Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2lplnj Structured version   Visualization version   GIF version

Theorem 2lplnj 39577
Description: The join of two different lattice planes in a (3-dimensional) lattice volume equals the volume. (Contributed by NM, 12-Jul-2012.)
Hypotheses
Ref Expression
2lplnj.l = (le‘𝐾)
2lplnj.j = (join‘𝐾)
2lplnj.p 𝑃 = (LPlanes‘𝐾)
2lplnj.v 𝑉 = (LVols‘𝐾)
Assertion
Ref Expression
2lplnj ((𝐾 ∈ HL ∧ (𝑋𝑃𝑌𝑃𝑊𝑉) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) → (𝑋 𝑌) = 𝑊)

Proof of Theorem 2lplnj
Dummy variables 𝑟 𝑞 𝑠 𝑡 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2740 . . . . . . . 8 (Base‘𝐾) = (Base‘𝐾)
2 2lplnj.l . . . . . . . 8 = (le‘𝐾)
3 2lplnj.j . . . . . . . 8 = (join‘𝐾)
4 eqid 2740 . . . . . . . 8 (Atoms‘𝐾) = (Atoms‘𝐾)
5 2lplnj.p . . . . . . . 8 𝑃 = (LPlanes‘𝐾)
61, 2, 3, 4, 5islpln2 39493 . . . . . . 7 (𝐾 ∈ HL → (𝑋𝑃 ↔ (𝑋 ∈ (Base‘𝐾) ∧ ∃𝑞 ∈ (Atoms‘𝐾)∃𝑟 ∈ (Atoms‘𝐾)∃𝑠 ∈ (Atoms‘𝐾)(𝑞𝑟 ∧ ¬ 𝑠 (𝑞 𝑟) ∧ 𝑋 = ((𝑞 𝑟) 𝑠)))))
7 simpr 484 . . . . . . 7 ((𝑋 ∈ (Base‘𝐾) ∧ ∃𝑞 ∈ (Atoms‘𝐾)∃𝑟 ∈ (Atoms‘𝐾)∃𝑠 ∈ (Atoms‘𝐾)(𝑞𝑟 ∧ ¬ 𝑠 (𝑞 𝑟) ∧ 𝑋 = ((𝑞 𝑟) 𝑠))) → ∃𝑞 ∈ (Atoms‘𝐾)∃𝑟 ∈ (Atoms‘𝐾)∃𝑠 ∈ (Atoms‘𝐾)(𝑞𝑟 ∧ ¬ 𝑠 (𝑞 𝑟) ∧ 𝑋 = ((𝑞 𝑟) 𝑠)))
86, 7biimtrdi 253 . . . . . 6 (𝐾 ∈ HL → (𝑋𝑃 → ∃𝑞 ∈ (Atoms‘𝐾)∃𝑟 ∈ (Atoms‘𝐾)∃𝑠 ∈ (Atoms‘𝐾)(𝑞𝑟 ∧ ¬ 𝑠 (𝑞 𝑟) ∧ 𝑋 = ((𝑞 𝑟) 𝑠))))
91, 2, 3, 4, 5islpln2 39493 . . . . . . 7 (𝐾 ∈ HL → (𝑌𝑃 ↔ (𝑌 ∈ (Base‘𝐾) ∧ ∃𝑡 ∈ (Atoms‘𝐾)∃𝑢 ∈ (Atoms‘𝐾)∃𝑣 ∈ (Atoms‘𝐾)(𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ 𝑌 = ((𝑡 𝑢) 𝑣)))))
10 simpr 484 . . . . . . 7 ((𝑌 ∈ (Base‘𝐾) ∧ ∃𝑡 ∈ (Atoms‘𝐾)∃𝑢 ∈ (Atoms‘𝐾)∃𝑣 ∈ (Atoms‘𝐾)(𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ 𝑌 = ((𝑡 𝑢) 𝑣))) → ∃𝑡 ∈ (Atoms‘𝐾)∃𝑢 ∈ (Atoms‘𝐾)∃𝑣 ∈ (Atoms‘𝐾)(𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ 𝑌 = ((𝑡 𝑢) 𝑣)))
119, 10biimtrdi 253 . . . . . 6 (𝐾 ∈ HL → (𝑌𝑃 → ∃𝑡 ∈ (Atoms‘𝐾)∃𝑢 ∈ (Atoms‘𝐾)∃𝑣 ∈ (Atoms‘𝐾)(𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ 𝑌 = ((𝑡 𝑢) 𝑣))))
128, 11anim12d 608 . . . . 5 (𝐾 ∈ HL → ((𝑋𝑃𝑌𝑃) → (∃𝑞 ∈ (Atoms‘𝐾)∃𝑟 ∈ (Atoms‘𝐾)∃𝑠 ∈ (Atoms‘𝐾)(𝑞𝑟 ∧ ¬ 𝑠 (𝑞 𝑟) ∧ 𝑋 = ((𝑞 𝑟) 𝑠)) ∧ ∃𝑡 ∈ (Atoms‘𝐾)∃𝑢 ∈ (Atoms‘𝐾)∃𝑣 ∈ (Atoms‘𝐾)(𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ 𝑌 = ((𝑡 𝑢) 𝑣)))))
1312imp 406 . . . 4 ((𝐾 ∈ HL ∧ (𝑋𝑃𝑌𝑃)) → (∃𝑞 ∈ (Atoms‘𝐾)∃𝑟 ∈ (Atoms‘𝐾)∃𝑠 ∈ (Atoms‘𝐾)(𝑞𝑟 ∧ ¬ 𝑠 (𝑞 𝑟) ∧ 𝑋 = ((𝑞 𝑟) 𝑠)) ∧ ∃𝑡 ∈ (Atoms‘𝐾)∃𝑢 ∈ (Atoms‘𝐾)∃𝑣 ∈ (Atoms‘𝐾)(𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ 𝑌 = ((𝑡 𝑢) 𝑣))))
14133adantr3 1171 . . 3 ((𝐾 ∈ HL ∧ (𝑋𝑃𝑌𝑃𝑊𝑉)) → (∃𝑞 ∈ (Atoms‘𝐾)∃𝑟 ∈ (Atoms‘𝐾)∃𝑠 ∈ (Atoms‘𝐾)(𝑞𝑟 ∧ ¬ 𝑠 (𝑞 𝑟) ∧ 𝑋 = ((𝑞 𝑟) 𝑠)) ∧ ∃𝑡 ∈ (Atoms‘𝐾)∃𝑢 ∈ (Atoms‘𝐾)∃𝑣 ∈ (Atoms‘𝐾)(𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ 𝑌 = ((𝑡 𝑢) 𝑣))))
15143adant3 1132 . 2 ((𝐾 ∈ HL ∧ (𝑋𝑃𝑌𝑃𝑊𝑉) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) → (∃𝑞 ∈ (Atoms‘𝐾)∃𝑟 ∈ (Atoms‘𝐾)∃𝑠 ∈ (Atoms‘𝐾)(𝑞𝑟 ∧ ¬ 𝑠 (𝑞 𝑟) ∧ 𝑋 = ((𝑞 𝑟) 𝑠)) ∧ ∃𝑡 ∈ (Atoms‘𝐾)∃𝑢 ∈ (Atoms‘𝐾)∃𝑣 ∈ (Atoms‘𝐾)(𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ 𝑌 = ((𝑡 𝑢) 𝑣))))
16 simpl33 1256 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ (𝑋𝑃𝑌𝑃𝑊𝑉) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ (𝑟 ∈ (Atoms‘𝐾) ∧ 𝑠 ∈ (Atoms‘𝐾))) ∧ (𝑞𝑟 ∧ ¬ 𝑠 (𝑞 𝑟) ∧ 𝑋 = ((𝑞 𝑟) 𝑠))) ∧ 𝑡 ∈ (Atoms‘𝐾)) → 𝑋 = ((𝑞 𝑟) 𝑠))
17163ad2ant1 1133 . . . . . . . . . . . 12 (((((𝐾 ∈ HL ∧ (𝑋𝑃𝑌𝑃𝑊𝑉) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ (𝑟 ∈ (Atoms‘𝐾) ∧ 𝑠 ∈ (Atoms‘𝐾))) ∧ (𝑞𝑟 ∧ ¬ 𝑠 (𝑞 𝑟) ∧ 𝑋 = ((𝑞 𝑟) 𝑠))) ∧ 𝑡 ∈ (Atoms‘𝐾)) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ 𝑣 ∈ (Atoms‘𝐾)) ∧ (𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ 𝑌 = ((𝑡 𝑢) 𝑣))) → 𝑋 = ((𝑞 𝑟) 𝑠))
18 simp33 1211 . . . . . . . . . . . 12 (((((𝐾 ∈ HL ∧ (𝑋𝑃𝑌𝑃𝑊𝑉) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ (𝑟 ∈ (Atoms‘𝐾) ∧ 𝑠 ∈ (Atoms‘𝐾))) ∧ (𝑞𝑟 ∧ ¬ 𝑠 (𝑞 𝑟) ∧ 𝑋 = ((𝑞 𝑟) 𝑠))) ∧ 𝑡 ∈ (Atoms‘𝐾)) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ 𝑣 ∈ (Atoms‘𝐾)) ∧ (𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ 𝑌 = ((𝑡 𝑢) 𝑣))) → 𝑌 = ((𝑡 𝑢) 𝑣))
1917, 18oveq12d 7466 . . . . . . . . . . 11 (((((𝐾 ∈ HL ∧ (𝑋𝑃𝑌𝑃𝑊𝑉) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ (𝑟 ∈ (Atoms‘𝐾) ∧ 𝑠 ∈ (Atoms‘𝐾))) ∧ (𝑞𝑟 ∧ ¬ 𝑠 (𝑞 𝑟) ∧ 𝑋 = ((𝑞 𝑟) 𝑠))) ∧ 𝑡 ∈ (Atoms‘𝐾)) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ 𝑣 ∈ (Atoms‘𝐾)) ∧ (𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ 𝑌 = ((𝑡 𝑢) 𝑣))) → (𝑋 𝑌) = (((𝑞 𝑟) 𝑠) ((𝑡 𝑢) 𝑣)))
20 simp11 1203 . . . . . . . . . . . . . . 15 (((𝐾 ∈ HL ∧ (𝑋𝑃𝑌𝑃𝑊𝑉) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ (𝑟 ∈ (Atoms‘𝐾) ∧ 𝑠 ∈ (Atoms‘𝐾))) ∧ (𝑞𝑟 ∧ ¬ 𝑠 (𝑞 𝑟) ∧ 𝑋 = ((𝑞 𝑟) 𝑠))) → 𝐾 ∈ HL)
21 simp123 1307 . . . . . . . . . . . . . . 15 (((𝐾 ∈ HL ∧ (𝑋𝑃𝑌𝑃𝑊𝑉) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ (𝑟 ∈ (Atoms‘𝐾) ∧ 𝑠 ∈ (Atoms‘𝐾))) ∧ (𝑞𝑟 ∧ ¬ 𝑠 (𝑞 𝑟) ∧ 𝑋 = ((𝑞 𝑟) 𝑠))) → 𝑊𝑉)
2220, 21jca 511 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ (𝑋𝑃𝑌𝑃𝑊𝑉) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ (𝑟 ∈ (Atoms‘𝐾) ∧ 𝑠 ∈ (Atoms‘𝐾))) ∧ (𝑞𝑟 ∧ ¬ 𝑠 (𝑞 𝑟) ∧ 𝑋 = ((𝑞 𝑟) 𝑠))) → (𝐾 ∈ HL ∧ 𝑊𝑉))
2322adantr 480 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ (𝑋𝑃𝑌𝑃𝑊𝑉) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ (𝑟 ∈ (Atoms‘𝐾) ∧ 𝑠 ∈ (Atoms‘𝐾))) ∧ (𝑞𝑟 ∧ ¬ 𝑠 (𝑞 𝑟) ∧ 𝑋 = ((𝑞 𝑟) 𝑠))) ∧ 𝑡 ∈ (Atoms‘𝐾)) → (𝐾 ∈ HL ∧ 𝑊𝑉))
24233ad2ant1 1133 . . . . . . . . . . . 12 (((((𝐾 ∈ HL ∧ (𝑋𝑃𝑌𝑃𝑊𝑉) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ (𝑟 ∈ (Atoms‘𝐾) ∧ 𝑠 ∈ (Atoms‘𝐾))) ∧ (𝑞𝑟 ∧ ¬ 𝑠 (𝑞 𝑟) ∧ 𝑋 = ((𝑞 𝑟) 𝑠))) ∧ 𝑡 ∈ (Atoms‘𝐾)) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ 𝑣 ∈ (Atoms‘𝐾)) ∧ (𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ 𝑌 = ((𝑡 𝑢) 𝑣))) → (𝐾 ∈ HL ∧ 𝑊𝑉))
25 simp2l 1199 . . . . . . . . . . . . . . 15 (((𝐾 ∈ HL ∧ (𝑋𝑃𝑌𝑃𝑊𝑉) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ (𝑟 ∈ (Atoms‘𝐾) ∧ 𝑠 ∈ (Atoms‘𝐾))) ∧ (𝑞𝑟 ∧ ¬ 𝑠 (𝑞 𝑟) ∧ 𝑋 = ((𝑞 𝑟) 𝑠))) → 𝑞 ∈ (Atoms‘𝐾))
26 simp2rl 1242 . . . . . . . . . . . . . . 15 (((𝐾 ∈ HL ∧ (𝑋𝑃𝑌𝑃𝑊𝑉) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ (𝑟 ∈ (Atoms‘𝐾) ∧ 𝑠 ∈ (Atoms‘𝐾))) ∧ (𝑞𝑟 ∧ ¬ 𝑠 (𝑞 𝑟) ∧ 𝑋 = ((𝑞 𝑟) 𝑠))) → 𝑟 ∈ (Atoms‘𝐾))
27 simp2rr 1243 . . . . . . . . . . . . . . 15 (((𝐾 ∈ HL ∧ (𝑋𝑃𝑌𝑃𝑊𝑉) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ (𝑟 ∈ (Atoms‘𝐾) ∧ 𝑠 ∈ (Atoms‘𝐾))) ∧ (𝑞𝑟 ∧ ¬ 𝑠 (𝑞 𝑟) ∧ 𝑋 = ((𝑞 𝑟) 𝑠))) → 𝑠 ∈ (Atoms‘𝐾))
2825, 26, 273jca 1128 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ (𝑋𝑃𝑌𝑃𝑊𝑉) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ (𝑟 ∈ (Atoms‘𝐾) ∧ 𝑠 ∈ (Atoms‘𝐾))) ∧ (𝑞𝑟 ∧ ¬ 𝑠 (𝑞 𝑟) ∧ 𝑋 = ((𝑞 𝑟) 𝑠))) → (𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾) ∧ 𝑠 ∈ (Atoms‘𝐾)))
2928adantr 480 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ (𝑋𝑃𝑌𝑃𝑊𝑉) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ (𝑟 ∈ (Atoms‘𝐾) ∧ 𝑠 ∈ (Atoms‘𝐾))) ∧ (𝑞𝑟 ∧ ¬ 𝑠 (𝑞 𝑟) ∧ 𝑋 = ((𝑞 𝑟) 𝑠))) ∧ 𝑡 ∈ (Atoms‘𝐾)) → (𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾) ∧ 𝑠 ∈ (Atoms‘𝐾)))
30293ad2ant1 1133 . . . . . . . . . . . 12 (((((𝐾 ∈ HL ∧ (𝑋𝑃𝑌𝑃𝑊𝑉) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ (𝑟 ∈ (Atoms‘𝐾) ∧ 𝑠 ∈ (Atoms‘𝐾))) ∧ (𝑞𝑟 ∧ ¬ 𝑠 (𝑞 𝑟) ∧ 𝑋 = ((𝑞 𝑟) 𝑠))) ∧ 𝑡 ∈ (Atoms‘𝐾)) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ 𝑣 ∈ (Atoms‘𝐾)) ∧ (𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ 𝑌 = ((𝑡 𝑢) 𝑣))) → (𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾) ∧ 𝑠 ∈ (Atoms‘𝐾)))
31 simpl31 1254 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ (𝑋𝑃𝑌𝑃𝑊𝑉) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ (𝑟 ∈ (Atoms‘𝐾) ∧ 𝑠 ∈ (Atoms‘𝐾))) ∧ (𝑞𝑟 ∧ ¬ 𝑠 (𝑞 𝑟) ∧ 𝑋 = ((𝑞 𝑟) 𝑠))) ∧ 𝑡 ∈ (Atoms‘𝐾)) → 𝑞𝑟)
32313ad2ant1 1133 . . . . . . . . . . . . 13 (((((𝐾 ∈ HL ∧ (𝑋𝑃𝑌𝑃𝑊𝑉) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ (𝑟 ∈ (Atoms‘𝐾) ∧ 𝑠 ∈ (Atoms‘𝐾))) ∧ (𝑞𝑟 ∧ ¬ 𝑠 (𝑞 𝑟) ∧ 𝑋 = ((𝑞 𝑟) 𝑠))) ∧ 𝑡 ∈ (Atoms‘𝐾)) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ 𝑣 ∈ (Atoms‘𝐾)) ∧ (𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ 𝑌 = ((𝑡 𝑢) 𝑣))) → 𝑞𝑟)
33 simpl32 1255 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ (𝑋𝑃𝑌𝑃𝑊𝑉) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ (𝑟 ∈ (Atoms‘𝐾) ∧ 𝑠 ∈ (Atoms‘𝐾))) ∧ (𝑞𝑟 ∧ ¬ 𝑠 (𝑞 𝑟) ∧ 𝑋 = ((𝑞 𝑟) 𝑠))) ∧ 𝑡 ∈ (Atoms‘𝐾)) → ¬ 𝑠 (𝑞 𝑟))
34333ad2ant1 1133 . . . . . . . . . . . . 13 (((((𝐾 ∈ HL ∧ (𝑋𝑃𝑌𝑃𝑊𝑉) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ (𝑟 ∈ (Atoms‘𝐾) ∧ 𝑠 ∈ (Atoms‘𝐾))) ∧ (𝑞𝑟 ∧ ¬ 𝑠 (𝑞 𝑟) ∧ 𝑋 = ((𝑞 𝑟) 𝑠))) ∧ 𝑡 ∈ (Atoms‘𝐾)) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ 𝑣 ∈ (Atoms‘𝐾)) ∧ (𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ 𝑌 = ((𝑡 𝑢) 𝑣))) → ¬ 𝑠 (𝑞 𝑟))
3532, 34jca 511 . . . . . . . . . . . 12 (((((𝐾 ∈ HL ∧ (𝑋𝑃𝑌𝑃𝑊𝑉) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ (𝑟 ∈ (Atoms‘𝐾) ∧ 𝑠 ∈ (Atoms‘𝐾))) ∧ (𝑞𝑟 ∧ ¬ 𝑠 (𝑞 𝑟) ∧ 𝑋 = ((𝑞 𝑟) 𝑠))) ∧ 𝑡 ∈ (Atoms‘𝐾)) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ 𝑣 ∈ (Atoms‘𝐾)) ∧ (𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ 𝑌 = ((𝑡 𝑢) 𝑣))) → (𝑞𝑟 ∧ ¬ 𝑠 (𝑞 𝑟)))
36 simp1r 1198 . . . . . . . . . . . . 13 (((((𝐾 ∈ HL ∧ (𝑋𝑃𝑌𝑃𝑊𝑉) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ (𝑟 ∈ (Atoms‘𝐾) ∧ 𝑠 ∈ (Atoms‘𝐾))) ∧ (𝑞𝑟 ∧ ¬ 𝑠 (𝑞 𝑟) ∧ 𝑋 = ((𝑞 𝑟) 𝑠))) ∧ 𝑡 ∈ (Atoms‘𝐾)) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ 𝑣 ∈ (Atoms‘𝐾)) ∧ (𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ 𝑌 = ((𝑡 𝑢) 𝑣))) → 𝑡 ∈ (Atoms‘𝐾))
37 simp2l 1199 . . . . . . . . . . . . 13 (((((𝐾 ∈ HL ∧ (𝑋𝑃𝑌𝑃𝑊𝑉) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ (𝑟 ∈ (Atoms‘𝐾) ∧ 𝑠 ∈ (Atoms‘𝐾))) ∧ (𝑞𝑟 ∧ ¬ 𝑠 (𝑞 𝑟) ∧ 𝑋 = ((𝑞 𝑟) 𝑠))) ∧ 𝑡 ∈ (Atoms‘𝐾)) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ 𝑣 ∈ (Atoms‘𝐾)) ∧ (𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ 𝑌 = ((𝑡 𝑢) 𝑣))) → 𝑢 ∈ (Atoms‘𝐾))
38 simp2r 1200 . . . . . . . . . . . . 13 (((((𝐾 ∈ HL ∧ (𝑋𝑃𝑌𝑃𝑊𝑉) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ (𝑟 ∈ (Atoms‘𝐾) ∧ 𝑠 ∈ (Atoms‘𝐾))) ∧ (𝑞𝑟 ∧ ¬ 𝑠 (𝑞 𝑟) ∧ 𝑋 = ((𝑞 𝑟) 𝑠))) ∧ 𝑡 ∈ (Atoms‘𝐾)) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ 𝑣 ∈ (Atoms‘𝐾)) ∧ (𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ 𝑌 = ((𝑡 𝑢) 𝑣))) → 𝑣 ∈ (Atoms‘𝐾))
3936, 37, 383jca 1128 . . . . . . . . . . . 12 (((((𝐾 ∈ HL ∧ (𝑋𝑃𝑌𝑃𝑊𝑉) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ (𝑟 ∈ (Atoms‘𝐾) ∧ 𝑠 ∈ (Atoms‘𝐾))) ∧ (𝑞𝑟 ∧ ¬ 𝑠 (𝑞 𝑟) ∧ 𝑋 = ((𝑞 𝑟) 𝑠))) ∧ 𝑡 ∈ (Atoms‘𝐾)) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ 𝑣 ∈ (Atoms‘𝐾)) ∧ (𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ 𝑌 = ((𝑡 𝑢) 𝑣))) → (𝑡 ∈ (Atoms‘𝐾) ∧ 𝑢 ∈ (Atoms‘𝐾) ∧ 𝑣 ∈ (Atoms‘𝐾)))
40 simp31 1209 . . . . . . . . . . . . 13 (((((𝐾 ∈ HL ∧ (𝑋𝑃𝑌𝑃𝑊𝑉) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ (𝑟 ∈ (Atoms‘𝐾) ∧ 𝑠 ∈ (Atoms‘𝐾))) ∧ (𝑞𝑟 ∧ ¬ 𝑠 (𝑞 𝑟) ∧ 𝑋 = ((𝑞 𝑟) 𝑠))) ∧ 𝑡 ∈ (Atoms‘𝐾)) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ 𝑣 ∈ (Atoms‘𝐾)) ∧ (𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ 𝑌 = ((𝑡 𝑢) 𝑣))) → 𝑡𝑢)
41 simp32 1210 . . . . . . . . . . . . 13 (((((𝐾 ∈ HL ∧ (𝑋𝑃𝑌𝑃𝑊𝑉) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ (𝑟 ∈ (Atoms‘𝐾) ∧ 𝑠 ∈ (Atoms‘𝐾))) ∧ (𝑞𝑟 ∧ ¬ 𝑠 (𝑞 𝑟) ∧ 𝑋 = ((𝑞 𝑟) 𝑠))) ∧ 𝑡 ∈ (Atoms‘𝐾)) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ 𝑣 ∈ (Atoms‘𝐾)) ∧ (𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ 𝑌 = ((𝑡 𝑢) 𝑣))) → ¬ 𝑣 (𝑡 𝑢))
4240, 41jca 511 . . . . . . . . . . . 12 (((((𝐾 ∈ HL ∧ (𝑋𝑃𝑌𝑃𝑊𝑉) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ (𝑟 ∈ (Atoms‘𝐾) ∧ 𝑠 ∈ (Atoms‘𝐾))) ∧ (𝑞𝑟 ∧ ¬ 𝑠 (𝑞 𝑟) ∧ 𝑋 = ((𝑞 𝑟) 𝑠))) ∧ 𝑡 ∈ (Atoms‘𝐾)) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ 𝑣 ∈ (Atoms‘𝐾)) ∧ (𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ 𝑌 = ((𝑡 𝑢) 𝑣))) → (𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢)))
43 simpl13 1250 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ (𝑋𝑃𝑌𝑃𝑊𝑉) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ (𝑟 ∈ (Atoms‘𝐾) ∧ 𝑠 ∈ (Atoms‘𝐾))) ∧ (𝑞𝑟 ∧ ¬ 𝑠 (𝑞 𝑟) ∧ 𝑋 = ((𝑞 𝑟) 𝑠))) ∧ 𝑡 ∈ (Atoms‘𝐾)) → (𝑋 𝑊𝑌 𝑊𝑋𝑌))
44433ad2ant1 1133 . . . . . . . . . . . . 13 (((((𝐾 ∈ HL ∧ (𝑋𝑃𝑌𝑃𝑊𝑉) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ (𝑟 ∈ (Atoms‘𝐾) ∧ 𝑠 ∈ (Atoms‘𝐾))) ∧ (𝑞𝑟 ∧ ¬ 𝑠 (𝑞 𝑟) ∧ 𝑋 = ((𝑞 𝑟) 𝑠))) ∧ 𝑡 ∈ (Atoms‘𝐾)) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ 𝑣 ∈ (Atoms‘𝐾)) ∧ (𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ 𝑌 = ((𝑡 𝑢) 𝑣))) → (𝑋 𝑊𝑌 𝑊𝑋𝑌))
45 breq1 5169 . . . . . . . . . . . . . . . 16 (𝑋 = ((𝑞 𝑟) 𝑠) → (𝑋 𝑊 ↔ ((𝑞 𝑟) 𝑠) 𝑊))
46 neeq1 3009 . . . . . . . . . . . . . . . 16 (𝑋 = ((𝑞 𝑟) 𝑠) → (𝑋𝑌 ↔ ((𝑞 𝑟) 𝑠) ≠ 𝑌))
4745, 463anbi13d 1438 . . . . . . . . . . . . . . 15 (𝑋 = ((𝑞 𝑟) 𝑠) → ((𝑋 𝑊𝑌 𝑊𝑋𝑌) ↔ (((𝑞 𝑟) 𝑠) 𝑊𝑌 𝑊 ∧ ((𝑞 𝑟) 𝑠) ≠ 𝑌)))
48 breq1 5169 . . . . . . . . . . . . . . . 16 (𝑌 = ((𝑡 𝑢) 𝑣) → (𝑌 𝑊 ↔ ((𝑡 𝑢) 𝑣) 𝑊))
49 neeq2 3010 . . . . . . . . . . . . . . . 16 (𝑌 = ((𝑡 𝑢) 𝑣) → (((𝑞 𝑟) 𝑠) ≠ 𝑌 ↔ ((𝑞 𝑟) 𝑠) ≠ ((𝑡 𝑢) 𝑣)))
5048, 493anbi23d 1439 . . . . . . . . . . . . . . 15 (𝑌 = ((𝑡 𝑢) 𝑣) → ((((𝑞 𝑟) 𝑠) 𝑊𝑌 𝑊 ∧ ((𝑞 𝑟) 𝑠) ≠ 𝑌) ↔ (((𝑞 𝑟) 𝑠) 𝑊 ∧ ((𝑡 𝑢) 𝑣) 𝑊 ∧ ((𝑞 𝑟) 𝑠) ≠ ((𝑡 𝑢) 𝑣))))
5147, 50sylan9bb 509 . . . . . . . . . . . . . 14 ((𝑋 = ((𝑞 𝑟) 𝑠) ∧ 𝑌 = ((𝑡 𝑢) 𝑣)) → ((𝑋 𝑊𝑌 𝑊𝑋𝑌) ↔ (((𝑞 𝑟) 𝑠) 𝑊 ∧ ((𝑡 𝑢) 𝑣) 𝑊 ∧ ((𝑞 𝑟) 𝑠) ≠ ((𝑡 𝑢) 𝑣))))
5217, 18, 51syl2anc 583 . . . . . . . . . . . . 13 (((((𝐾 ∈ HL ∧ (𝑋𝑃𝑌𝑃𝑊𝑉) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ (𝑟 ∈ (Atoms‘𝐾) ∧ 𝑠 ∈ (Atoms‘𝐾))) ∧ (𝑞𝑟 ∧ ¬ 𝑠 (𝑞 𝑟) ∧ 𝑋 = ((𝑞 𝑟) 𝑠))) ∧ 𝑡 ∈ (Atoms‘𝐾)) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ 𝑣 ∈ (Atoms‘𝐾)) ∧ (𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ 𝑌 = ((𝑡 𝑢) 𝑣))) → ((𝑋 𝑊𝑌 𝑊𝑋𝑌) ↔ (((𝑞 𝑟) 𝑠) 𝑊 ∧ ((𝑡 𝑢) 𝑣) 𝑊 ∧ ((𝑞 𝑟) 𝑠) ≠ ((𝑡 𝑢) 𝑣))))
5344, 52mpbid 232 . . . . . . . . . . . 12 (((((𝐾 ∈ HL ∧ (𝑋𝑃𝑌𝑃𝑊𝑉) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ (𝑟 ∈ (Atoms‘𝐾) ∧ 𝑠 ∈ (Atoms‘𝐾))) ∧ (𝑞𝑟 ∧ ¬ 𝑠 (𝑞 𝑟) ∧ 𝑋 = ((𝑞 𝑟) 𝑠))) ∧ 𝑡 ∈ (Atoms‘𝐾)) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ 𝑣 ∈ (Atoms‘𝐾)) ∧ (𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ 𝑌 = ((𝑡 𝑢) 𝑣))) → (((𝑞 𝑟) 𝑠) 𝑊 ∧ ((𝑡 𝑢) 𝑣) 𝑊 ∧ ((𝑞 𝑟) 𝑠) ≠ ((𝑡 𝑢) 𝑣)))
54 2lplnj.v . . . . . . . . . . . . 13 𝑉 = (LVols‘𝐾)
552, 3, 4, 542lplnja 39576 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾) ∧ 𝑠 ∈ (Atoms‘𝐾)) ∧ (𝑞𝑟 ∧ ¬ 𝑠 (𝑞 𝑟))) ∧ ((𝑡 ∈ (Atoms‘𝐾) ∧ 𝑢 ∈ (Atoms‘𝐾) ∧ 𝑣 ∈ (Atoms‘𝐾)) ∧ (𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢))) ∧ (((𝑞 𝑟) 𝑠) 𝑊 ∧ ((𝑡 𝑢) 𝑣) 𝑊 ∧ ((𝑞 𝑟) 𝑠) ≠ ((𝑡 𝑢) 𝑣))) → (((𝑞 𝑟) 𝑠) ((𝑡 𝑢) 𝑣)) = 𝑊)
5624, 30, 35, 39, 42, 53, 55syl321anc 1392 . . . . . . . . . . 11 (((((𝐾 ∈ HL ∧ (𝑋𝑃𝑌𝑃𝑊𝑉) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ (𝑟 ∈ (Atoms‘𝐾) ∧ 𝑠 ∈ (Atoms‘𝐾))) ∧ (𝑞𝑟 ∧ ¬ 𝑠 (𝑞 𝑟) ∧ 𝑋 = ((𝑞 𝑟) 𝑠))) ∧ 𝑡 ∈ (Atoms‘𝐾)) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ 𝑣 ∈ (Atoms‘𝐾)) ∧ (𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ 𝑌 = ((𝑡 𝑢) 𝑣))) → (((𝑞 𝑟) 𝑠) ((𝑡 𝑢) 𝑣)) = 𝑊)
5719, 56eqtrd 2780 . . . . . . . . . 10 (((((𝐾 ∈ HL ∧ (𝑋𝑃𝑌𝑃𝑊𝑉) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ (𝑟 ∈ (Atoms‘𝐾) ∧ 𝑠 ∈ (Atoms‘𝐾))) ∧ (𝑞𝑟 ∧ ¬ 𝑠 (𝑞 𝑟) ∧ 𝑋 = ((𝑞 𝑟) 𝑠))) ∧ 𝑡 ∈ (Atoms‘𝐾)) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ 𝑣 ∈ (Atoms‘𝐾)) ∧ (𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ 𝑌 = ((𝑡 𝑢) 𝑣))) → (𝑋 𝑌) = 𝑊)
58573exp 1119 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ (𝑋𝑃𝑌𝑃𝑊𝑉) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ (𝑟 ∈ (Atoms‘𝐾) ∧ 𝑠 ∈ (Atoms‘𝐾))) ∧ (𝑞𝑟 ∧ ¬ 𝑠 (𝑞 𝑟) ∧ 𝑋 = ((𝑞 𝑟) 𝑠))) ∧ 𝑡 ∈ (Atoms‘𝐾)) → ((𝑢 ∈ (Atoms‘𝐾) ∧ 𝑣 ∈ (Atoms‘𝐾)) → ((𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ 𝑌 = ((𝑡 𝑢) 𝑣)) → (𝑋 𝑌) = 𝑊)))
5958rexlimdvv 3218 . . . . . . . 8 ((((𝐾 ∈ HL ∧ (𝑋𝑃𝑌𝑃𝑊𝑉) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ (𝑟 ∈ (Atoms‘𝐾) ∧ 𝑠 ∈ (Atoms‘𝐾))) ∧ (𝑞𝑟 ∧ ¬ 𝑠 (𝑞 𝑟) ∧ 𝑋 = ((𝑞 𝑟) 𝑠))) ∧ 𝑡 ∈ (Atoms‘𝐾)) → (∃𝑢 ∈ (Atoms‘𝐾)∃𝑣 ∈ (Atoms‘𝐾)(𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ 𝑌 = ((𝑡 𝑢) 𝑣)) → (𝑋 𝑌) = 𝑊))
6059rexlimdva 3161 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑋𝑃𝑌𝑃𝑊𝑉) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ (𝑟 ∈ (Atoms‘𝐾) ∧ 𝑠 ∈ (Atoms‘𝐾))) ∧ (𝑞𝑟 ∧ ¬ 𝑠 (𝑞 𝑟) ∧ 𝑋 = ((𝑞 𝑟) 𝑠))) → (∃𝑡 ∈ (Atoms‘𝐾)∃𝑢 ∈ (Atoms‘𝐾)∃𝑣 ∈ (Atoms‘𝐾)(𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ 𝑌 = ((𝑡 𝑢) 𝑣)) → (𝑋 𝑌) = 𝑊))
61603exp 1119 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑋𝑃𝑌𝑃𝑊𝑉) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) → ((𝑞 ∈ (Atoms‘𝐾) ∧ (𝑟 ∈ (Atoms‘𝐾) ∧ 𝑠 ∈ (Atoms‘𝐾))) → ((𝑞𝑟 ∧ ¬ 𝑠 (𝑞 𝑟) ∧ 𝑋 = ((𝑞 𝑟) 𝑠)) → (∃𝑡 ∈ (Atoms‘𝐾)∃𝑢 ∈ (Atoms‘𝐾)∃𝑣 ∈ (Atoms‘𝐾)(𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ 𝑌 = ((𝑡 𝑢) 𝑣)) → (𝑋 𝑌) = 𝑊))))
6261expdimp 452 . . . . 5 (((𝐾 ∈ HL ∧ (𝑋𝑃𝑌𝑃𝑊𝑉) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) ∧ 𝑞 ∈ (Atoms‘𝐾)) → ((𝑟 ∈ (Atoms‘𝐾) ∧ 𝑠 ∈ (Atoms‘𝐾)) → ((𝑞𝑟 ∧ ¬ 𝑠 (𝑞 𝑟) ∧ 𝑋 = ((𝑞 𝑟) 𝑠)) → (∃𝑡 ∈ (Atoms‘𝐾)∃𝑢 ∈ (Atoms‘𝐾)∃𝑣 ∈ (Atoms‘𝐾)(𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ 𝑌 = ((𝑡 𝑢) 𝑣)) → (𝑋 𝑌) = 𝑊))))
6362rexlimdvv 3218 . . . 4 (((𝐾 ∈ HL ∧ (𝑋𝑃𝑌𝑃𝑊𝑉) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) ∧ 𝑞 ∈ (Atoms‘𝐾)) → (∃𝑟 ∈ (Atoms‘𝐾)∃𝑠 ∈ (Atoms‘𝐾)(𝑞𝑟 ∧ ¬ 𝑠 (𝑞 𝑟) ∧ 𝑋 = ((𝑞 𝑟) 𝑠)) → (∃𝑡 ∈ (Atoms‘𝐾)∃𝑢 ∈ (Atoms‘𝐾)∃𝑣 ∈ (Atoms‘𝐾)(𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ 𝑌 = ((𝑡 𝑢) 𝑣)) → (𝑋 𝑌) = 𝑊)))
6463rexlimdva 3161 . . 3 ((𝐾 ∈ HL ∧ (𝑋𝑃𝑌𝑃𝑊𝑉) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) → (∃𝑞 ∈ (Atoms‘𝐾)∃𝑟 ∈ (Atoms‘𝐾)∃𝑠 ∈ (Atoms‘𝐾)(𝑞𝑟 ∧ ¬ 𝑠 (𝑞 𝑟) ∧ 𝑋 = ((𝑞 𝑟) 𝑠)) → (∃𝑡 ∈ (Atoms‘𝐾)∃𝑢 ∈ (Atoms‘𝐾)∃𝑣 ∈ (Atoms‘𝐾)(𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ 𝑌 = ((𝑡 𝑢) 𝑣)) → (𝑋 𝑌) = 𝑊)))
6564impd 410 . 2 ((𝐾 ∈ HL ∧ (𝑋𝑃𝑌𝑃𝑊𝑉) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) → ((∃𝑞 ∈ (Atoms‘𝐾)∃𝑟 ∈ (Atoms‘𝐾)∃𝑠 ∈ (Atoms‘𝐾)(𝑞𝑟 ∧ ¬ 𝑠 (𝑞 𝑟) ∧ 𝑋 = ((𝑞 𝑟) 𝑠)) ∧ ∃𝑡 ∈ (Atoms‘𝐾)∃𝑢 ∈ (Atoms‘𝐾)∃𝑣 ∈ (Atoms‘𝐾)(𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ 𝑌 = ((𝑡 𝑢) 𝑣))) → (𝑋 𝑌) = 𝑊))
6615, 65mpd 15 1 ((𝐾 ∈ HL ∧ (𝑋𝑃𝑌𝑃𝑊𝑉) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) → (𝑋 𝑌) = 𝑊)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wne 2946  wrex 3076   class class class wbr 5166  cfv 6573  (class class class)co 7448  Basecbs 17258  lecple 17318  joincjn 18381  Atomscatm 39219  HLchlt 39306  LPlanesclpl 39449  LVolsclvol 39450
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-proset 18365  df-poset 18383  df-plt 18400  df-lub 18416  df-glb 18417  df-join 18418  df-meet 18419  df-p0 18495  df-lat 18502  df-clat 18569  df-oposet 39132  df-ol 39134  df-oml 39135  df-covers 39222  df-ats 39223  df-atl 39254  df-cvlat 39278  df-hlat 39307  df-llines 39455  df-lplanes 39456  df-lvols 39457
This theorem is referenced by:  2lplnm2N  39578  dalem13  39633
  Copyright terms: Public domain W3C validator