Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  noinfbnd1lem3 Structured version   Visualization version   GIF version

Theorem noinfbnd1lem3 33928
Description: Lemma for noinfbnd1 33932. If 𝑈 is a prolongment of 𝑇 and in 𝐵, then (𝑈‘dom 𝑇) is not 1o. (Contributed by Scott Fenton, 9-Aug-2024.)
Hypothesis
Ref Expression
noinfbnd1.1 𝑇 = if(∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥, ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
Assertion
Ref Expression
noinfbnd1lem3 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) → (𝑈‘dom 𝑇) ≠ 1o)
Distinct variable groups:   𝐵,𝑔,𝑢,𝑣,𝑥,𝑦   𝑣,𝑈   𝑥,𝑢,𝑦   𝑔,𝑉   𝑥,𝑣,𝑦
Allowed substitution hints:   𝑇(𝑥,𝑦,𝑣,𝑢,𝑔)   𝑈(𝑥,𝑦,𝑢,𝑔)   𝑉(𝑥,𝑦,𝑣,𝑢)

Proof of Theorem noinfbnd1lem3
Dummy variables 𝑝 𝑞 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 noinfbnd1.1 . . . . . 6 𝑇 = if(∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥, ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
21noinfno 33921 . . . . 5 ((𝐵 No 𝐵𝑉) → 𝑇 No )
323ad2ant2 1133 . . . 4 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) → 𝑇 No )
4 nodmord 33856 . . . 4 (𝑇 No → Ord dom 𝑇)
5 ordirr 6284 . . . 4 (Ord dom 𝑇 → ¬ dom 𝑇 ∈ dom 𝑇)
63, 4, 53syl 18 . . 3 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) → ¬ dom 𝑇 ∈ dom 𝑇)
7 simpl3l 1227 . . . . 5 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 1o) → 𝑈𝐵)
8 ndmfv 6804 . . . . . . . 8 (¬ dom 𝑇 ∈ dom 𝑈 → (𝑈‘dom 𝑇) = ∅)
9 1n0 8318 . . . . . . . . . . 11 1o ≠ ∅
109necomi 2998 . . . . . . . . . 10 ∅ ≠ 1o
11 neeq1 3006 . . . . . . . . . 10 ((𝑈‘dom 𝑇) = ∅ → ((𝑈‘dom 𝑇) ≠ 1o ↔ ∅ ≠ 1o))
1210, 11mpbiri 257 . . . . . . . . 9 ((𝑈‘dom 𝑇) = ∅ → (𝑈‘dom 𝑇) ≠ 1o)
1312neneqd 2948 . . . . . . . 8 ((𝑈‘dom 𝑇) = ∅ → ¬ (𝑈‘dom 𝑇) = 1o)
148, 13syl 17 . . . . . . 7 (¬ dom 𝑇 ∈ dom 𝑈 → ¬ (𝑈‘dom 𝑇) = 1o)
1514con4i 114 . . . . . 6 ((𝑈‘dom 𝑇) = 1o → dom 𝑇 ∈ dom 𝑈)
1615adantl 482 . . . . 5 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 1o) → dom 𝑇 ∈ dom 𝑈)
17 simpl2l 1225 . . . . . . . . . 10 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 1o) → 𝐵 No )
1817, 7sseldd 3922 . . . . . . . . 9 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 1o) → 𝑈 No )
1918adantr 481 . . . . . . . 8 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 1o) ∧ (𝑞𝐵 ∧ ¬ 𝑈 <s 𝑞)) → 𝑈 No )
2017adantr 481 . . . . . . . . 9 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 1o) ∧ (𝑞𝐵 ∧ ¬ 𝑈 <s 𝑞)) → 𝐵 No )
21 simprl 768 . . . . . . . . 9 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 1o) ∧ (𝑞𝐵 ∧ ¬ 𝑈 <s 𝑞)) → 𝑞𝐵)
2220, 21sseldd 3922 . . . . . . . 8 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 1o) ∧ (𝑞𝐵 ∧ ¬ 𝑈 <s 𝑞)) → 𝑞 No )
233adantr 481 . . . . . . . . . 10 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 1o) → 𝑇 No )
24 nodmon 33853 . . . . . . . . . 10 (𝑇 No → dom 𝑇 ∈ On)
2523, 24syl 17 . . . . . . . . 9 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 1o) → dom 𝑇 ∈ On)
2625adantr 481 . . . . . . . 8 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 1o) ∧ (𝑞𝐵 ∧ ¬ 𝑈 <s 𝑞)) → dom 𝑇 ∈ On)
27 simpl3r 1228 . . . . . . . . . 10 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 1o) → (𝑈 ↾ dom 𝑇) = 𝑇)
2827adantr 481 . . . . . . . . 9 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 1o) ∧ (𝑞𝐵 ∧ ¬ 𝑈 <s 𝑞)) → (𝑈 ↾ dom 𝑇) = 𝑇)
29 simpll1 1211 . . . . . . . . . 10 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 1o) ∧ (𝑞𝐵 ∧ ¬ 𝑈 <s 𝑞)) → ¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)
30 simpll2 1212 . . . . . . . . . 10 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 1o) ∧ (𝑞𝐵 ∧ ¬ 𝑈 <s 𝑞)) → (𝐵 No 𝐵𝑉))
31 simpll3 1213 . . . . . . . . . 10 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 1o) ∧ (𝑞𝐵 ∧ ¬ 𝑈 <s 𝑞)) → (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇))
32 simpr 485 . . . . . . . . . 10 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 1o) ∧ (𝑞𝐵 ∧ ¬ 𝑈 <s 𝑞)) → (𝑞𝐵 ∧ ¬ 𝑈 <s 𝑞))
331noinfbnd1lem2 33927 . . . . . . . . . 10 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ ((𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇) ∧ (𝑞𝐵 ∧ ¬ 𝑈 <s 𝑞))) → (𝑞 ↾ dom 𝑇) = 𝑇)
3429, 30, 31, 32, 33syl112anc 1373 . . . . . . . . 9 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 1o) ∧ (𝑞𝐵 ∧ ¬ 𝑈 <s 𝑞)) → (𝑞 ↾ dom 𝑇) = 𝑇)
3528, 34eqtr4d 2781 . . . . . . . 8 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 1o) ∧ (𝑞𝐵 ∧ ¬ 𝑈 <s 𝑞)) → (𝑈 ↾ dom 𝑇) = (𝑞 ↾ dom 𝑇))
36 simplr 766 . . . . . . . 8 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 1o) ∧ (𝑞𝐵 ∧ ¬ 𝑈 <s 𝑞)) → (𝑈‘dom 𝑇) = 1o)
37 simprr 770 . . . . . . . 8 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 1o) ∧ (𝑞𝐵 ∧ ¬ 𝑈 <s 𝑞)) → ¬ 𝑈 <s 𝑞)
38 nogesgn1ores 33877 . . . . . . . 8 (((𝑈 No 𝑞 No ∧ dom 𝑇 ∈ On) ∧ ((𝑈 ↾ dom 𝑇) = (𝑞 ↾ dom 𝑇) ∧ (𝑈‘dom 𝑇) = 1o) ∧ ¬ 𝑈 <s 𝑞) → (𝑈 ↾ suc dom 𝑇) = (𝑞 ↾ suc dom 𝑇))
3919, 22, 26, 35, 36, 37, 38syl321anc 1391 . . . . . . 7 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 1o) ∧ (𝑞𝐵 ∧ ¬ 𝑈 <s 𝑞)) → (𝑈 ↾ suc dom 𝑇) = (𝑞 ↾ suc dom 𝑇))
4039expr 457 . . . . . 6 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 1o) ∧ 𝑞𝐵) → (¬ 𝑈 <s 𝑞 → (𝑈 ↾ suc dom 𝑇) = (𝑞 ↾ suc dom 𝑇)))
4140ralrimiva 3103 . . . . 5 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 1o) → ∀𝑞𝐵𝑈 <s 𝑞 → (𝑈 ↾ suc dom 𝑇) = (𝑞 ↾ suc dom 𝑇)))
42 dmeq 5812 . . . . . . . 8 (𝑝 = 𝑈 → dom 𝑝 = dom 𝑈)
4342eleq2d 2824 . . . . . . 7 (𝑝 = 𝑈 → (dom 𝑇 ∈ dom 𝑝 ↔ dom 𝑇 ∈ dom 𝑈))
44 breq1 5077 . . . . . . . . . 10 (𝑝 = 𝑈 → (𝑝 <s 𝑞𝑈 <s 𝑞))
4544notbid 318 . . . . . . . . 9 (𝑝 = 𝑈 → (¬ 𝑝 <s 𝑞 ↔ ¬ 𝑈 <s 𝑞))
46 reseq1 5885 . . . . . . . . . 10 (𝑝 = 𝑈 → (𝑝 ↾ suc dom 𝑇) = (𝑈 ↾ suc dom 𝑇))
4746eqeq1d 2740 . . . . . . . . 9 (𝑝 = 𝑈 → ((𝑝 ↾ suc dom 𝑇) = (𝑞 ↾ suc dom 𝑇) ↔ (𝑈 ↾ suc dom 𝑇) = (𝑞 ↾ suc dom 𝑇)))
4845, 47imbi12d 345 . . . . . . . 8 (𝑝 = 𝑈 → ((¬ 𝑝 <s 𝑞 → (𝑝 ↾ suc dom 𝑇) = (𝑞 ↾ suc dom 𝑇)) ↔ (¬ 𝑈 <s 𝑞 → (𝑈 ↾ suc dom 𝑇) = (𝑞 ↾ suc dom 𝑇))))
4948ralbidv 3112 . . . . . . 7 (𝑝 = 𝑈 → (∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc dom 𝑇) = (𝑞 ↾ suc dom 𝑇)) ↔ ∀𝑞𝐵𝑈 <s 𝑞 → (𝑈 ↾ suc dom 𝑇) = (𝑞 ↾ suc dom 𝑇))))
5043, 49anbi12d 631 . . . . . 6 (𝑝 = 𝑈 → ((dom 𝑇 ∈ dom 𝑝 ∧ ∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc dom 𝑇) = (𝑞 ↾ suc dom 𝑇))) ↔ (dom 𝑇 ∈ dom 𝑈 ∧ ∀𝑞𝐵𝑈 <s 𝑞 → (𝑈 ↾ suc dom 𝑇) = (𝑞 ↾ suc dom 𝑇)))))
5150rspcev 3561 . . . . 5 ((𝑈𝐵 ∧ (dom 𝑇 ∈ dom 𝑈 ∧ ∀𝑞𝐵𝑈 <s 𝑞 → (𝑈 ↾ suc dom 𝑇) = (𝑞 ↾ suc dom 𝑇)))) → ∃𝑝𝐵 (dom 𝑇 ∈ dom 𝑝 ∧ ∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc dom 𝑇) = (𝑞 ↾ suc dom 𝑇))))
527, 16, 41, 51syl12anc 834 . . . 4 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 1o) → ∃𝑝𝐵 (dom 𝑇 ∈ dom 𝑝 ∧ ∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc dom 𝑇) = (𝑞 ↾ suc dom 𝑇))))
531noinfdm 33922 . . . . . . . 8 (¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 → dom 𝑇 = {𝑧 ∣ ∃𝑝𝐵 (𝑧 ∈ dom 𝑝 ∧ ∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc 𝑧) = (𝑞 ↾ suc 𝑧)))})
5453eleq2d 2824 . . . . . . 7 (¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 → (dom 𝑇 ∈ dom 𝑇 ↔ dom 𝑇 ∈ {𝑧 ∣ ∃𝑝𝐵 (𝑧 ∈ dom 𝑝 ∧ ∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc 𝑧) = (𝑞 ↾ suc 𝑧)))}))
55543ad2ant1 1132 . . . . . 6 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) → (dom 𝑇 ∈ dom 𝑇 ↔ dom 𝑇 ∈ {𝑧 ∣ ∃𝑝𝐵 (𝑧 ∈ dom 𝑝 ∧ ∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc 𝑧) = (𝑞 ↾ suc 𝑧)))}))
56 eleq1 2826 . . . . . . . . . 10 (𝑧 = dom 𝑇 → (𝑧 ∈ dom 𝑝 ↔ dom 𝑇 ∈ dom 𝑝))
57 suceq 6331 . . . . . . . . . . . . . 14 (𝑧 = dom 𝑇 → suc 𝑧 = suc dom 𝑇)
5857reseq2d 5891 . . . . . . . . . . . . 13 (𝑧 = dom 𝑇 → (𝑝 ↾ suc 𝑧) = (𝑝 ↾ suc dom 𝑇))
5957reseq2d 5891 . . . . . . . . . . . . 13 (𝑧 = dom 𝑇 → (𝑞 ↾ suc 𝑧) = (𝑞 ↾ suc dom 𝑇))
6058, 59eqeq12d 2754 . . . . . . . . . . . 12 (𝑧 = dom 𝑇 → ((𝑝 ↾ suc 𝑧) = (𝑞 ↾ suc 𝑧) ↔ (𝑝 ↾ suc dom 𝑇) = (𝑞 ↾ suc dom 𝑇)))
6160imbi2d 341 . . . . . . . . . . 11 (𝑧 = dom 𝑇 → ((¬ 𝑝 <s 𝑞 → (𝑝 ↾ suc 𝑧) = (𝑞 ↾ suc 𝑧)) ↔ (¬ 𝑝 <s 𝑞 → (𝑝 ↾ suc dom 𝑇) = (𝑞 ↾ suc dom 𝑇))))
6261ralbidv 3112 . . . . . . . . . 10 (𝑧 = dom 𝑇 → (∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc 𝑧) = (𝑞 ↾ suc 𝑧)) ↔ ∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc dom 𝑇) = (𝑞 ↾ suc dom 𝑇))))
6356, 62anbi12d 631 . . . . . . . . 9 (𝑧 = dom 𝑇 → ((𝑧 ∈ dom 𝑝 ∧ ∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc 𝑧) = (𝑞 ↾ suc 𝑧))) ↔ (dom 𝑇 ∈ dom 𝑝 ∧ ∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc dom 𝑇) = (𝑞 ↾ suc dom 𝑇)))))
6463rexbidv 3226 . . . . . . . 8 (𝑧 = dom 𝑇 → (∃𝑝𝐵 (𝑧 ∈ dom 𝑝 ∧ ∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc 𝑧) = (𝑞 ↾ suc 𝑧))) ↔ ∃𝑝𝐵 (dom 𝑇 ∈ dom 𝑝 ∧ ∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc dom 𝑇) = (𝑞 ↾ suc dom 𝑇)))))
6564elabg 3607 . . . . . . 7 (dom 𝑇 ∈ On → (dom 𝑇 ∈ {𝑧 ∣ ∃𝑝𝐵 (𝑧 ∈ dom 𝑝 ∧ ∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc 𝑧) = (𝑞 ↾ suc 𝑧)))} ↔ ∃𝑝𝐵 (dom 𝑇 ∈ dom 𝑝 ∧ ∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc dom 𝑇) = (𝑞 ↾ suc dom 𝑇)))))
663, 24, 653syl 18 . . . . . 6 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) → (dom 𝑇 ∈ {𝑧 ∣ ∃𝑝𝐵 (𝑧 ∈ dom 𝑝 ∧ ∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc 𝑧) = (𝑞 ↾ suc 𝑧)))} ↔ ∃𝑝𝐵 (dom 𝑇 ∈ dom 𝑝 ∧ ∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc dom 𝑇) = (𝑞 ↾ suc dom 𝑇)))))
6755, 66bitrd 278 . . . . 5 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) → (dom 𝑇 ∈ dom 𝑇 ↔ ∃𝑝𝐵 (dom 𝑇 ∈ dom 𝑝 ∧ ∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc dom 𝑇) = (𝑞 ↾ suc dom 𝑇)))))
6867adantr 481 . . . 4 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 1o) → (dom 𝑇 ∈ dom 𝑇 ↔ ∃𝑝𝐵 (dom 𝑇 ∈ dom 𝑝 ∧ ∀𝑞𝐵𝑝 <s 𝑞 → (𝑝 ↾ suc dom 𝑇) = (𝑞 ↾ suc dom 𝑇)))))
6952, 68mpbird 256 . . 3 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = 1o) → dom 𝑇 ∈ dom 𝑇)
706, 69mtand 813 . 2 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) → ¬ (𝑈‘dom 𝑇) = 1o)
7170neqned 2950 1 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) → (𝑈‘dom 𝑇) ≠ 1o)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  {cab 2715  wne 2943  wral 3064  wrex 3065  cun 3885  wss 3887  c0 4256  ifcif 4459  {csn 4561  cop 4567   class class class wbr 5074  cmpt 5157  dom cdm 5589  cres 5591  Ord word 6265  Oncon0 6266  suc csuc 6268  cio 6389  cfv 6433  crio 7231  1oc1o 8290   No csur 33843   <s cslt 33844
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-ord 6269  df-on 6270  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-1o 8297  df-2o 8298  df-no 33846  df-slt 33847  df-bday 33848
This theorem is referenced by:  noinfbnd1lem4  33929  noinfbnd1lem5  33930  noinfbnd1lem6  33931
  Copyright terms: Public domain W3C validator