . . . . . . 11 (𝑧 = dom 𝑇 → ((¬ 𝑝 <s 𝑞 → (𝑝 ↾ suc 𝑧) = (𝑞 ↾ suc 𝑧)) ↔ (¬ 𝑝 <s 𝑞 → (𝑝 ↾ suc dom 𝑇) = (𝑞 ↾ suc dom 𝑇))))
6261ralbidv 3126 . . . . . . . . . 10 (𝑧 = dom 𝑇 → (∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc 𝑧) = (𝑞 ↾ suc 𝑧)) ↔ ∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc dom 𝑇) = (𝑞 ↾ suc dom 𝑇))))
6356, 62anbi12d 633 . . . . . . . . 9 (𝑧 = dom 𝑇 → ((𝑧 ∈ dom 𝑝 ∧ ∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc 𝑧) = (𝑞 ↾ suc 𝑧))) ↔ (dom 𝑇 ∈ dom 𝑝 ∧ ∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc dom 𝑇) = (𝑞 ↾ suc dom 𝑇)))))
6463rexbidv 3221 . . . . . . . 8 (𝑧 = dom 𝑇 → (∃𝑝𝐵 (𝑧 ∈ dom 𝑝 ∧ ∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc 𝑧) = (𝑞 ↾ suc 𝑧))) ↔ ∃𝑝𝐵 (dom 𝑇 ∈ dom 𝑝 ∧ ∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc dom 𝑇) = (𝑞 ↾ suc dom 𝑇)))))
6564elabg 3587 . . . . . . 7 (dom 𝑇 ∈ On → (dom 𝑇 ∈ {𝑧 ∣ ∃𝑝𝐵 (𝑧 ∈ dom 𝑝 ∧ ∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc 𝑧) = (𝑞 ↾ suc 𝑧)))} ↔ ∃𝑝𝐵 (dom 𝑇 ∈ dom 𝑝 ∧ ∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc dom 𝑇) = (𝑞 ↾ suc dom 𝑇)))))
663, 24, 653syl 18 . . . . . 6 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) → (dom 𝑇 ∈ {𝑧 ∣ ∃𝑝𝐵 (𝑧 ∈ dom 𝑝 ∧ ∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc 𝑧) = (𝑞 ↾ suc 𝑧)))} ↔ ∃𝑝𝐵 (dom 𝑇 ∈ dom 𝑝 ∧ ∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc dom 𝑇) = (𝑞 ↾ suc dom 𝑇)))))
6755, 66bitrd 282 . . . . 5 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) → (dom 𝑇 ∈ dom 𝑇 ↔ ∃𝑝𝐵 (dom 𝑇 ∈ dom 𝑝 ∧ ∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc dom 𝑇) = (𝑞 ↾ suc dom 𝑇)))))
6867adantr 484 . . . 4 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 1o) → (dom 𝑇 ∈ dom 𝑇 ↔ ∃𝑝𝐵 (dom 𝑇 ∈ dom 𝑝 ∧ ∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc dom 𝑇) = (𝑞 ↾ suc dom 𝑇)))))
6952, 68mpbird 260 . . 3 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 1o) → dom 𝑇 ∈ dom 𝑇)
706, 69mtand 815 . 2 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) → ¬ (𝑈‘dom 𝑇) = 1o)
7170neqned 2958 1 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) → (𝑈‘dom 𝑇) ≠ 1o)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111  {cab 2735  wne 2951  wral 3070  wrex 3071  cun 3856  wss 3858  c0 4225  ifcif 4420  {csn 4522  cop 4528   class class class wbr 5032  cmpt 5112  dom cdm 5524  cres 5526  Ord word 6168  Oncon0 6169  suc csuc 6171  cio 6292  cfv 6335  crio 7107  1oc1o 8105   No csur 33408   <s cslt 33409
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5156  ax-sep 5169  ax-nul 5176  ax-pr 5298  ax-un 7459
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3697  df-csb 3806  df-dif 3861  df-un 3863  df-in 3865  df-ss 3875  df-pss 3877  df-nul 4226  df-if 4421  df-pw 4496  df-sn 4523  df-pr 4525  df-tp 4527  df-op 4529  df-uni 4799  df-int 4839  df-iun 4885  df-br 5033  df-opab 5095  df-mpt 5113  df-tr 5139  df-id 5430  df-eprel 5435  df-po 5443  df-so 5444  df-fr 5483  df-we 5485  df-xp 5530  df-rel 5531  df-cnv 5532  df-co 5533  df-dm 5534  df-rn 5535  df-res 5536  df-ima 5537  df-ord 6172  df-on 6173  df-suc 6175  df-iota 6294  df-fun 6337  df-fn 6338  df-f 6339  df-f1 6340  df-fo 6341  df-f1o 6342  df-fv 6343  df-riota 7108  df-1o 8112  df-2o 8113  df-no 33411  df-slt 33412  df-bday 33413
This theorem is referenced by:  noinfbnd1lem4  33494  noinfbnd1lem5  33495  noinfbnd1lem6  33496
  Copyright terms: Public domain W3C validator