Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  4noncolr2 Structured version   Visualization version   GIF version

Theorem 4noncolr2 38955
Description: A way to express 4 non-colinear atoms (rotated right 2 places). (Contributed by NM, 11-Jul-2012.)
Hypotheses
Ref Expression
3noncol.l ≀ = (leβ€˜πΎ)
3noncol.j ∨ = (joinβ€˜πΎ)
3noncol.a 𝐴 = (Atomsβ€˜πΎ)
Assertion
Ref Expression
4noncolr2 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑆 ≀ ((𝑃 ∨ 𝑄) ∨ 𝑅))) β†’ (𝑅 β‰  𝑆 ∧ Β¬ 𝑃 ≀ (𝑅 ∨ 𝑆) ∧ Β¬ 𝑄 ≀ ((𝑅 ∨ 𝑆) ∨ 𝑃)))

Proof of Theorem 4noncolr2
StepHypRef Expression
1 simp11 1200 . 2 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑆 ≀ ((𝑃 ∨ 𝑄) ∨ 𝑅))) β†’ 𝐾 ∈ HL)
2 simp13 1202 . 2 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑆 ≀ ((𝑃 ∨ 𝑄) ∨ 𝑅))) β†’ 𝑄 ∈ 𝐴)
3 simp2l 1196 . 2 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑆 ≀ ((𝑃 ∨ 𝑄) ∨ 𝑅))) β†’ 𝑅 ∈ 𝐴)
4 simp2r 1197 . 2 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑆 ≀ ((𝑃 ∨ 𝑄) ∨ 𝑅))) β†’ 𝑆 ∈ 𝐴)
5 simp12 1201 . 2 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑆 ≀ ((𝑃 ∨ 𝑄) ∨ 𝑅))) β†’ 𝑃 ∈ 𝐴)
6 3noncol.l . . 3 ≀ = (leβ€˜πΎ)
7 3noncol.j . . 3 ∨ = (joinβ€˜πΎ)
8 3noncol.a . . 3 𝐴 = (Atomsβ€˜πΎ)
96, 7, 84noncolr3 38954 . 2 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑆 ≀ ((𝑃 ∨ 𝑄) ∨ 𝑅))) β†’ (𝑄 β‰  𝑅 ∧ Β¬ 𝑆 ≀ (𝑄 ∨ 𝑅) ∧ Β¬ 𝑃 ≀ ((𝑄 ∨ 𝑅) ∨ 𝑆)))
106, 7, 84noncolr3 38954 . 2 (((𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑃 ∈ 𝐴) ∧ (𝑄 β‰  𝑅 ∧ Β¬ 𝑆 ≀ (𝑄 ∨ 𝑅) ∧ Β¬ 𝑃 ≀ ((𝑄 ∨ 𝑅) ∨ 𝑆))) β†’ (𝑅 β‰  𝑆 ∧ Β¬ 𝑃 ≀ (𝑅 ∨ 𝑆) ∧ Β¬ 𝑄 ≀ ((𝑅 ∨ 𝑆) ∨ 𝑃)))
111, 2, 3, 4, 5, 9, 10syl321anc 1389 1 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑆 ≀ ((𝑃 ∨ 𝑄) ∨ 𝑅))) β†’ (𝑅 β‰  𝑆 ∧ Β¬ 𝑃 ≀ (𝑅 ∨ 𝑆) ∧ Β¬ 𝑄 ≀ ((𝑅 ∨ 𝑆) ∨ 𝑃)))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ∧ wa 394   ∧ w3a 1084   = wceq 1533   ∈ wcel 2098   β‰  wne 2930   class class class wbr 5141  β€˜cfv 6541  (class class class)co 7414  lecple 17237  joincjn 18300  Atomscatm 38763  HLchlt 38850
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5357  ax-pr 5421  ax-un 7736
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3769  df-csb 3885  df-dif 3942  df-un 3944  df-in 3946  df-ss 3956  df-nul 4317  df-if 4523  df-pw 4598  df-sn 4623  df-pr 4625  df-op 4629  df-uni 4902  df-iun 4991  df-br 5142  df-opab 5204  df-mpt 5225  df-id 5568  df-xp 5676  df-rel 5677  df-cnv 5678  df-co 5679  df-dm 5680  df-rn 5681  df-res 5682  df-ima 5683  df-iota 6493  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-riota 7370  df-ov 7417  df-oprab 7418  df-proset 18284  df-poset 18302  df-plt 18319  df-lub 18335  df-glb 18336  df-join 18337  df-meet 18338  df-p0 18414  df-lat 18421  df-covers 38766  df-ats 38767  df-atl 38798  df-cvlat 38822  df-hlat 38851
This theorem is referenced by:  4noncolr1  38956  4atlem12  39113
  Copyright terms: Public domain W3C validator