Proof of Theorem cdlemg31b0N
Step | Hyp | Ref
| Expression |
1 | | simp11 1204 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝐹 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊) ∧ 𝑣 ≠ (𝑅‘𝐹) ∧ (𝐹‘𝑃) ≠ 𝑃)) → 𝐾 ∈ HL) |
2 | | simp2ll 1241 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝐹 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊) ∧ 𝑣 ≠ (𝑅‘𝐹) ∧ (𝐹‘𝑃) ≠ 𝑃)) → 𝑃 ∈ 𝐴) |
3 | | simp31l 1297 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝐹 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊) ∧ 𝑣 ≠ (𝑅‘𝐹) ∧ (𝐹‘𝑃) ≠ 𝑃)) → 𝑣 ∈ 𝐴) |
4 | | simp2rl 1243 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝐹 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊) ∧ 𝑣 ≠ (𝑅‘𝐹) ∧ (𝐹‘𝑃) ≠ 𝑃)) → 𝑄 ∈ 𝐴) |
5 | | simp12 1205 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝐹 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊) ∧ 𝑣 ≠ (𝑅‘𝐹) ∧ (𝐹‘𝑃) ≠ 𝑃)) → 𝑊 ∈ 𝐻) |
6 | 1, 5 | jca 515 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝐹 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊) ∧ 𝑣 ≠ (𝑅‘𝐹) ∧ (𝐹‘𝑃) ≠ 𝑃)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
7 | | simp2l 1200 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝐹 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊) ∧ 𝑣 ≠ (𝑅‘𝐹) ∧ (𝐹‘𝑃) ≠ 𝑃)) → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) |
8 | | simp13 1206 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝐹 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊) ∧ 𝑣 ≠ (𝑅‘𝐹) ∧ (𝐹‘𝑃) ≠ 𝑃)) → 𝐹 ∈ 𝑇) |
9 | | simp33 1212 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝐹 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊) ∧ 𝑣 ≠ (𝑅‘𝐹) ∧ (𝐹‘𝑃) ≠ 𝑃)) → (𝐹‘𝑃) ≠ 𝑃) |
10 | | cdlemg12.l |
. . . . 5
⊢ ≤ =
(le‘𝐾) |
11 | | cdlemg12.a |
. . . . 5
⊢ 𝐴 = (Atoms‘𝐾) |
12 | | cdlemg12.h |
. . . . 5
⊢ 𝐻 = (LHyp‘𝐾) |
13 | | cdlemg12.t |
. . . . 5
⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
14 | | cdlemg12b.r |
. . . . 5
⊢ 𝑅 = ((trL‘𝐾)‘𝑊) |
15 | 10, 11, 12, 13, 14 | trlat 37828 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝐹 ∈ 𝑇 ∧ (𝐹‘𝑃) ≠ 𝑃)) → (𝑅‘𝐹) ∈ 𝐴) |
16 | 6, 7, 8, 9, 15 | syl112anc 1375 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝐹 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊) ∧ 𝑣 ≠ (𝑅‘𝐹) ∧ (𝐹‘𝑃) ≠ 𝑃)) → (𝑅‘𝐹) ∈ 𝐴) |
17 | | simp2r 1201 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝐹 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊) ∧ 𝑣 ≠ (𝑅‘𝐹) ∧ (𝐹‘𝑃) ≠ 𝑃)) → (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) |
18 | 10, 12, 13, 14 | trlle 37843 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → (𝑅‘𝐹) ≤ 𝑊) |
19 | 6, 8, 18 | syl2anc 587 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝐹 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊) ∧ 𝑣 ≠ (𝑅‘𝐹) ∧ (𝐹‘𝑃) ≠ 𝑃)) → (𝑅‘𝐹) ≤ 𝑊) |
20 | 16, 19 | jca 515 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝐹 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊) ∧ 𝑣 ≠ (𝑅‘𝐹) ∧ (𝐹‘𝑃) ≠ 𝑃)) → ((𝑅‘𝐹) ∈ 𝐴 ∧ (𝑅‘𝐹) ≤ 𝑊)) |
21 | | simp31 1210 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝐹 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊) ∧ 𝑣 ≠ (𝑅‘𝐹) ∧ (𝐹‘𝑃) ≠ 𝑃)) → (𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊)) |
22 | | simp32 1211 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝐹 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊) ∧ 𝑣 ≠ (𝑅‘𝐹) ∧ (𝐹‘𝑃) ≠ 𝑃)) → 𝑣 ≠ (𝑅‘𝐹)) |
23 | 22 | necomd 2989 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝐹 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊) ∧ 𝑣 ≠ (𝑅‘𝐹) ∧ (𝐹‘𝑃) ≠ 𝑃)) → (𝑅‘𝐹) ≠ 𝑣) |
24 | | cdlemg12.j |
. . . . . 6
⊢ ∨ =
(join‘𝐾) |
25 | 10, 24, 11, 12 | lhp2atne 37693 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑃 ∈ 𝐴) ∧ (((𝑅‘𝐹) ∈ 𝐴 ∧ (𝑅‘𝐹) ≤ 𝑊) ∧ (𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊)) ∧ (𝑅‘𝐹) ≠ 𝑣) → (𝑄 ∨ (𝑅‘𝐹)) ≠ (𝑃 ∨ 𝑣)) |
26 | 6, 17, 2, 20, 21, 23, 25 | syl321anc 1393 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝐹 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊) ∧ 𝑣 ≠ (𝑅‘𝐹) ∧ (𝐹‘𝑃) ≠ 𝑃)) → (𝑄 ∨ (𝑅‘𝐹)) ≠ (𝑃 ∨ 𝑣)) |
27 | 26 | necomd 2989 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝐹 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊) ∧ 𝑣 ≠ (𝑅‘𝐹) ∧ (𝐹‘𝑃) ≠ 𝑃)) → (𝑃 ∨ 𝑣) ≠ (𝑄 ∨ (𝑅‘𝐹))) |
28 | | cdlemg12.m |
. . . 4
⊢ ∧ =
(meet‘𝐾) |
29 | | eqid 2738 |
. . . 4
⊢
(0.‘𝐾) =
(0.‘𝐾) |
30 | 24, 28, 29, 11 | 2atmat0 37185 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ∧ (𝑄 ∈ 𝐴 ∧ (𝑅‘𝐹) ∈ 𝐴 ∧ (𝑃 ∨ 𝑣) ≠ (𝑄 ∨ (𝑅‘𝐹)))) → (((𝑃 ∨ 𝑣) ∧ (𝑄 ∨ (𝑅‘𝐹))) ∈ 𝐴 ∨ ((𝑃 ∨ 𝑣) ∧ (𝑄 ∨ (𝑅‘𝐹))) = (0.‘𝐾))) |
31 | 1, 2, 3, 4, 16, 27, 30 | syl33anc 1386 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝐹 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊) ∧ 𝑣 ≠ (𝑅‘𝐹) ∧ (𝐹‘𝑃) ≠ 𝑃)) → (((𝑃 ∨ 𝑣) ∧ (𝑄 ∨ (𝑅‘𝐹))) ∈ 𝐴 ∨ ((𝑃 ∨ 𝑣) ∧ (𝑄 ∨ (𝑅‘𝐹))) = (0.‘𝐾))) |
32 | | cdlemg31.n |
. . . 4
⊢ 𝑁 = ((𝑃 ∨ 𝑣) ∧ (𝑄 ∨ (𝑅‘𝐹))) |
33 | 32 | eleq1i 2823 |
. . 3
⊢ (𝑁 ∈ 𝐴 ↔ ((𝑃 ∨ 𝑣) ∧ (𝑄 ∨ (𝑅‘𝐹))) ∈ 𝐴) |
34 | 32 | eqeq1i 2743 |
. . 3
⊢ (𝑁 = (0.‘𝐾) ↔ ((𝑃 ∨ 𝑣) ∧ (𝑄 ∨ (𝑅‘𝐹))) = (0.‘𝐾)) |
35 | 33, 34 | orbi12i 914 |
. 2
⊢ ((𝑁 ∈ 𝐴 ∨ 𝑁 = (0.‘𝐾)) ↔ (((𝑃 ∨ 𝑣) ∧ (𝑄 ∨ (𝑅‘𝐹))) ∈ 𝐴 ∨ ((𝑃 ∨ 𝑣) ∧ (𝑄 ∨ (𝑅‘𝐹))) = (0.‘𝐾))) |
36 | 31, 35 | sylibr 237 |
1
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝐹 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑣 ∈ 𝐴 ∧ 𝑣 ≤ 𝑊) ∧ 𝑣 ≠ (𝑅‘𝐹) ∧ (𝐹‘𝑃) ≠ 𝑃)) → (𝑁 ∈ 𝐴 ∨ 𝑁 = (0.‘𝐾))) |