MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  noinfbnd1lem3 Structured version   Visualization version   GIF version

Theorem noinfbnd1lem3 27785
Description: Lemma for noinfbnd1 27789. If 𝑈 is a prolongment of 𝑇 and in 𝐵, then (𝑈‘dom 𝑇) is not 1o. (Contributed by Scott Fenton, 9-Aug-2024.)
Hypothesis
Ref Expression
noinfbnd1.1 𝑇 = if(∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥, ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
Assertion
Ref Expression
noinfbnd1lem3 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) → (𝑈‘dom 𝑇) ≠ 1o)
Distinct variable groups:   𝐵,𝑔,𝑢,𝑣,𝑥,𝑦   𝑣,𝑈   𝑥,𝑢,𝑦   𝑔,𝑉   𝑥,𝑣,𝑦
Allowed substitution hints:   𝑇(𝑥,𝑦,𝑣,𝑢,𝑔)   𝑈(𝑥,𝑦,𝑢,𝑔)   𝑉(𝑥,𝑦,𝑣,𝑢)

Proof of Theorem noinfbnd1lem3
Dummy variables 𝑝 𝑞 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 noinfbnd1.1 . . . . . 6 𝑇 = if(∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥, ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
21noinfno 27778 . . . . 5 ((𝐵 No 𝐵𝑉) → 𝑇 No )
323ad2ant2 1133 . . . 4 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) → 𝑇 No )
4 nodmord 27713 . . . 4 (𝑇 No → Ord dom 𝑇)
5 ordirr 6404 . . . 4 (Ord dom 𝑇 → ¬ dom 𝑇 ∈ dom 𝑇)
63, 4, 53syl 18 . . 3 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) → ¬ dom 𝑇 ∈ dom 𝑇)
7 simpl3l 1227 . . . . 5 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 1o) → 𝑈𝐵)
8 ndmfv 6942 . . . . . . . 8 (¬ dom 𝑇 ∈ dom 𝑈 → (𝑈‘dom 𝑇) = ∅)
9 1n0 8525 . . . . . . . . . . 11 1o ≠ ∅
109necomi 2993 . . . . . . . . . 10 ∅ ≠ 1o
11 neeq1 3001 . . . . . . . . . 10 ((𝑈‘dom 𝑇) = ∅ → ((𝑈‘dom 𝑇) ≠ 1o ↔ ∅ ≠ 1o))
1210, 11mpbiri 258 . . . . . . . . 9 ((𝑈‘dom 𝑇) = ∅ → (𝑈‘dom 𝑇) ≠ 1o)
1312neneqd 2943 . . . . . . . 8 ((𝑈‘dom 𝑇) = ∅ → ¬ (𝑈‘dom 𝑇) = 1o)
148, 13syl 17 . . . . . . 7 (¬ dom 𝑇 ∈ dom 𝑈 → ¬ (𝑈‘dom 𝑇) = 1o)
1514con4i 114 . . . . . 6 ((𝑈‘dom 𝑇) = 1o → dom 𝑇 ∈ dom 𝑈)
1615adantl 481 . . . . 5 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 1o) → dom 𝑇 ∈ dom 𝑈)
17 simpl2l 1225 . . . . . . . . . 10 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 1o) → 𝐵 No )
1817, 7sseldd 3996 . . . . . . . . 9 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 1o) → 𝑈 No )
1918adantr 480 . . . . . . . 8 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 1o) ∧ (𝑞𝐵 ∧ ¬ 𝑈 <s 𝑞)) → 𝑈 No )
2017adantr 480 . . . . . . . . 9 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 1o) ∧ (𝑞𝐵 ∧ ¬ 𝑈 <s 𝑞)) → 𝐵 No )
21 simprl 771 . . . . . . . . 9 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 1o) ∧ (𝑞𝐵 ∧ ¬ 𝑈 <s 𝑞)) → 𝑞𝐵)
2220, 21sseldd 3996 . . . . . . . 8 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 1o) ∧ (𝑞𝐵 ∧ ¬ 𝑈 <s 𝑞)) → 𝑞 No )
233adantr 480 . . . . . . . . . 10 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 1o) → 𝑇 No )
24 nodmon 27710 . . . . . . . . . 10 (𝑇 No → dom 𝑇 ∈ On)
2523, 24syl 17 . . . . . . . . 9 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 1o) → dom 𝑇 ∈ On)
2625adantr 480 . . . . . . . 8 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 1o) ∧ (𝑞𝐵 ∧ ¬ 𝑈 <s 𝑞)) → dom 𝑇 ∈ On)
27 simpl3r 1228 . . . . . . . . . 10 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 1o) → (𝑈 ↾ dom 𝑇) = 𝑇)
2827adantr 480 . . . . . . . . 9 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 1o) ∧ (𝑞𝐵 ∧ ¬ 𝑈 <s 𝑞)) → (𝑈 ↾ dom 𝑇) = 𝑇)
29 simpll1 1211 . . . . . . . . . 10 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 1o) ∧ (𝑞𝐵 ∧ ¬ 𝑈 <s 𝑞)) → ¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)
30 simpll2 1212 . . . . . . . . . 10 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 1o) ∧ (𝑞𝐵 ∧ ¬ 𝑈 <s 𝑞)) → (𝐵 No 𝐵𝑉))
31 simpll3 1213 . . . . . . . . . 10 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 1o) ∧ (𝑞𝐵 ∧ ¬ 𝑈 <s 𝑞)) → (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇))
32 simpr 484 . . . . . . . . . 10 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 1o) ∧ (𝑞𝐵 ∧ ¬ 𝑈 <s 𝑞)) → (𝑞𝐵 ∧ ¬ 𝑈 <s 𝑞))
331noinfbnd1lem2 27784 . . . . . . . . . 10 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ ((𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇) ∧ (𝑞𝐵 ∧ ¬ 𝑈 <s 𝑞))) → (𝑞 ↾ dom 𝑇) = 𝑇)
3429, 30, 31, 32, 33syl112anc 1373 . . . . . . . . 9 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 1o) ∧ (𝑞𝐵 ∧ ¬ 𝑈 <s 𝑞)) → (𝑞 ↾ dom 𝑇) = 𝑇)
3528, 34eqtr4d 2778 . . . . . . . 8 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 1o) ∧ (𝑞𝐵 ∧ ¬ 𝑈 <s 𝑞)) → (𝑈 ↾ dom 𝑇) = (𝑞 ↾ dom 𝑇))
36 simplr 769 . . . . . . . 8 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 1o) ∧ (𝑞𝐵 ∧ ¬ 𝑈 <s 𝑞)) → (𝑈‘dom 𝑇) = 1o)
37 simprr 773 . . . . . . . 8 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 1o) ∧ (𝑞𝐵 ∧ ¬ 𝑈 <s 𝑞)) → ¬ 𝑈 <s 𝑞)
38 nogesgn1ores 27734 . . . . . . . 8 (((𝑈 No 𝑞 No ∧ dom 𝑇 ∈ On) ∧ ((𝑈 ↾ dom 𝑇) = (𝑞 ↾ dom 𝑇) ∧ (𝑈‘dom 𝑇) = 1o) ∧ ¬ 𝑈 <s 𝑞) → (𝑈 ↾ suc dom 𝑇) = (𝑞 ↾ suc dom 𝑇))
3919, 22, 26, 35, 36, 37, 38syl321anc 1391 . . . . . . 7 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 1o) ∧ (𝑞𝐵 ∧ ¬ 𝑈 <s 𝑞)) → (𝑈 ↾ suc dom 𝑇) = (𝑞 ↾ suc dom 𝑇))
4039expr 456 . . . . . 6 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 1o) ∧ 𝑞𝐵) → (¬ 𝑈 <s 𝑞 → (𝑈 ↾ suc dom 𝑇) = (𝑞 ↾ suc dom 𝑇)))
4140ralrimiva 3144 . . . . 5 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 1o) → ∀𝑞𝐵𝑈 <s 𝑞 → (𝑈 ↾ suc dom 𝑇) = (𝑞 ↾ suc dom 𝑇)))
42 dmeq 5917 . . . . . . . 8 (𝑝 = 𝑈 → dom 𝑝 = dom 𝑈)
4342eleq2d 2825 . . . . . . 7 (𝑝 = 𝑈 → (dom 𝑇 ∈ dom 𝑝 ↔ dom 𝑇 ∈ dom 𝑈))
44 breq1 5151 . . . . . . . . . 10 (𝑝 = 𝑈 → (𝑝 <s 𝑞𝑈 <s 𝑞))
4544notbid 318 . . . . . . . . 9 (𝑝 = 𝑈 → (¬ 𝑝 <s 𝑞 ↔ ¬ 𝑈 <s 𝑞))
46 reseq1 5994 . . . . . . . . . 10 (𝑝 = 𝑈 → (𝑝 ↾ suc dom 𝑇) = (𝑈 ↾ suc dom 𝑇))
4746eqeq1d 2737 . . . . . . . . 9 (𝑝 = 𝑈 → ((𝑝 ↾ suc dom 𝑇) = (𝑞 ↾ suc dom 𝑇) ↔ (𝑈 ↾ suc dom 𝑇) = (𝑞 ↾ suc dom 𝑇)))
4845, 47imbi12d 344 . . . . . . . 8 (𝑝 = 𝑈 → ((¬ 𝑝 <s 𝑞 → (𝑝 ↾ suc dom 𝑇) = (𝑞 ↾ suc dom 𝑇)) ↔ (¬ 𝑈 <s 𝑞 → (𝑈 ↾ suc dom 𝑇) = (𝑞 ↾ suc dom 𝑇))))
4948ralbidv 3176 . . . . . . 7 (𝑝 = 𝑈 → (∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc dom 𝑇) = (𝑞 ↾ suc dom 𝑇)) ↔ ∀𝑞𝐵𝑈 <s 𝑞 → (𝑈 ↾ suc dom 𝑇) = (𝑞 ↾ suc dom 𝑇))))
5043, 49anbi12d 632 . . . . . 6 (𝑝 = 𝑈 → ((dom 𝑇 ∈ dom 𝑝 ∧ ∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc dom 𝑇) = (𝑞 ↾ suc dom 𝑇))) ↔ (dom 𝑇 ∈ dom 𝑈 ∧ ∀𝑞𝐵𝑈 <s 𝑞 → (𝑈 ↾ suc dom 𝑇) = (𝑞 ↾ suc dom 𝑇)))))
5150rspcev 3622 . . . . 5 ((𝑈𝐵 ∧ (dom 𝑇 ∈ dom 𝑈 ∧ ∀𝑞𝐵𝑈 <s 𝑞 → (𝑈 ↾ suc dom 𝑇) = (𝑞 ↾ suc dom 𝑇)))) → ∃𝑝𝐵 (dom 𝑇 ∈ dom 𝑝 ∧ ∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc dom 𝑇) = (𝑞 ↾ suc dom 𝑇))))
527, 16, 41, 51syl12anc 837 . . . 4 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 1o) → ∃𝑝𝐵 (dom 𝑇 ∈ dom 𝑝 ∧ ∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc dom 𝑇) = (𝑞 ↾ suc dom 𝑇))))
531noinfdm 27779 . . . . . . . 8 (¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 → dom 𝑇 = {𝑧 ∣ ∃𝑝𝐵 (𝑧 ∈ dom 𝑝 ∧ ∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc 𝑧) = (𝑞 ↾ suc 𝑧)))})
5453eleq2d 2825 . . . . . . 7 (¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 → (dom 𝑇 ∈ dom 𝑇 ↔ dom 𝑇 ∈ {𝑧 ∣ ∃𝑝𝐵 (𝑧 ∈ dom 𝑝 ∧ ∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc 𝑧) = (𝑞 ↾ suc 𝑧)))}))
55543ad2ant1 1132 . . . . . 6 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) → (dom 𝑇 ∈ dom 𝑇 ↔ dom 𝑇 ∈ {𝑧 ∣ ∃𝑝𝐵 (𝑧 ∈ dom 𝑝 ∧ ∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc 𝑧) = (𝑞 ↾ suc 𝑧)))}))
56 eleq1 2827 . . . . . . . . . 10 (𝑧 = dom 𝑇 → (𝑧 ∈ dom 𝑝 ↔ dom 𝑇 ∈ dom 𝑝))
57 suceq 6452 . . . . . . . . . . . . . 14 (𝑧 = dom 𝑇 → suc 𝑧 = suc dom 𝑇)
5857reseq2d 6000 . . . . . . . . . . . . 13 (𝑧 = dom 𝑇 → (𝑝 ↾ suc 𝑧) = (𝑝 ↾ suc dom 𝑇))
5957reseq2d 6000 . . . . . . . . . . . . 13 (𝑧 = dom 𝑇 → (𝑞 ↾ suc 𝑧) = (𝑞 ↾ suc dom 𝑇))
6058, 59eqeq12d 2751 . . . . . . . . . . . 12 (𝑧 = dom 𝑇 → ((𝑝 ↾ suc 𝑧) = (𝑞 ↾ suc 𝑧) ↔ (𝑝 ↾ suc dom 𝑇) = (𝑞 ↾ suc dom 𝑇)))
6160imbi2d 340 . . . . . . . . . . 11 (𝑧 = dom 𝑇 → ((¬ 𝑝 <s 𝑞 → (𝑝 ↾ suc 𝑧) = (𝑞 ↾ suc 𝑧)) ↔ (¬ 𝑝 <s 𝑞 → (𝑝 ↾ suc dom 𝑇) = (𝑞 ↾ suc dom 𝑇))))
6261ralbidv 3176 . . . . . . . . . 10 (𝑧 = dom 𝑇 → (∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc 𝑧) = (𝑞 ↾ suc 𝑧)) ↔ ∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc dom 𝑇) = (𝑞 ↾ suc dom 𝑇))))
6356, 62anbi12d 632 . . . . . . . . 9 (𝑧 = dom 𝑇 → ((𝑧 ∈ dom 𝑝 ∧ ∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc 𝑧) = (𝑞 ↾ suc 𝑧))) ↔ (dom 𝑇 ∈ dom 𝑝 ∧ ∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc dom 𝑇) = (𝑞 ↾ suc dom 𝑇)))))
6463rexbidv 3177 . . . . . . . 8 (𝑧 = dom 𝑇 → (∃𝑝𝐵 (𝑧 ∈ dom 𝑝 ∧ ∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc 𝑧) = (𝑞 ↾ suc 𝑧))) ↔ ∃𝑝𝐵 (dom 𝑇 ∈ dom 𝑝 ∧ ∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc dom 𝑇) = (𝑞 ↾ suc dom 𝑇)))))
6564elabg 3677 . . . . . . 7 (dom 𝑇 ∈ On → (dom 𝑇 ∈ {𝑧 ∣ ∃𝑝𝐵 (𝑧 ∈ dom 𝑝 ∧ ∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc 𝑧) = (𝑞 ↾ suc 𝑧)))} ↔ ∃𝑝𝐵 (dom 𝑇 ∈ dom 𝑝 ∧ ∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc dom 𝑇) = (𝑞 ↾ suc dom 𝑇)))))
663, 24, 653syl 18 . . . . . 6 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) → (dom 𝑇 ∈ {𝑧 ∣ ∃𝑝𝐵 (𝑧 ∈ dom 𝑝 ∧ ∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc 𝑧) = (𝑞 ↾ suc 𝑧)))} ↔ ∃𝑝𝐵 (dom 𝑇 ∈ dom 𝑝 ∧ ∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc dom 𝑇) = (𝑞 ↾ suc dom 𝑇)))))
6755, 66bitrd 279 . . . . 5 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) → (dom 𝑇 ∈ dom 𝑇 ↔ ∃𝑝𝐵 (dom 𝑇 ∈ dom 𝑝 ∧ ∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc dom 𝑇) = (𝑞 ↾ suc dom 𝑇)))))
6867adantr 480 . . . 4 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 1o) → (dom 𝑇 ∈ dom 𝑇 ↔ ∃𝑝𝐵 (dom 𝑇 ∈ dom 𝑝 ∧ ∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc dom 𝑇) = (𝑞 ↾ suc dom 𝑇)))))
6952, 68mpbird 257 . . 3 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 1o) → dom 𝑇 ∈ dom 𝑇)
706, 69mtand 816 . 2 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) → ¬ (𝑈‘dom 𝑇) = 1o)
7170neqned 2945 1 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) → (𝑈‘dom 𝑇) ≠ 1o)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1537  wcel 2106  {cab 2712  wne 2938  wral 3059  wrex 3068  cun 3961  wss 3963  c0 4339  ifcif 4531  {csn 4631  cop 4637   class class class wbr 5148  cmpt 5231  dom cdm 5689  cres 5691  Ord word 6385  Oncon0 6386  suc csuc 6388  cio 6514  cfv 6563  crio 7387  1oc1o 8498   No csur 27699   <s cslt 27700
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-int 4952  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-ord 6389  df-on 6390  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-fo 6569  df-fv 6571  df-riota 7388  df-1o 8505  df-2o 8506  df-no 27702  df-slt 27703  df-bday 27704
This theorem is referenced by:  noinfbnd1lem4  27786  noinfbnd1lem5  27787  noinfbnd1lem6  27788
  Copyright terms: Public domain W3C validator