Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemg31b0N Structured version   Visualization version   GIF version

Theorem cdlemg31b0N 40661
Description: TODO: Fix comment. (Contributed by NM, 30-May-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
cdlemg12.l = (le‘𝐾)
cdlemg12.j = (join‘𝐾)
cdlemg12.m = (meet‘𝐾)
cdlemg12.a 𝐴 = (Atoms‘𝐾)
cdlemg12.h 𝐻 = (LHyp‘𝐾)
cdlemg12.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
cdlemg12b.r 𝑅 = ((trL‘𝐾)‘𝑊)
cdlemg31.n 𝑁 = ((𝑃 𝑣) (𝑄 (𝑅𝐹)))
Assertion
Ref Expression
cdlemg31b0N (((𝐾 ∈ HL ∧ 𝑊𝐻𝐹𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝑣 ≠ (𝑅𝐹) ∧ (𝐹𝑃) ≠ 𝑃)) → (𝑁𝐴𝑁 = (0.‘𝐾)))

Proof of Theorem cdlemg31b0N
StepHypRef Expression
1 simp11 1204 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻𝐹𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝑣 ≠ (𝑅𝐹) ∧ (𝐹𝑃) ≠ 𝑃)) → 𝐾 ∈ HL)
2 simp2ll 1241 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻𝐹𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝑣 ≠ (𝑅𝐹) ∧ (𝐹𝑃) ≠ 𝑃)) → 𝑃𝐴)
3 simp31l 1297 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻𝐹𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝑣 ≠ (𝑅𝐹) ∧ (𝐹𝑃) ≠ 𝑃)) → 𝑣𝐴)
4 simp2rl 1243 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻𝐹𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝑣 ≠ (𝑅𝐹) ∧ (𝐹𝑃) ≠ 𝑃)) → 𝑄𝐴)
5 simp12 1205 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻𝐹𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝑣 ≠ (𝑅𝐹) ∧ (𝐹𝑃) ≠ 𝑃)) → 𝑊𝐻)
61, 5jca 511 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻𝐹𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝑣 ≠ (𝑅𝐹) ∧ (𝐹𝑃) ≠ 𝑃)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
7 simp2l 1200 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻𝐹𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝑣 ≠ (𝑅𝐹) ∧ (𝐹𝑃) ≠ 𝑃)) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
8 simp13 1206 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻𝐹𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝑣 ≠ (𝑅𝐹) ∧ (𝐹𝑃) ≠ 𝑃)) → 𝐹𝑇)
9 simp33 1212 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻𝐹𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝑣 ≠ (𝑅𝐹) ∧ (𝐹𝑃) ≠ 𝑃)) → (𝐹𝑃) ≠ 𝑃)
10 cdlemg12.l . . . . 5 = (le‘𝐾)
11 cdlemg12.a . . . . 5 𝐴 = (Atoms‘𝐾)
12 cdlemg12.h . . . . 5 𝐻 = (LHyp‘𝐾)
13 cdlemg12.t . . . . 5 𝑇 = ((LTrn‘𝐾)‘𝑊)
14 cdlemg12b.r . . . . 5 𝑅 = ((trL‘𝐾)‘𝑊)
1510, 11, 12, 13, 14trlat 40136 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝐹𝑇 ∧ (𝐹𝑃) ≠ 𝑃)) → (𝑅𝐹) ∈ 𝐴)
166, 7, 8, 9, 15syl112anc 1376 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻𝐹𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝑣 ≠ (𝑅𝐹) ∧ (𝐹𝑃) ≠ 𝑃)) → (𝑅𝐹) ∈ 𝐴)
17 simp2r 1201 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻𝐹𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝑣 ≠ (𝑅𝐹) ∧ (𝐹𝑃) ≠ 𝑃)) → (𝑄𝐴 ∧ ¬ 𝑄 𝑊))
1810, 12, 13, 14trlle 40151 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (𝑅𝐹) 𝑊)
196, 8, 18syl2anc 584 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻𝐹𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝑣 ≠ (𝑅𝐹) ∧ (𝐹𝑃) ≠ 𝑃)) → (𝑅𝐹) 𝑊)
2016, 19jca 511 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻𝐹𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝑣 ≠ (𝑅𝐹) ∧ (𝐹𝑃) ≠ 𝑃)) → ((𝑅𝐹) ∈ 𝐴 ∧ (𝑅𝐹) 𝑊))
21 simp31 1210 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻𝐹𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝑣 ≠ (𝑅𝐹) ∧ (𝐹𝑃) ≠ 𝑃)) → (𝑣𝐴𝑣 𝑊))
22 simp32 1211 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻𝐹𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝑣 ≠ (𝑅𝐹) ∧ (𝐹𝑃) ≠ 𝑃)) → 𝑣 ≠ (𝑅𝐹))
2322necomd 2980 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻𝐹𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝑣 ≠ (𝑅𝐹) ∧ (𝐹𝑃) ≠ 𝑃)) → (𝑅𝐹) ≠ 𝑣)
24 cdlemg12.j . . . . . 6 = (join‘𝐾)
2510, 24, 11, 12lhp2atne 40001 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑃𝐴) ∧ (((𝑅𝐹) ∈ 𝐴 ∧ (𝑅𝐹) 𝑊) ∧ (𝑣𝐴𝑣 𝑊)) ∧ (𝑅𝐹) ≠ 𝑣) → (𝑄 (𝑅𝐹)) ≠ (𝑃 𝑣))
266, 17, 2, 20, 21, 23, 25syl321anc 1394 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻𝐹𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝑣 ≠ (𝑅𝐹) ∧ (𝐹𝑃) ≠ 𝑃)) → (𝑄 (𝑅𝐹)) ≠ (𝑃 𝑣))
2726necomd 2980 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻𝐹𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝑣 ≠ (𝑅𝐹) ∧ (𝐹𝑃) ≠ 𝑃)) → (𝑃 𝑣) ≠ (𝑄 (𝑅𝐹)))
28 cdlemg12.m . . . 4 = (meet‘𝐾)
29 eqid 2729 . . . 4 (0.‘𝐾) = (0.‘𝐾)
3024, 28, 29, 112atmat0 39493 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑣𝐴) ∧ (𝑄𝐴 ∧ (𝑅𝐹) ∈ 𝐴 ∧ (𝑃 𝑣) ≠ (𝑄 (𝑅𝐹)))) → (((𝑃 𝑣) (𝑄 (𝑅𝐹))) ∈ 𝐴 ∨ ((𝑃 𝑣) (𝑄 (𝑅𝐹))) = (0.‘𝐾)))
311, 2, 3, 4, 16, 27, 30syl33anc 1387 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻𝐹𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝑣 ≠ (𝑅𝐹) ∧ (𝐹𝑃) ≠ 𝑃)) → (((𝑃 𝑣) (𝑄 (𝑅𝐹))) ∈ 𝐴 ∨ ((𝑃 𝑣) (𝑄 (𝑅𝐹))) = (0.‘𝐾)))
32 cdlemg31.n . . . 4 𝑁 = ((𝑃 𝑣) (𝑄 (𝑅𝐹)))
3332eleq1i 2819 . . 3 (𝑁𝐴 ↔ ((𝑃 𝑣) (𝑄 (𝑅𝐹))) ∈ 𝐴)
3432eqeq1i 2734 . . 3 (𝑁 = (0.‘𝐾) ↔ ((𝑃 𝑣) (𝑄 (𝑅𝐹))) = (0.‘𝐾))
3533, 34orbi12i 914 . 2 ((𝑁𝐴𝑁 = (0.‘𝐾)) ↔ (((𝑃 𝑣) (𝑄 (𝑅𝐹))) ∈ 𝐴 ∨ ((𝑃 𝑣) (𝑄 (𝑅𝐹))) = (0.‘𝐾)))
3631, 35sylibr 234 1 (((𝐾 ∈ HL ∧ 𝑊𝐻𝐹𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝑣 ≠ (𝑅𝐹) ∧ (𝐹𝑃) ≠ 𝑃)) → (𝑁𝐴𝑁 = (0.‘𝐾)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  wne 2925   class class class wbr 5102  cfv 6499  (class class class)co 7369  lecple 17203  joincjn 18248  meetcmee 18249  0.cp0 18358  Atomscatm 39229  HLchlt 39316  LHypclh 39951  LTrncltrn 40068  trLctrl 40125
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-1st 7947  df-2nd 7948  df-map 8778  df-proset 18231  df-poset 18250  df-plt 18265  df-lub 18281  df-glb 18282  df-join 18283  df-meet 18284  df-p0 18360  df-p1 18361  df-lat 18367  df-clat 18434  df-oposet 39142  df-ol 39144  df-oml 39145  df-covers 39232  df-ats 39233  df-atl 39264  df-cvlat 39288  df-hlat 39317  df-llines 39465  df-psubsp 39470  df-pmap 39471  df-padd 39763  df-lhyp 39955  df-laut 39956  df-ldil 40071  df-ltrn 40072  df-trl 40126
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator