Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2lplnj Structured version   Visualization version   GIF version

Theorem 2lplnj 37613
Description: The join of two different lattice planes in a (3-dimensional) lattice volume equals the volume. (Contributed by NM, 12-Jul-2012.)
Hypotheses
Ref Expression
2lplnj.l = (le‘𝐾)
2lplnj.j = (join‘𝐾)
2lplnj.p 𝑃 = (LPlanes‘𝐾)
2lplnj.v 𝑉 = (LVols‘𝐾)
Assertion
Ref Expression
2lplnj ((𝐾 ∈ HL ∧ (𝑋𝑃𝑌𝑃𝑊𝑉) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) → (𝑋 𝑌) = 𝑊)

Proof of Theorem 2lplnj
Dummy variables 𝑟 𝑞 𝑠 𝑡 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2739 . . . . . . . 8 (Base‘𝐾) = (Base‘𝐾)
2 2lplnj.l . . . . . . . 8 = (le‘𝐾)
3 2lplnj.j . . . . . . . 8 = (join‘𝐾)
4 eqid 2739 . . . . . . . 8 (Atoms‘𝐾) = (Atoms‘𝐾)
5 2lplnj.p . . . . . . . 8 𝑃 = (LPlanes‘𝐾)
61, 2, 3, 4, 5islpln2 37529 . . . . . . 7 (𝐾 ∈ HL → (𝑋𝑃 ↔ (𝑋 ∈ (Base‘𝐾) ∧ ∃𝑞 ∈ (Atoms‘𝐾)∃𝑟 ∈ (Atoms‘𝐾)∃𝑠 ∈ (Atoms‘𝐾)(𝑞𝑟 ∧ ¬ 𝑠 (𝑞 𝑟) ∧ 𝑋 = ((𝑞 𝑟) 𝑠)))))
7 simpr 484 . . . . . . 7 ((𝑋 ∈ (Base‘𝐾) ∧ ∃𝑞 ∈ (Atoms‘𝐾)∃𝑟 ∈ (Atoms‘𝐾)∃𝑠 ∈ (Atoms‘𝐾)(𝑞𝑟 ∧ ¬ 𝑠 (𝑞 𝑟) ∧ 𝑋 = ((𝑞 𝑟) 𝑠))) → ∃𝑞 ∈ (Atoms‘𝐾)∃𝑟 ∈ (Atoms‘𝐾)∃𝑠 ∈ (Atoms‘𝐾)(𝑞𝑟 ∧ ¬ 𝑠 (𝑞 𝑟) ∧ 𝑋 = ((𝑞 𝑟) 𝑠)))
86, 7syl6bi 252 . . . . . 6 (𝐾 ∈ HL → (𝑋𝑃 → ∃𝑞 ∈ (Atoms‘𝐾)∃𝑟 ∈ (Atoms‘𝐾)∃𝑠 ∈ (Atoms‘𝐾)(𝑞𝑟 ∧ ¬ 𝑠 (𝑞 𝑟) ∧ 𝑋 = ((𝑞 𝑟) 𝑠))))
91, 2, 3, 4, 5islpln2 37529 . . . . . . 7 (𝐾 ∈ HL → (𝑌𝑃 ↔ (𝑌 ∈ (Base‘𝐾) ∧ ∃𝑡 ∈ (Atoms‘𝐾)∃𝑢 ∈ (Atoms‘𝐾)∃𝑣 ∈ (Atoms‘𝐾)(𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ 𝑌 = ((𝑡 𝑢) 𝑣)))))
10 simpr 484 . . . . . . 7 ((𝑌 ∈ (Base‘𝐾) ∧ ∃𝑡 ∈ (Atoms‘𝐾)∃𝑢 ∈ (Atoms‘𝐾)∃𝑣 ∈ (Atoms‘𝐾)(𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ 𝑌 = ((𝑡 𝑢) 𝑣))) → ∃𝑡 ∈ (Atoms‘𝐾)∃𝑢 ∈ (Atoms‘𝐾)∃𝑣 ∈ (Atoms‘𝐾)(𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ 𝑌 = ((𝑡 𝑢) 𝑣)))
119, 10syl6bi 252 . . . . . 6 (𝐾 ∈ HL → (𝑌𝑃 → ∃𝑡 ∈ (Atoms‘𝐾)∃𝑢 ∈ (Atoms‘𝐾)∃𝑣 ∈ (Atoms‘𝐾)(𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ 𝑌 = ((𝑡 𝑢) 𝑣))))
128, 11anim12d 608 . . . . 5 (𝐾 ∈ HL → ((𝑋𝑃𝑌𝑃) → (∃𝑞 ∈ (Atoms‘𝐾)∃𝑟 ∈ (Atoms‘𝐾)∃𝑠 ∈ (Atoms‘𝐾)(𝑞𝑟 ∧ ¬ 𝑠 (𝑞 𝑟) ∧ 𝑋 = ((𝑞 𝑟) 𝑠)) ∧ ∃𝑡 ∈ (Atoms‘𝐾)∃𝑢 ∈ (Atoms‘𝐾)∃𝑣 ∈ (Atoms‘𝐾)(𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ 𝑌 = ((𝑡 𝑢) 𝑣)))))
1312imp 406 . . . 4 ((𝐾 ∈ HL ∧ (𝑋𝑃𝑌𝑃)) → (∃𝑞 ∈ (Atoms‘𝐾)∃𝑟 ∈ (Atoms‘𝐾)∃𝑠 ∈ (Atoms‘𝐾)(𝑞𝑟 ∧ ¬ 𝑠 (𝑞 𝑟) ∧ 𝑋 = ((𝑞 𝑟) 𝑠)) ∧ ∃𝑡 ∈ (Atoms‘𝐾)∃𝑢 ∈ (Atoms‘𝐾)∃𝑣 ∈ (Atoms‘𝐾)(𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ 𝑌 = ((𝑡 𝑢) 𝑣))))
14133adantr3 1169 . . 3 ((𝐾 ∈ HL ∧ (𝑋𝑃𝑌𝑃𝑊𝑉)) → (∃𝑞 ∈ (Atoms‘𝐾)∃𝑟 ∈ (Atoms‘𝐾)∃𝑠 ∈ (Atoms‘𝐾)(𝑞𝑟 ∧ ¬ 𝑠 (𝑞 𝑟) ∧ 𝑋 = ((𝑞 𝑟) 𝑠)) ∧ ∃𝑡 ∈ (Atoms‘𝐾)∃𝑢 ∈ (Atoms‘𝐾)∃𝑣 ∈ (Atoms‘𝐾)(𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ 𝑌 = ((𝑡 𝑢) 𝑣))))
15143adant3 1130 . 2 ((𝐾 ∈ HL ∧ (𝑋𝑃𝑌𝑃𝑊𝑉) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) → (∃𝑞 ∈ (Atoms‘𝐾)∃𝑟 ∈ (Atoms‘𝐾)∃𝑠 ∈ (Atoms‘𝐾)(𝑞𝑟 ∧ ¬ 𝑠 (𝑞 𝑟) ∧ 𝑋 = ((𝑞 𝑟) 𝑠)) ∧ ∃𝑡 ∈ (Atoms‘𝐾)∃𝑢 ∈ (Atoms‘𝐾)∃𝑣 ∈ (Atoms‘𝐾)(𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ 𝑌 = ((𝑡 𝑢) 𝑣))))
16 simpl33 1254 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ (𝑋𝑃𝑌𝑃𝑊𝑉) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ (𝑟 ∈ (Atoms‘𝐾) ∧ 𝑠 ∈ (Atoms‘𝐾))) ∧ (𝑞𝑟 ∧ ¬ 𝑠 (𝑞 𝑟) ∧ 𝑋 = ((𝑞 𝑟) 𝑠))) ∧ 𝑡 ∈ (Atoms‘𝐾)) → 𝑋 = ((𝑞 𝑟) 𝑠))
17163ad2ant1 1131 . . . . . . . . . . . 12 (((((𝐾 ∈ HL ∧ (𝑋𝑃𝑌𝑃𝑊𝑉) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ (𝑟 ∈ (Atoms‘𝐾) ∧ 𝑠 ∈ (Atoms‘𝐾))) ∧ (𝑞𝑟 ∧ ¬ 𝑠 (𝑞 𝑟) ∧ 𝑋 = ((𝑞 𝑟) 𝑠))) ∧ 𝑡 ∈ (Atoms‘𝐾)) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ 𝑣 ∈ (Atoms‘𝐾)) ∧ (𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ 𝑌 = ((𝑡 𝑢) 𝑣))) → 𝑋 = ((𝑞 𝑟) 𝑠))
18 simp33 1209 . . . . . . . . . . . 12 (((((𝐾 ∈ HL ∧ (𝑋𝑃𝑌𝑃𝑊𝑉) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ (𝑟 ∈ (Atoms‘𝐾) ∧ 𝑠 ∈ (Atoms‘𝐾))) ∧ (𝑞𝑟 ∧ ¬ 𝑠 (𝑞 𝑟) ∧ 𝑋 = ((𝑞 𝑟) 𝑠))) ∧ 𝑡 ∈ (Atoms‘𝐾)) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ 𝑣 ∈ (Atoms‘𝐾)) ∧ (𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ 𝑌 = ((𝑡 𝑢) 𝑣))) → 𝑌 = ((𝑡 𝑢) 𝑣))
1917, 18oveq12d 7286 . . . . . . . . . . 11 (((((𝐾 ∈ HL ∧ (𝑋𝑃𝑌𝑃𝑊𝑉) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ (𝑟 ∈ (Atoms‘𝐾) ∧ 𝑠 ∈ (Atoms‘𝐾))) ∧ (𝑞𝑟 ∧ ¬ 𝑠 (𝑞 𝑟) ∧ 𝑋 = ((𝑞 𝑟) 𝑠))) ∧ 𝑡 ∈ (Atoms‘𝐾)) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ 𝑣 ∈ (Atoms‘𝐾)) ∧ (𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ 𝑌 = ((𝑡 𝑢) 𝑣))) → (𝑋 𝑌) = (((𝑞 𝑟) 𝑠) ((𝑡 𝑢) 𝑣)))
20 simp11 1201 . . . . . . . . . . . . . . 15 (((𝐾 ∈ HL ∧ (𝑋𝑃𝑌𝑃𝑊𝑉) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ (𝑟 ∈ (Atoms‘𝐾) ∧ 𝑠 ∈ (Atoms‘𝐾))) ∧ (𝑞𝑟 ∧ ¬ 𝑠 (𝑞 𝑟) ∧ 𝑋 = ((𝑞 𝑟) 𝑠))) → 𝐾 ∈ HL)
21 simp123 1305 . . . . . . . . . . . . . . 15 (((𝐾 ∈ HL ∧ (𝑋𝑃𝑌𝑃𝑊𝑉) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ (𝑟 ∈ (Atoms‘𝐾) ∧ 𝑠 ∈ (Atoms‘𝐾))) ∧ (𝑞𝑟 ∧ ¬ 𝑠 (𝑞 𝑟) ∧ 𝑋 = ((𝑞 𝑟) 𝑠))) → 𝑊𝑉)
2220, 21jca 511 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ (𝑋𝑃𝑌𝑃𝑊𝑉) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ (𝑟 ∈ (Atoms‘𝐾) ∧ 𝑠 ∈ (Atoms‘𝐾))) ∧ (𝑞𝑟 ∧ ¬ 𝑠 (𝑞 𝑟) ∧ 𝑋 = ((𝑞 𝑟) 𝑠))) → (𝐾 ∈ HL ∧ 𝑊𝑉))
2322adantr 480 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ (𝑋𝑃𝑌𝑃𝑊𝑉) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ (𝑟 ∈ (Atoms‘𝐾) ∧ 𝑠 ∈ (Atoms‘𝐾))) ∧ (𝑞𝑟 ∧ ¬ 𝑠 (𝑞 𝑟) ∧ 𝑋 = ((𝑞 𝑟) 𝑠))) ∧ 𝑡 ∈ (Atoms‘𝐾)) → (𝐾 ∈ HL ∧ 𝑊𝑉))
24233ad2ant1 1131 . . . . . . . . . . . 12 (((((𝐾 ∈ HL ∧ (𝑋𝑃𝑌𝑃𝑊𝑉) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ (𝑟 ∈ (Atoms‘𝐾) ∧ 𝑠 ∈ (Atoms‘𝐾))) ∧ (𝑞𝑟 ∧ ¬ 𝑠 (𝑞 𝑟) ∧ 𝑋 = ((𝑞 𝑟) 𝑠))) ∧ 𝑡 ∈ (Atoms‘𝐾)) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ 𝑣 ∈ (Atoms‘𝐾)) ∧ (𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ 𝑌 = ((𝑡 𝑢) 𝑣))) → (𝐾 ∈ HL ∧ 𝑊𝑉))
25 simp2l 1197 . . . . . . . . . . . . . . 15 (((𝐾 ∈ HL ∧ (𝑋𝑃𝑌𝑃𝑊𝑉) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ (𝑟 ∈ (Atoms‘𝐾) ∧ 𝑠 ∈ (Atoms‘𝐾))) ∧ (𝑞𝑟 ∧ ¬ 𝑠 (𝑞 𝑟) ∧ 𝑋 = ((𝑞 𝑟) 𝑠))) → 𝑞 ∈ (Atoms‘𝐾))
26 simp2rl 1240 . . . . . . . . . . . . . . 15 (((𝐾 ∈ HL ∧ (𝑋𝑃𝑌𝑃𝑊𝑉) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ (𝑟 ∈ (Atoms‘𝐾) ∧ 𝑠 ∈ (Atoms‘𝐾))) ∧ (𝑞𝑟 ∧ ¬ 𝑠 (𝑞 𝑟) ∧ 𝑋 = ((𝑞 𝑟) 𝑠))) → 𝑟 ∈ (Atoms‘𝐾))
27 simp2rr 1241 . . . . . . . . . . . . . . 15 (((𝐾 ∈ HL ∧ (𝑋𝑃𝑌𝑃𝑊𝑉) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ (𝑟 ∈ (Atoms‘𝐾) ∧ 𝑠 ∈ (Atoms‘𝐾))) ∧ (𝑞𝑟 ∧ ¬ 𝑠 (𝑞 𝑟) ∧ 𝑋 = ((𝑞 𝑟) 𝑠))) → 𝑠 ∈ (Atoms‘𝐾))
2825, 26, 273jca 1126 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ (𝑋𝑃𝑌𝑃𝑊𝑉) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ (𝑟 ∈ (Atoms‘𝐾) ∧ 𝑠 ∈ (Atoms‘𝐾))) ∧ (𝑞𝑟 ∧ ¬ 𝑠 (𝑞 𝑟) ∧ 𝑋 = ((𝑞 𝑟) 𝑠))) → (𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾) ∧ 𝑠 ∈ (Atoms‘𝐾)))
2928adantr 480 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ (𝑋𝑃𝑌𝑃𝑊𝑉) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ (𝑟 ∈ (Atoms‘𝐾) ∧ 𝑠 ∈ (Atoms‘𝐾))) ∧ (𝑞𝑟 ∧ ¬ 𝑠 (𝑞 𝑟) ∧ 𝑋 = ((𝑞 𝑟) 𝑠))) ∧ 𝑡 ∈ (Atoms‘𝐾)) → (𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾) ∧ 𝑠 ∈ (Atoms‘𝐾)))
30293ad2ant1 1131 . . . . . . . . . . . 12 (((((𝐾 ∈ HL ∧ (𝑋𝑃𝑌𝑃𝑊𝑉) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ (𝑟 ∈ (Atoms‘𝐾) ∧ 𝑠 ∈ (Atoms‘𝐾))) ∧ (𝑞𝑟 ∧ ¬ 𝑠 (𝑞 𝑟) ∧ 𝑋 = ((𝑞 𝑟) 𝑠))) ∧ 𝑡 ∈ (Atoms‘𝐾)) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ 𝑣 ∈ (Atoms‘𝐾)) ∧ (𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ 𝑌 = ((𝑡 𝑢) 𝑣))) → (𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾) ∧ 𝑠 ∈ (Atoms‘𝐾)))
31 simpl31 1252 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ (𝑋𝑃𝑌𝑃𝑊𝑉) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ (𝑟 ∈ (Atoms‘𝐾) ∧ 𝑠 ∈ (Atoms‘𝐾))) ∧ (𝑞𝑟 ∧ ¬ 𝑠 (𝑞 𝑟) ∧ 𝑋 = ((𝑞 𝑟) 𝑠))) ∧ 𝑡 ∈ (Atoms‘𝐾)) → 𝑞𝑟)
32313ad2ant1 1131 . . . . . . . . . . . . 13 (((((𝐾 ∈ HL ∧ (𝑋𝑃𝑌𝑃𝑊𝑉) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ (𝑟 ∈ (Atoms‘𝐾) ∧ 𝑠 ∈ (Atoms‘𝐾))) ∧ (𝑞𝑟 ∧ ¬ 𝑠 (𝑞 𝑟) ∧ 𝑋 = ((𝑞 𝑟) 𝑠))) ∧ 𝑡 ∈ (Atoms‘𝐾)) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ 𝑣 ∈ (Atoms‘𝐾)) ∧ (𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ 𝑌 = ((𝑡 𝑢) 𝑣))) → 𝑞𝑟)
33 simpl32 1253 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ (𝑋𝑃𝑌𝑃𝑊𝑉) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ (𝑟 ∈ (Atoms‘𝐾) ∧ 𝑠 ∈ (Atoms‘𝐾))) ∧ (𝑞𝑟 ∧ ¬ 𝑠 (𝑞 𝑟) ∧ 𝑋 = ((𝑞 𝑟) 𝑠))) ∧ 𝑡 ∈ (Atoms‘𝐾)) → ¬ 𝑠 (𝑞 𝑟))
34333ad2ant1 1131 . . . . . . . . . . . . 13 (((((𝐾 ∈ HL ∧ (𝑋𝑃𝑌𝑃𝑊𝑉) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ (𝑟 ∈ (Atoms‘𝐾) ∧ 𝑠 ∈ (Atoms‘𝐾))) ∧ (𝑞𝑟 ∧ ¬ 𝑠 (𝑞 𝑟) ∧ 𝑋 = ((𝑞 𝑟) 𝑠))) ∧ 𝑡 ∈ (Atoms‘𝐾)) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ 𝑣 ∈ (Atoms‘𝐾)) ∧ (𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ 𝑌 = ((𝑡 𝑢) 𝑣))) → ¬ 𝑠 (𝑞 𝑟))
3532, 34jca 511 . . . . . . . . . . . 12 (((((𝐾 ∈ HL ∧ (𝑋𝑃𝑌𝑃𝑊𝑉) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ (𝑟 ∈ (Atoms‘𝐾) ∧ 𝑠 ∈ (Atoms‘𝐾))) ∧ (𝑞𝑟 ∧ ¬ 𝑠 (𝑞 𝑟) ∧ 𝑋 = ((𝑞 𝑟) 𝑠))) ∧ 𝑡 ∈ (Atoms‘𝐾)) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ 𝑣 ∈ (Atoms‘𝐾)) ∧ (𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ 𝑌 = ((𝑡 𝑢) 𝑣))) → (𝑞𝑟 ∧ ¬ 𝑠 (𝑞 𝑟)))
36 simp1r 1196 . . . . . . . . . . . . 13 (((((𝐾 ∈ HL ∧ (𝑋𝑃𝑌𝑃𝑊𝑉) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ (𝑟 ∈ (Atoms‘𝐾) ∧ 𝑠 ∈ (Atoms‘𝐾))) ∧ (𝑞𝑟 ∧ ¬ 𝑠 (𝑞 𝑟) ∧ 𝑋 = ((𝑞 𝑟) 𝑠))) ∧ 𝑡 ∈ (Atoms‘𝐾)) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ 𝑣 ∈ (Atoms‘𝐾)) ∧ (𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ 𝑌 = ((𝑡 𝑢) 𝑣))) → 𝑡 ∈ (Atoms‘𝐾))
37 simp2l 1197 . . . . . . . . . . . . 13 (((((𝐾 ∈ HL ∧ (𝑋𝑃𝑌𝑃𝑊𝑉) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ (𝑟 ∈ (Atoms‘𝐾) ∧ 𝑠 ∈ (Atoms‘𝐾))) ∧ (𝑞𝑟 ∧ ¬ 𝑠 (𝑞 𝑟) ∧ 𝑋 = ((𝑞 𝑟) 𝑠))) ∧ 𝑡 ∈ (Atoms‘𝐾)) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ 𝑣 ∈ (Atoms‘𝐾)) ∧ (𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ 𝑌 = ((𝑡 𝑢) 𝑣))) → 𝑢 ∈ (Atoms‘𝐾))
38 simp2r 1198 . . . . . . . . . . . . 13 (((((𝐾 ∈ HL ∧ (𝑋𝑃𝑌𝑃𝑊𝑉) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ (𝑟 ∈ (Atoms‘𝐾) ∧ 𝑠 ∈ (Atoms‘𝐾))) ∧ (𝑞𝑟 ∧ ¬ 𝑠 (𝑞 𝑟) ∧ 𝑋 = ((𝑞 𝑟) 𝑠))) ∧ 𝑡 ∈ (Atoms‘𝐾)) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ 𝑣 ∈ (Atoms‘𝐾)) ∧ (𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ 𝑌 = ((𝑡 𝑢) 𝑣))) → 𝑣 ∈ (Atoms‘𝐾))
3936, 37, 383jca 1126 . . . . . . . . . . . 12 (((((𝐾 ∈ HL ∧ (𝑋𝑃𝑌𝑃𝑊𝑉) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ (𝑟 ∈ (Atoms‘𝐾) ∧ 𝑠 ∈ (Atoms‘𝐾))) ∧ (𝑞𝑟 ∧ ¬ 𝑠 (𝑞 𝑟) ∧ 𝑋 = ((𝑞 𝑟) 𝑠))) ∧ 𝑡 ∈ (Atoms‘𝐾)) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ 𝑣 ∈ (Atoms‘𝐾)) ∧ (𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ 𝑌 = ((𝑡 𝑢) 𝑣))) → (𝑡 ∈ (Atoms‘𝐾) ∧ 𝑢 ∈ (Atoms‘𝐾) ∧ 𝑣 ∈ (Atoms‘𝐾)))
40 simp31 1207 . . . . . . . . . . . . 13 (((((𝐾 ∈ HL ∧ (𝑋𝑃𝑌𝑃𝑊𝑉) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ (𝑟 ∈ (Atoms‘𝐾) ∧ 𝑠 ∈ (Atoms‘𝐾))) ∧ (𝑞𝑟 ∧ ¬ 𝑠 (𝑞 𝑟) ∧ 𝑋 = ((𝑞 𝑟) 𝑠))) ∧ 𝑡 ∈ (Atoms‘𝐾)) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ 𝑣 ∈ (Atoms‘𝐾)) ∧ (𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ 𝑌 = ((𝑡 𝑢) 𝑣))) → 𝑡𝑢)
41 simp32 1208 . . . . . . . . . . . . 13 (((((𝐾 ∈ HL ∧ (𝑋𝑃𝑌𝑃𝑊𝑉) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ (𝑟 ∈ (Atoms‘𝐾) ∧ 𝑠 ∈ (Atoms‘𝐾))) ∧ (𝑞𝑟 ∧ ¬ 𝑠 (𝑞 𝑟) ∧ 𝑋 = ((𝑞 𝑟) 𝑠))) ∧ 𝑡 ∈ (Atoms‘𝐾)) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ 𝑣 ∈ (Atoms‘𝐾)) ∧ (𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ 𝑌 = ((𝑡 𝑢) 𝑣))) → ¬ 𝑣 (𝑡 𝑢))
4240, 41jca 511 . . . . . . . . . . . 12 (((((𝐾 ∈ HL ∧ (𝑋𝑃𝑌𝑃𝑊𝑉) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ (𝑟 ∈ (Atoms‘𝐾) ∧ 𝑠 ∈ (Atoms‘𝐾))) ∧ (𝑞𝑟 ∧ ¬ 𝑠 (𝑞 𝑟) ∧ 𝑋 = ((𝑞 𝑟) 𝑠))) ∧ 𝑡 ∈ (Atoms‘𝐾)) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ 𝑣 ∈ (Atoms‘𝐾)) ∧ (𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ 𝑌 = ((𝑡 𝑢) 𝑣))) → (𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢)))
43 simpl13 1248 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ (𝑋𝑃𝑌𝑃𝑊𝑉) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ (𝑟 ∈ (Atoms‘𝐾) ∧ 𝑠 ∈ (Atoms‘𝐾))) ∧ (𝑞𝑟 ∧ ¬ 𝑠 (𝑞 𝑟) ∧ 𝑋 = ((𝑞 𝑟) 𝑠))) ∧ 𝑡 ∈ (Atoms‘𝐾)) → (𝑋 𝑊𝑌 𝑊𝑋𝑌))
44433ad2ant1 1131 . . . . . . . . . . . . 13 (((((𝐾 ∈ HL ∧ (𝑋𝑃𝑌𝑃𝑊𝑉) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ (𝑟 ∈ (Atoms‘𝐾) ∧ 𝑠 ∈ (Atoms‘𝐾))) ∧ (𝑞𝑟 ∧ ¬ 𝑠 (𝑞 𝑟) ∧ 𝑋 = ((𝑞 𝑟) 𝑠))) ∧ 𝑡 ∈ (Atoms‘𝐾)) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ 𝑣 ∈ (Atoms‘𝐾)) ∧ (𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ 𝑌 = ((𝑡 𝑢) 𝑣))) → (𝑋 𝑊𝑌 𝑊𝑋𝑌))
45 breq1 5081 . . . . . . . . . . . . . . . 16 (𝑋 = ((𝑞 𝑟) 𝑠) → (𝑋 𝑊 ↔ ((𝑞 𝑟) 𝑠) 𝑊))
46 neeq1 3007 . . . . . . . . . . . . . . . 16 (𝑋 = ((𝑞 𝑟) 𝑠) → (𝑋𝑌 ↔ ((𝑞 𝑟) 𝑠) ≠ 𝑌))
4745, 463anbi13d 1436 . . . . . . . . . . . . . . 15 (𝑋 = ((𝑞 𝑟) 𝑠) → ((𝑋 𝑊𝑌 𝑊𝑋𝑌) ↔ (((𝑞 𝑟) 𝑠) 𝑊𝑌 𝑊 ∧ ((𝑞 𝑟) 𝑠) ≠ 𝑌)))
48 breq1 5081 . . . . . . . . . . . . . . . 16 (𝑌 = ((𝑡 𝑢) 𝑣) → (𝑌 𝑊 ↔ ((𝑡 𝑢) 𝑣) 𝑊))
49 neeq2 3008 . . . . . . . . . . . . . . . 16 (𝑌 = ((𝑡 𝑢) 𝑣) → (((𝑞 𝑟) 𝑠) ≠ 𝑌 ↔ ((𝑞 𝑟) 𝑠) ≠ ((𝑡 𝑢) 𝑣)))
5048, 493anbi23d 1437 . . . . . . . . . . . . . . 15 (𝑌 = ((𝑡 𝑢) 𝑣) → ((((𝑞 𝑟) 𝑠) 𝑊𝑌 𝑊 ∧ ((𝑞 𝑟) 𝑠) ≠ 𝑌) ↔ (((𝑞 𝑟) 𝑠) 𝑊 ∧ ((𝑡 𝑢) 𝑣) 𝑊 ∧ ((𝑞 𝑟) 𝑠) ≠ ((𝑡 𝑢) 𝑣))))
5147, 50sylan9bb 509 . . . . . . . . . . . . . 14 ((𝑋 = ((𝑞 𝑟) 𝑠) ∧ 𝑌 = ((𝑡 𝑢) 𝑣)) → ((𝑋 𝑊𝑌 𝑊𝑋𝑌) ↔ (((𝑞 𝑟) 𝑠) 𝑊 ∧ ((𝑡 𝑢) 𝑣) 𝑊 ∧ ((𝑞 𝑟) 𝑠) ≠ ((𝑡 𝑢) 𝑣))))
5217, 18, 51syl2anc 583 . . . . . . . . . . . . 13 (((((𝐾 ∈ HL ∧ (𝑋𝑃𝑌𝑃𝑊𝑉) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ (𝑟 ∈ (Atoms‘𝐾) ∧ 𝑠 ∈ (Atoms‘𝐾))) ∧ (𝑞𝑟 ∧ ¬ 𝑠 (𝑞 𝑟) ∧ 𝑋 = ((𝑞 𝑟) 𝑠))) ∧ 𝑡 ∈ (Atoms‘𝐾)) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ 𝑣 ∈ (Atoms‘𝐾)) ∧ (𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ 𝑌 = ((𝑡 𝑢) 𝑣))) → ((𝑋 𝑊𝑌 𝑊𝑋𝑌) ↔ (((𝑞 𝑟) 𝑠) 𝑊 ∧ ((𝑡 𝑢) 𝑣) 𝑊 ∧ ((𝑞 𝑟) 𝑠) ≠ ((𝑡 𝑢) 𝑣))))
5344, 52mpbid 231 . . . . . . . . . . . 12 (((((𝐾 ∈ HL ∧ (𝑋𝑃𝑌𝑃𝑊𝑉) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ (𝑟 ∈ (Atoms‘𝐾) ∧ 𝑠 ∈ (Atoms‘𝐾))) ∧ (𝑞𝑟 ∧ ¬ 𝑠 (𝑞 𝑟) ∧ 𝑋 = ((𝑞 𝑟) 𝑠))) ∧ 𝑡 ∈ (Atoms‘𝐾)) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ 𝑣 ∈ (Atoms‘𝐾)) ∧ (𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ 𝑌 = ((𝑡 𝑢) 𝑣))) → (((𝑞 𝑟) 𝑠) 𝑊 ∧ ((𝑡 𝑢) 𝑣) 𝑊 ∧ ((𝑞 𝑟) 𝑠) ≠ ((𝑡 𝑢) 𝑣)))
54 2lplnj.v . . . . . . . . . . . . 13 𝑉 = (LVols‘𝐾)
552, 3, 4, 542lplnja 37612 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾) ∧ 𝑠 ∈ (Atoms‘𝐾)) ∧ (𝑞𝑟 ∧ ¬ 𝑠 (𝑞 𝑟))) ∧ ((𝑡 ∈ (Atoms‘𝐾) ∧ 𝑢 ∈ (Atoms‘𝐾) ∧ 𝑣 ∈ (Atoms‘𝐾)) ∧ (𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢))) ∧ (((𝑞 𝑟) 𝑠) 𝑊 ∧ ((𝑡 𝑢) 𝑣) 𝑊 ∧ ((𝑞 𝑟) 𝑠) ≠ ((𝑡 𝑢) 𝑣))) → (((𝑞 𝑟) 𝑠) ((𝑡 𝑢) 𝑣)) = 𝑊)
5624, 30, 35, 39, 42, 53, 55syl321anc 1390 . . . . . . . . . . 11 (((((𝐾 ∈ HL ∧ (𝑋𝑃𝑌𝑃𝑊𝑉) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ (𝑟 ∈ (Atoms‘𝐾) ∧ 𝑠 ∈ (Atoms‘𝐾))) ∧ (𝑞𝑟 ∧ ¬ 𝑠 (𝑞 𝑟) ∧ 𝑋 = ((𝑞 𝑟) 𝑠))) ∧ 𝑡 ∈ (Atoms‘𝐾)) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ 𝑣 ∈ (Atoms‘𝐾)) ∧ (𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ 𝑌 = ((𝑡 𝑢) 𝑣))) → (((𝑞 𝑟) 𝑠) ((𝑡 𝑢) 𝑣)) = 𝑊)
5719, 56eqtrd 2779 . . . . . . . . . 10 (((((𝐾 ∈ HL ∧ (𝑋𝑃𝑌𝑃𝑊𝑉) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ (𝑟 ∈ (Atoms‘𝐾) ∧ 𝑠 ∈ (Atoms‘𝐾))) ∧ (𝑞𝑟 ∧ ¬ 𝑠 (𝑞 𝑟) ∧ 𝑋 = ((𝑞 𝑟) 𝑠))) ∧ 𝑡 ∈ (Atoms‘𝐾)) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ 𝑣 ∈ (Atoms‘𝐾)) ∧ (𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ 𝑌 = ((𝑡 𝑢) 𝑣))) → (𝑋 𝑌) = 𝑊)
58573exp 1117 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ (𝑋𝑃𝑌𝑃𝑊𝑉) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ (𝑟 ∈ (Atoms‘𝐾) ∧ 𝑠 ∈ (Atoms‘𝐾))) ∧ (𝑞𝑟 ∧ ¬ 𝑠 (𝑞 𝑟) ∧ 𝑋 = ((𝑞 𝑟) 𝑠))) ∧ 𝑡 ∈ (Atoms‘𝐾)) → ((𝑢 ∈ (Atoms‘𝐾) ∧ 𝑣 ∈ (Atoms‘𝐾)) → ((𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ 𝑌 = ((𝑡 𝑢) 𝑣)) → (𝑋 𝑌) = 𝑊)))
5958rexlimdvv 3223 . . . . . . . 8 ((((𝐾 ∈ HL ∧ (𝑋𝑃𝑌𝑃𝑊𝑉) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ (𝑟 ∈ (Atoms‘𝐾) ∧ 𝑠 ∈ (Atoms‘𝐾))) ∧ (𝑞𝑟 ∧ ¬ 𝑠 (𝑞 𝑟) ∧ 𝑋 = ((𝑞 𝑟) 𝑠))) ∧ 𝑡 ∈ (Atoms‘𝐾)) → (∃𝑢 ∈ (Atoms‘𝐾)∃𝑣 ∈ (Atoms‘𝐾)(𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ 𝑌 = ((𝑡 𝑢) 𝑣)) → (𝑋 𝑌) = 𝑊))
6059rexlimdva 3214 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑋𝑃𝑌𝑃𝑊𝑉) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ (𝑟 ∈ (Atoms‘𝐾) ∧ 𝑠 ∈ (Atoms‘𝐾))) ∧ (𝑞𝑟 ∧ ¬ 𝑠 (𝑞 𝑟) ∧ 𝑋 = ((𝑞 𝑟) 𝑠))) → (∃𝑡 ∈ (Atoms‘𝐾)∃𝑢 ∈ (Atoms‘𝐾)∃𝑣 ∈ (Atoms‘𝐾)(𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ 𝑌 = ((𝑡 𝑢) 𝑣)) → (𝑋 𝑌) = 𝑊))
61603exp 1117 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑋𝑃𝑌𝑃𝑊𝑉) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) → ((𝑞 ∈ (Atoms‘𝐾) ∧ (𝑟 ∈ (Atoms‘𝐾) ∧ 𝑠 ∈ (Atoms‘𝐾))) → ((𝑞𝑟 ∧ ¬ 𝑠 (𝑞 𝑟) ∧ 𝑋 = ((𝑞 𝑟) 𝑠)) → (∃𝑡 ∈ (Atoms‘𝐾)∃𝑢 ∈ (Atoms‘𝐾)∃𝑣 ∈ (Atoms‘𝐾)(𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ 𝑌 = ((𝑡 𝑢) 𝑣)) → (𝑋 𝑌) = 𝑊))))
6261expdimp 452 . . . . 5 (((𝐾 ∈ HL ∧ (𝑋𝑃𝑌𝑃𝑊𝑉) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) ∧ 𝑞 ∈ (Atoms‘𝐾)) → ((𝑟 ∈ (Atoms‘𝐾) ∧ 𝑠 ∈ (Atoms‘𝐾)) → ((𝑞𝑟 ∧ ¬ 𝑠 (𝑞 𝑟) ∧ 𝑋 = ((𝑞 𝑟) 𝑠)) → (∃𝑡 ∈ (Atoms‘𝐾)∃𝑢 ∈ (Atoms‘𝐾)∃𝑣 ∈ (Atoms‘𝐾)(𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ 𝑌 = ((𝑡 𝑢) 𝑣)) → (𝑋 𝑌) = 𝑊))))
6362rexlimdvv 3223 . . . 4 (((𝐾 ∈ HL ∧ (𝑋𝑃𝑌𝑃𝑊𝑉) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) ∧ 𝑞 ∈ (Atoms‘𝐾)) → (∃𝑟 ∈ (Atoms‘𝐾)∃𝑠 ∈ (Atoms‘𝐾)(𝑞𝑟 ∧ ¬ 𝑠 (𝑞 𝑟) ∧ 𝑋 = ((𝑞 𝑟) 𝑠)) → (∃𝑡 ∈ (Atoms‘𝐾)∃𝑢 ∈ (Atoms‘𝐾)∃𝑣 ∈ (Atoms‘𝐾)(𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ 𝑌 = ((𝑡 𝑢) 𝑣)) → (𝑋 𝑌) = 𝑊)))
6463rexlimdva 3214 . . 3 ((𝐾 ∈ HL ∧ (𝑋𝑃𝑌𝑃𝑊𝑉) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) → (∃𝑞 ∈ (Atoms‘𝐾)∃𝑟 ∈ (Atoms‘𝐾)∃𝑠 ∈ (Atoms‘𝐾)(𝑞𝑟 ∧ ¬ 𝑠 (𝑞 𝑟) ∧ 𝑋 = ((𝑞 𝑟) 𝑠)) → (∃𝑡 ∈ (Atoms‘𝐾)∃𝑢 ∈ (Atoms‘𝐾)∃𝑣 ∈ (Atoms‘𝐾)(𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ 𝑌 = ((𝑡 𝑢) 𝑣)) → (𝑋 𝑌) = 𝑊)))
6564impd 410 . 2 ((𝐾 ∈ HL ∧ (𝑋𝑃𝑌𝑃𝑊𝑉) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) → ((∃𝑞 ∈ (Atoms‘𝐾)∃𝑟 ∈ (Atoms‘𝐾)∃𝑠 ∈ (Atoms‘𝐾)(𝑞𝑟 ∧ ¬ 𝑠 (𝑞 𝑟) ∧ 𝑋 = ((𝑞 𝑟) 𝑠)) ∧ ∃𝑡 ∈ (Atoms‘𝐾)∃𝑢 ∈ (Atoms‘𝐾)∃𝑣 ∈ (Atoms‘𝐾)(𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ 𝑌 = ((𝑡 𝑢) 𝑣))) → (𝑋 𝑌) = 𝑊))
6615, 65mpd 15 1 ((𝐾 ∈ HL ∧ (𝑋𝑃𝑌𝑃𝑊𝑉) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) → (𝑋 𝑌) = 𝑊)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  w3a 1085   = wceq 1541  wcel 2109  wne 2944  wrex 3066   class class class wbr 5078  cfv 6430  (class class class)co 7268  Basecbs 16893  lecple 16950  joincjn 18010  Atomscatm 37256  HLchlt 37343  LPlanesclpl 37485  LVolsclvol 37486
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-rep 5213  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7579
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-ral 3070  df-rex 3071  df-reu 3072  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4845  df-iun 4931  df-br 5079  df-opab 5141  df-mpt 5162  df-id 5488  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-f1 6435  df-fo 6436  df-f1o 6437  df-fv 6438  df-riota 7225  df-ov 7271  df-oprab 7272  df-proset 17994  df-poset 18012  df-plt 18029  df-lub 18045  df-glb 18046  df-join 18047  df-meet 18048  df-p0 18124  df-lat 18131  df-clat 18198  df-oposet 37169  df-ol 37171  df-oml 37172  df-covers 37259  df-ats 37260  df-atl 37291  df-cvlat 37315  df-hlat 37344  df-llines 37491  df-lplanes 37492  df-lvols 37493
This theorem is referenced by:  2lplnm2N  37614  dalem13  37669
  Copyright terms: Public domain W3C validator