Step | Hyp | Ref
| Expression |
1 | | eqid 2730 |
. . . . . . . 8
β’
(BaseβπΎ) =
(BaseβπΎ) |
2 | | 2lplnj.l |
. . . . . . . 8
β’ β€ =
(leβπΎ) |
3 | | 2lplnj.j |
. . . . . . . 8
β’ β¨ =
(joinβπΎ) |
4 | | eqid 2730 |
. . . . . . . 8
β’
(AtomsβπΎ) =
(AtomsβπΎ) |
5 | | 2lplnj.p |
. . . . . . . 8
β’ π = (LPlanesβπΎ) |
6 | 1, 2, 3, 4, 5 | islpln2 38710 |
. . . . . . 7
β’ (πΎ β HL β (π β π β (π β (BaseβπΎ) β§ βπ β (AtomsβπΎ)βπ β (AtomsβπΎ)βπ β (AtomsβπΎ)(π β π β§ Β¬ π β€ (π β¨ π) β§ π = ((π β¨ π) β¨ π ))))) |
7 | | simpr 483 |
. . . . . . 7
β’ ((π β (BaseβπΎ) β§ βπ β (AtomsβπΎ)βπ β (AtomsβπΎ)βπ β (AtomsβπΎ)(π β π β§ Β¬ π β€ (π β¨ π) β§ π = ((π β¨ π) β¨ π ))) β βπ β (AtomsβπΎ)βπ β (AtomsβπΎ)βπ β (AtomsβπΎ)(π β π β§ Β¬ π β€ (π β¨ π) β§ π = ((π β¨ π) β¨ π ))) |
8 | 6, 7 | syl6bi 252 |
. . . . . 6
β’ (πΎ β HL β (π β π β βπ β (AtomsβπΎ)βπ β (AtomsβπΎ)βπ β (AtomsβπΎ)(π β π β§ Β¬ π β€ (π β¨ π) β§ π = ((π β¨ π) β¨ π )))) |
9 | 1, 2, 3, 4, 5 | islpln2 38710 |
. . . . . . 7
β’ (πΎ β HL β (π β π β (π β (BaseβπΎ) β§ βπ‘ β (AtomsβπΎ)βπ’ β (AtomsβπΎ)βπ£ β (AtomsβπΎ)(π‘ β π’ β§ Β¬ π£ β€ (π‘ β¨ π’) β§ π = ((π‘ β¨ π’) β¨ π£))))) |
10 | | simpr 483 |
. . . . . . 7
β’ ((π β (BaseβπΎ) β§ βπ‘ β (AtomsβπΎ)βπ’ β (AtomsβπΎ)βπ£ β (AtomsβπΎ)(π‘ β π’ β§ Β¬ π£ β€ (π‘ β¨ π’) β§ π = ((π‘ β¨ π’) β¨ π£))) β βπ‘ β (AtomsβπΎ)βπ’ β (AtomsβπΎ)βπ£ β (AtomsβπΎ)(π‘ β π’ β§ Β¬ π£ β€ (π‘ β¨ π’) β§ π = ((π‘ β¨ π’) β¨ π£))) |
11 | 9, 10 | syl6bi 252 |
. . . . . 6
β’ (πΎ β HL β (π β π β βπ‘ β (AtomsβπΎ)βπ’ β (AtomsβπΎ)βπ£ β (AtomsβπΎ)(π‘ β π’ β§ Β¬ π£ β€ (π‘ β¨ π’) β§ π = ((π‘ β¨ π’) β¨ π£)))) |
12 | 8, 11 | anim12d 607 |
. . . . 5
β’ (πΎ β HL β ((π β π β§ π β π) β (βπ β (AtomsβπΎ)βπ β (AtomsβπΎ)βπ β (AtomsβπΎ)(π β π β§ Β¬ π β€ (π β¨ π) β§ π = ((π β¨ π) β¨ π )) β§ βπ‘ β (AtomsβπΎ)βπ’ β (AtomsβπΎ)βπ£ β (AtomsβπΎ)(π‘ β π’ β§ Β¬ π£ β€ (π‘ β¨ π’) β§ π = ((π‘ β¨ π’) β¨ π£))))) |
13 | 12 | imp 405 |
. . . 4
β’ ((πΎ β HL β§ (π β π β§ π β π)) β (βπ β (AtomsβπΎ)βπ β (AtomsβπΎ)βπ β (AtomsβπΎ)(π β π β§ Β¬ π β€ (π β¨ π) β§ π = ((π β¨ π) β¨ π )) β§ βπ‘ β (AtomsβπΎ)βπ’ β (AtomsβπΎ)βπ£ β (AtomsβπΎ)(π‘ β π’ β§ Β¬ π£ β€ (π‘ β¨ π’) β§ π = ((π‘ β¨ π’) β¨ π£)))) |
14 | 13 | 3adantr3 1169 |
. . 3
β’ ((πΎ β HL β§ (π β π β§ π β π β§ π β π)) β (βπ β (AtomsβπΎ)βπ β (AtomsβπΎ)βπ β (AtomsβπΎ)(π β π β§ Β¬ π β€ (π β¨ π) β§ π = ((π β¨ π) β¨ π )) β§ βπ‘ β (AtomsβπΎ)βπ’ β (AtomsβπΎ)βπ£ β (AtomsβπΎ)(π‘ β π’ β§ Β¬ π£ β€ (π‘ β¨ π’) β§ π = ((π‘ β¨ π’) β¨ π£)))) |
15 | 14 | 3adant3 1130 |
. 2
β’ ((πΎ β HL β§ (π β π β§ π β π β§ π β π) β§ (π β€ π β§ π β€ π β§ π β π)) β (βπ β (AtomsβπΎ)βπ β (AtomsβπΎ)βπ β (AtomsβπΎ)(π β π β§ Β¬ π β€ (π β¨ π) β§ π = ((π β¨ π) β¨ π )) β§ βπ‘ β (AtomsβπΎ)βπ’ β (AtomsβπΎ)βπ£ β (AtomsβπΎ)(π‘ β π’ β§ Β¬ π£ β€ (π‘ β¨ π’) β§ π = ((π‘ β¨ π’) β¨ π£)))) |
16 | | simpl33 1254 |
. . . . . . . . . . . . 13
β’ ((((πΎ β HL β§ (π β π β§ π β π β§ π β π) β§ (π β€ π β§ π β€ π β§ π β π)) β§ (π β (AtomsβπΎ) β§ (π β (AtomsβπΎ) β§ π β (AtomsβπΎ))) β§ (π β π β§ Β¬ π β€ (π β¨ π) β§ π = ((π β¨ π) β¨ π ))) β§ π‘ β (AtomsβπΎ)) β π = ((π β¨ π) β¨ π )) |
17 | 16 | 3ad2ant1 1131 |
. . . . . . . . . . . 12
β’
(((((πΎ β HL
β§ (π β π β§ π β π β§ π β π) β§ (π β€ π β§ π β€ π β§ π β π)) β§ (π β (AtomsβπΎ) β§ (π β (AtomsβπΎ) β§ π β (AtomsβπΎ))) β§ (π β π β§ Β¬ π β€ (π β¨ π) β§ π = ((π β¨ π) β¨ π ))) β§ π‘ β (AtomsβπΎ)) β§ (π’ β (AtomsβπΎ) β§ π£ β (AtomsβπΎ)) β§ (π‘ β π’ β§ Β¬ π£ β€ (π‘ β¨ π’) β§ π = ((π‘ β¨ π’) β¨ π£))) β π = ((π β¨ π) β¨ π )) |
18 | | simp33 1209 |
. . . . . . . . . . . 12
β’
(((((πΎ β HL
β§ (π β π β§ π β π β§ π β π) β§ (π β€ π β§ π β€ π β§ π β π)) β§ (π β (AtomsβπΎ) β§ (π β (AtomsβπΎ) β§ π β (AtomsβπΎ))) β§ (π β π β§ Β¬ π β€ (π β¨ π) β§ π = ((π β¨ π) β¨ π ))) β§ π‘ β (AtomsβπΎ)) β§ (π’ β (AtomsβπΎ) β§ π£ β (AtomsβπΎ)) β§ (π‘ β π’ β§ Β¬ π£ β€ (π‘ β¨ π’) β§ π = ((π‘ β¨ π’) β¨ π£))) β π = ((π‘ β¨ π’) β¨ π£)) |
19 | 17, 18 | oveq12d 7429 |
. . . . . . . . . . 11
β’
(((((πΎ β HL
β§ (π β π β§ π β π β§ π β π) β§ (π β€ π β§ π β€ π β§ π β π)) β§ (π β (AtomsβπΎ) β§ (π β (AtomsβπΎ) β§ π β (AtomsβπΎ))) β§ (π β π β§ Β¬ π β€ (π β¨ π) β§ π = ((π β¨ π) β¨ π ))) β§ π‘ β (AtomsβπΎ)) β§ (π’ β (AtomsβπΎ) β§ π£ β (AtomsβπΎ)) β§ (π‘ β π’ β§ Β¬ π£ β€ (π‘ β¨ π’) β§ π = ((π‘ β¨ π’) β¨ π£))) β (π β¨ π) = (((π β¨ π) β¨ π ) β¨ ((π‘ β¨ π’) β¨ π£))) |
20 | | simp11 1201 |
. . . . . . . . . . . . . . 15
β’ (((πΎ β HL β§ (π β π β§ π β π β§ π β π) β§ (π β€ π β§ π β€ π β§ π β π)) β§ (π β (AtomsβπΎ) β§ (π β (AtomsβπΎ) β§ π β (AtomsβπΎ))) β§ (π β π β§ Β¬ π β€ (π β¨ π) β§ π = ((π β¨ π) β¨ π ))) β πΎ β HL) |
21 | | simp123 1305 |
. . . . . . . . . . . . . . 15
β’ (((πΎ β HL β§ (π β π β§ π β π β§ π β π) β§ (π β€ π β§ π β€ π β§ π β π)) β§ (π β (AtomsβπΎ) β§ (π β (AtomsβπΎ) β§ π β (AtomsβπΎ))) β§ (π β π β§ Β¬ π β€ (π β¨ π) β§ π = ((π β¨ π) β¨ π ))) β π β π) |
22 | 20, 21 | jca 510 |
. . . . . . . . . . . . . 14
β’ (((πΎ β HL β§ (π β π β§ π β π β§ π β π) β§ (π β€ π β§ π β€ π β§ π β π)) β§ (π β (AtomsβπΎ) β§ (π β (AtomsβπΎ) β§ π β (AtomsβπΎ))) β§ (π β π β§ Β¬ π β€ (π β¨ π) β§ π = ((π β¨ π) β¨ π ))) β (πΎ β HL β§ π β π)) |
23 | 22 | adantr 479 |
. . . . . . . . . . . . 13
β’ ((((πΎ β HL β§ (π β π β§ π β π β§ π β π) β§ (π β€ π β§ π β€ π β§ π β π)) β§ (π β (AtomsβπΎ) β§ (π β (AtomsβπΎ) β§ π β (AtomsβπΎ))) β§ (π β π β§ Β¬ π β€ (π β¨ π) β§ π = ((π β¨ π) β¨ π ))) β§ π‘ β (AtomsβπΎ)) β (πΎ β HL β§ π β π)) |
24 | 23 | 3ad2ant1 1131 |
. . . . . . . . . . . 12
β’
(((((πΎ β HL
β§ (π β π β§ π β π β§ π β π) β§ (π β€ π β§ π β€ π β§ π β π)) β§ (π β (AtomsβπΎ) β§ (π β (AtomsβπΎ) β§ π β (AtomsβπΎ))) β§ (π β π β§ Β¬ π β€ (π β¨ π) β§ π = ((π β¨ π) β¨ π ))) β§ π‘ β (AtomsβπΎ)) β§ (π’ β (AtomsβπΎ) β§ π£ β (AtomsβπΎ)) β§ (π‘ β π’ β§ Β¬ π£ β€ (π‘ β¨ π’) β§ π = ((π‘ β¨ π’) β¨ π£))) β (πΎ β HL β§ π β π)) |
25 | | simp2l 1197 |
. . . . . . . . . . . . . . 15
β’ (((πΎ β HL β§ (π β π β§ π β π β§ π β π) β§ (π β€ π β§ π β€ π β§ π β π)) β§ (π β (AtomsβπΎ) β§ (π β (AtomsβπΎ) β§ π β (AtomsβπΎ))) β§ (π β π β§ Β¬ π β€ (π β¨ π) β§ π = ((π β¨ π) β¨ π ))) β π β (AtomsβπΎ)) |
26 | | simp2rl 1240 |
. . . . . . . . . . . . . . 15
β’ (((πΎ β HL β§ (π β π β§ π β π β§ π β π) β§ (π β€ π β§ π β€ π β§ π β π)) β§ (π β (AtomsβπΎ) β§ (π β (AtomsβπΎ) β§ π β (AtomsβπΎ))) β§ (π β π β§ Β¬ π β€ (π β¨ π) β§ π = ((π β¨ π) β¨ π ))) β π β (AtomsβπΎ)) |
27 | | simp2rr 1241 |
. . . . . . . . . . . . . . 15
β’ (((πΎ β HL β§ (π β π β§ π β π β§ π β π) β§ (π β€ π β§ π β€ π β§ π β π)) β§ (π β (AtomsβπΎ) β§ (π β (AtomsβπΎ) β§ π β (AtomsβπΎ))) β§ (π β π β§ Β¬ π β€ (π β¨ π) β§ π = ((π β¨ π) β¨ π ))) β π β (AtomsβπΎ)) |
28 | 25, 26, 27 | 3jca 1126 |
. . . . . . . . . . . . . 14
β’ (((πΎ β HL β§ (π β π β§ π β π β§ π β π) β§ (π β€ π β§ π β€ π β§ π β π)) β§ (π β (AtomsβπΎ) β§ (π β (AtomsβπΎ) β§ π β (AtomsβπΎ))) β§ (π β π β§ Β¬ π β€ (π β¨ π) β§ π = ((π β¨ π) β¨ π ))) β (π β (AtomsβπΎ) β§ π β (AtomsβπΎ) β§ π β (AtomsβπΎ))) |
29 | 28 | adantr 479 |
. . . . . . . . . . . . 13
β’ ((((πΎ β HL β§ (π β π β§ π β π β§ π β π) β§ (π β€ π β§ π β€ π β§ π β π)) β§ (π β (AtomsβπΎ) β§ (π β (AtomsβπΎ) β§ π β (AtomsβπΎ))) β§ (π β π β§ Β¬ π β€ (π β¨ π) β§ π = ((π β¨ π) β¨ π ))) β§ π‘ β (AtomsβπΎ)) β (π β (AtomsβπΎ) β§ π β (AtomsβπΎ) β§ π β (AtomsβπΎ))) |
30 | 29 | 3ad2ant1 1131 |
. . . . . . . . . . . 12
β’
(((((πΎ β HL
β§ (π β π β§ π β π β§ π β π) β§ (π β€ π β§ π β€ π β§ π β π)) β§ (π β (AtomsβπΎ) β§ (π β (AtomsβπΎ) β§ π β (AtomsβπΎ))) β§ (π β π β§ Β¬ π β€ (π β¨ π) β§ π = ((π β¨ π) β¨ π ))) β§ π‘ β (AtomsβπΎ)) β§ (π’ β (AtomsβπΎ) β§ π£ β (AtomsβπΎ)) β§ (π‘ β π’ β§ Β¬ π£ β€ (π‘ β¨ π’) β§ π = ((π‘ β¨ π’) β¨ π£))) β (π β (AtomsβπΎ) β§ π β (AtomsβπΎ) β§ π β (AtomsβπΎ))) |
31 | | simpl31 1252 |
. . . . . . . . . . . . . 14
β’ ((((πΎ β HL β§ (π β π β§ π β π β§ π β π) β§ (π β€ π β§ π β€ π β§ π β π)) β§ (π β (AtomsβπΎ) β§ (π β (AtomsβπΎ) β§ π β (AtomsβπΎ))) β§ (π β π β§ Β¬ π β€ (π β¨ π) β§ π = ((π β¨ π) β¨ π ))) β§ π‘ β (AtomsβπΎ)) β π β π) |
32 | 31 | 3ad2ant1 1131 |
. . . . . . . . . . . . 13
β’
(((((πΎ β HL
β§ (π β π β§ π β π β§ π β π) β§ (π β€ π β§ π β€ π β§ π β π)) β§ (π β (AtomsβπΎ) β§ (π β (AtomsβπΎ) β§ π β (AtomsβπΎ))) β§ (π β π β§ Β¬ π β€ (π β¨ π) β§ π = ((π β¨ π) β¨ π ))) β§ π‘ β (AtomsβπΎ)) β§ (π’ β (AtomsβπΎ) β§ π£ β (AtomsβπΎ)) β§ (π‘ β π’ β§ Β¬ π£ β€ (π‘ β¨ π’) β§ π = ((π‘ β¨ π’) β¨ π£))) β π β π) |
33 | | simpl32 1253 |
. . . . . . . . . . . . . 14
β’ ((((πΎ β HL β§ (π β π β§ π β π β§ π β π) β§ (π β€ π β§ π β€ π β§ π β π)) β§ (π β (AtomsβπΎ) β§ (π β (AtomsβπΎ) β§ π β (AtomsβπΎ))) β§ (π β π β§ Β¬ π β€ (π β¨ π) β§ π = ((π β¨ π) β¨ π ))) β§ π‘ β (AtomsβπΎ)) β Β¬ π β€ (π β¨ π)) |
34 | 33 | 3ad2ant1 1131 |
. . . . . . . . . . . . 13
β’
(((((πΎ β HL
β§ (π β π β§ π β π β§ π β π) β§ (π β€ π β§ π β€ π β§ π β π)) β§ (π β (AtomsβπΎ) β§ (π β (AtomsβπΎ) β§ π β (AtomsβπΎ))) β§ (π β π β§ Β¬ π β€ (π β¨ π) β§ π = ((π β¨ π) β¨ π ))) β§ π‘ β (AtomsβπΎ)) β§ (π’ β (AtomsβπΎ) β§ π£ β (AtomsβπΎ)) β§ (π‘ β π’ β§ Β¬ π£ β€ (π‘ β¨ π’) β§ π = ((π‘ β¨ π’) β¨ π£))) β Β¬ π β€ (π β¨ π)) |
35 | 32, 34 | jca 510 |
. . . . . . . . . . . 12
β’
(((((πΎ β HL
β§ (π β π β§ π β π β§ π β π) β§ (π β€ π β§ π β€ π β§ π β π)) β§ (π β (AtomsβπΎ) β§ (π β (AtomsβπΎ) β§ π β (AtomsβπΎ))) β§ (π β π β§ Β¬ π β€ (π β¨ π) β§ π = ((π β¨ π) β¨ π ))) β§ π‘ β (AtomsβπΎ)) β§ (π’ β (AtomsβπΎ) β§ π£ β (AtomsβπΎ)) β§ (π‘ β π’ β§ Β¬ π£ β€ (π‘ β¨ π’) β§ π = ((π‘ β¨ π’) β¨ π£))) β (π β π β§ Β¬ π β€ (π β¨ π))) |
36 | | simp1r 1196 |
. . . . . . . . . . . . 13
β’
(((((πΎ β HL
β§ (π β π β§ π β π β§ π β π) β§ (π β€ π β§ π β€ π β§ π β π)) β§ (π β (AtomsβπΎ) β§ (π β (AtomsβπΎ) β§ π β (AtomsβπΎ))) β§ (π β π β§ Β¬ π β€ (π β¨ π) β§ π = ((π β¨ π) β¨ π ))) β§ π‘ β (AtomsβπΎ)) β§ (π’ β (AtomsβπΎ) β§ π£ β (AtomsβπΎ)) β§ (π‘ β π’ β§ Β¬ π£ β€ (π‘ β¨ π’) β§ π = ((π‘ β¨ π’) β¨ π£))) β π‘ β (AtomsβπΎ)) |
37 | | simp2l 1197 |
. . . . . . . . . . . . 13
β’
(((((πΎ β HL
β§ (π β π β§ π β π β§ π β π) β§ (π β€ π β§ π β€ π β§ π β π)) β§ (π β (AtomsβπΎ) β§ (π β (AtomsβπΎ) β§ π β (AtomsβπΎ))) β§ (π β π β§ Β¬ π β€ (π β¨ π) β§ π = ((π β¨ π) β¨ π ))) β§ π‘ β (AtomsβπΎ)) β§ (π’ β (AtomsβπΎ) β§ π£ β (AtomsβπΎ)) β§ (π‘ β π’ β§ Β¬ π£ β€ (π‘ β¨ π’) β§ π = ((π‘ β¨ π’) β¨ π£))) β π’ β (AtomsβπΎ)) |
38 | | simp2r 1198 |
. . . . . . . . . . . . 13
β’
(((((πΎ β HL
β§ (π β π β§ π β π β§ π β π) β§ (π β€ π β§ π β€ π β§ π β π)) β§ (π β (AtomsβπΎ) β§ (π β (AtomsβπΎ) β§ π β (AtomsβπΎ))) β§ (π β π β§ Β¬ π β€ (π β¨ π) β§ π = ((π β¨ π) β¨ π ))) β§ π‘ β (AtomsβπΎ)) β§ (π’ β (AtomsβπΎ) β§ π£ β (AtomsβπΎ)) β§ (π‘ β π’ β§ Β¬ π£ β€ (π‘ β¨ π’) β§ π = ((π‘ β¨ π’) β¨ π£))) β π£ β (AtomsβπΎ)) |
39 | 36, 37, 38 | 3jca 1126 |
. . . . . . . . . . . 12
β’
(((((πΎ β HL
β§ (π β π β§ π β π β§ π β π) β§ (π β€ π β§ π β€ π β§ π β π)) β§ (π β (AtomsβπΎ) β§ (π β (AtomsβπΎ) β§ π β (AtomsβπΎ))) β§ (π β π β§ Β¬ π β€ (π β¨ π) β§ π = ((π β¨ π) β¨ π ))) β§ π‘ β (AtomsβπΎ)) β§ (π’ β (AtomsβπΎ) β§ π£ β (AtomsβπΎ)) β§ (π‘ β π’ β§ Β¬ π£ β€ (π‘ β¨ π’) β§ π = ((π‘ β¨ π’) β¨ π£))) β (π‘ β (AtomsβπΎ) β§ π’ β (AtomsβπΎ) β§ π£ β (AtomsβπΎ))) |
40 | | simp31 1207 |
. . . . . . . . . . . . 13
β’
(((((πΎ β HL
β§ (π β π β§ π β π β§ π β π) β§ (π β€ π β§ π β€ π β§ π β π)) β§ (π β (AtomsβπΎ) β§ (π β (AtomsβπΎ) β§ π β (AtomsβπΎ))) β§ (π β π β§ Β¬ π β€ (π β¨ π) β§ π = ((π β¨ π) β¨ π ))) β§ π‘ β (AtomsβπΎ)) β§ (π’ β (AtomsβπΎ) β§ π£ β (AtomsβπΎ)) β§ (π‘ β π’ β§ Β¬ π£ β€ (π‘ β¨ π’) β§ π = ((π‘ β¨ π’) β¨ π£))) β π‘ β π’) |
41 | | simp32 1208 |
. . . . . . . . . . . . 13
β’
(((((πΎ β HL
β§ (π β π β§ π β π β§ π β π) β§ (π β€ π β§ π β€ π β§ π β π)) β§ (π β (AtomsβπΎ) β§ (π β (AtomsβπΎ) β§ π β (AtomsβπΎ))) β§ (π β π β§ Β¬ π β€ (π β¨ π) β§ π = ((π β¨ π) β¨ π ))) β§ π‘ β (AtomsβπΎ)) β§ (π’ β (AtomsβπΎ) β§ π£ β (AtomsβπΎ)) β§ (π‘ β π’ β§ Β¬ π£ β€ (π‘ β¨ π’) β§ π = ((π‘ β¨ π’) β¨ π£))) β Β¬ π£ β€ (π‘ β¨ π’)) |
42 | 40, 41 | jca 510 |
. . . . . . . . . . . 12
β’
(((((πΎ β HL
β§ (π β π β§ π β π β§ π β π) β§ (π β€ π β§ π β€ π β§ π β π)) β§ (π β (AtomsβπΎ) β§ (π β (AtomsβπΎ) β§ π β (AtomsβπΎ))) β§ (π β π β§ Β¬ π β€ (π β¨ π) β§ π = ((π β¨ π) β¨ π ))) β§ π‘ β (AtomsβπΎ)) β§ (π’ β (AtomsβπΎ) β§ π£ β (AtomsβπΎ)) β§ (π‘ β π’ β§ Β¬ π£ β€ (π‘ β¨ π’) β§ π = ((π‘ β¨ π’) β¨ π£))) β (π‘ β π’ β§ Β¬ π£ β€ (π‘ β¨ π’))) |
43 | | simpl13 1248 |
. . . . . . . . . . . . . 14
β’ ((((πΎ β HL β§ (π β π β§ π β π β§ π β π) β§ (π β€ π β§ π β€ π β§ π β π)) β§ (π β (AtomsβπΎ) β§ (π β (AtomsβπΎ) β§ π β (AtomsβπΎ))) β§ (π β π β§ Β¬ π β€ (π β¨ π) β§ π = ((π β¨ π) β¨ π ))) β§ π‘ β (AtomsβπΎ)) β (π β€ π β§ π β€ π β§ π β π)) |
44 | 43 | 3ad2ant1 1131 |
. . . . . . . . . . . . 13
β’
(((((πΎ β HL
β§ (π β π β§ π β π β§ π β π) β§ (π β€ π β§ π β€ π β§ π β π)) β§ (π β (AtomsβπΎ) β§ (π β (AtomsβπΎ) β§ π β (AtomsβπΎ))) β§ (π β π β§ Β¬ π β€ (π β¨ π) β§ π = ((π β¨ π) β¨ π ))) β§ π‘ β (AtomsβπΎ)) β§ (π’ β (AtomsβπΎ) β§ π£ β (AtomsβπΎ)) β§ (π‘ β π’ β§ Β¬ π£ β€ (π‘ β¨ π’) β§ π = ((π‘ β¨ π’) β¨ π£))) β (π β€ π β§ π β€ π β§ π β π)) |
45 | | breq1 5150 |
. . . . . . . . . . . . . . . 16
β’ (π = ((π β¨ π) β¨ π ) β (π β€ π β ((π β¨ π) β¨ π ) β€ π)) |
46 | | neeq1 3001 |
. . . . . . . . . . . . . . . 16
β’ (π = ((π β¨ π) β¨ π ) β (π β π β ((π β¨ π) β¨ π ) β π)) |
47 | 45, 46 | 3anbi13d 1436 |
. . . . . . . . . . . . . . 15
β’ (π = ((π β¨ π) β¨ π ) β ((π β€ π β§ π β€ π β§ π β π) β (((π β¨ π) β¨ π ) β€ π β§ π β€ π β§ ((π β¨ π) β¨ π ) β π))) |
48 | | breq1 5150 |
. . . . . . . . . . . . . . . 16
β’ (π = ((π‘ β¨ π’) β¨ π£) β (π β€ π β ((π‘ β¨ π’) β¨ π£) β€ π)) |
49 | | neeq2 3002 |
. . . . . . . . . . . . . . . 16
β’ (π = ((π‘ β¨ π’) β¨ π£) β (((π β¨ π) β¨ π ) β π β ((π β¨ π) β¨ π ) β ((π‘ β¨ π’) β¨ π£))) |
50 | 48, 49 | 3anbi23d 1437 |
. . . . . . . . . . . . . . 15
β’ (π = ((π‘ β¨ π’) β¨ π£) β ((((π β¨ π) β¨ π ) β€ π β§ π β€ π β§ ((π β¨ π) β¨ π ) β π) β (((π β¨ π) β¨ π ) β€ π β§ ((π‘ β¨ π’) β¨ π£) β€ π β§ ((π β¨ π) β¨ π ) β ((π‘ β¨ π’) β¨ π£)))) |
51 | 47, 50 | sylan9bb 508 |
. . . . . . . . . . . . . 14
β’ ((π = ((π β¨ π) β¨ π ) β§ π = ((π‘ β¨ π’) β¨ π£)) β ((π β€ π β§ π β€ π β§ π β π) β (((π β¨ π) β¨ π ) β€ π β§ ((π‘ β¨ π’) β¨ π£) β€ π β§ ((π β¨ π) β¨ π ) β ((π‘ β¨ π’) β¨ π£)))) |
52 | 17, 18, 51 | syl2anc 582 |
. . . . . . . . . . . . 13
β’
(((((πΎ β HL
β§ (π β π β§ π β π β§ π β π) β§ (π β€ π β§ π β€ π β§ π β π)) β§ (π β (AtomsβπΎ) β§ (π β (AtomsβπΎ) β§ π β (AtomsβπΎ))) β§ (π β π β§ Β¬ π β€ (π β¨ π) β§ π = ((π β¨ π) β¨ π ))) β§ π‘ β (AtomsβπΎ)) β§ (π’ β (AtomsβπΎ) β§ π£ β (AtomsβπΎ)) β§ (π‘ β π’ β§ Β¬ π£ β€ (π‘ β¨ π’) β§ π = ((π‘ β¨ π’) β¨ π£))) β ((π β€ π β§ π β€ π β§ π β π) β (((π β¨ π) β¨ π ) β€ π β§ ((π‘ β¨ π’) β¨ π£) β€ π β§ ((π β¨ π) β¨ π ) β ((π‘ β¨ π’) β¨ π£)))) |
53 | 44, 52 | mpbid 231 |
. . . . . . . . . . . 12
β’
(((((πΎ β HL
β§ (π β π β§ π β π β§ π β π) β§ (π β€ π β§ π β€ π β§ π β π)) β§ (π β (AtomsβπΎ) β§ (π β (AtomsβπΎ) β§ π β (AtomsβπΎ))) β§ (π β π β§ Β¬ π β€ (π β¨ π) β§ π = ((π β¨ π) β¨ π ))) β§ π‘ β (AtomsβπΎ)) β§ (π’ β (AtomsβπΎ) β§ π£ β (AtomsβπΎ)) β§ (π‘ β π’ β§ Β¬ π£ β€ (π‘ β¨ π’) β§ π = ((π‘ β¨ π’) β¨ π£))) β (((π β¨ π) β¨ π ) β€ π β§ ((π‘ β¨ π’) β¨ π£) β€ π β§ ((π β¨ π) β¨ π ) β ((π‘ β¨ π’) β¨ π£))) |
54 | | 2lplnj.v |
. . . . . . . . . . . . 13
β’ π = (LVolsβπΎ) |
55 | 2, 3, 4, 54 | 2lplnja 38793 |
. . . . . . . . . . . 12
β’ ((((πΎ β HL β§ π β π) β§ (π β (AtomsβπΎ) β§ π β (AtomsβπΎ) β§ π β (AtomsβπΎ)) β§ (π β π β§ Β¬ π β€ (π β¨ π))) β§ ((π‘ β (AtomsβπΎ) β§ π’ β (AtomsβπΎ) β§ π£ β (AtomsβπΎ)) β§ (π‘ β π’ β§ Β¬ π£ β€ (π‘ β¨ π’))) β§ (((π β¨ π) β¨ π ) β€ π β§ ((π‘ β¨ π’) β¨ π£) β€ π β§ ((π β¨ π) β¨ π ) β ((π‘ β¨ π’) β¨ π£))) β (((π β¨ π) β¨ π ) β¨ ((π‘ β¨ π’) β¨ π£)) = π) |
56 | 24, 30, 35, 39, 42, 53, 55 | syl321anc 1390 |
. . . . . . . . . . 11
β’
(((((πΎ β HL
β§ (π β π β§ π β π β§ π β π) β§ (π β€ π β§ π β€ π β§ π β π)) β§ (π β (AtomsβπΎ) β§ (π β (AtomsβπΎ) β§ π β (AtomsβπΎ))) β§ (π β π β§ Β¬ π β€ (π β¨ π) β§ π = ((π β¨ π) β¨ π ))) β§ π‘ β (AtomsβπΎ)) β§ (π’ β (AtomsβπΎ) β§ π£ β (AtomsβπΎ)) β§ (π‘ β π’ β§ Β¬ π£ β€ (π‘ β¨ π’) β§ π = ((π‘ β¨ π’) β¨ π£))) β (((π β¨ π) β¨ π ) β¨ ((π‘ β¨ π’) β¨ π£)) = π) |
57 | 19, 56 | eqtrd 2770 |
. . . . . . . . . 10
β’
(((((πΎ β HL
β§ (π β π β§ π β π β§ π β π) β§ (π β€ π β§ π β€ π β§ π β π)) β§ (π β (AtomsβπΎ) β§ (π β (AtomsβπΎ) β§ π β (AtomsβπΎ))) β§ (π β π β§ Β¬ π β€ (π β¨ π) β§ π = ((π β¨ π) β¨ π ))) β§ π‘ β (AtomsβπΎ)) β§ (π’ β (AtomsβπΎ) β§ π£ β (AtomsβπΎ)) β§ (π‘ β π’ β§ Β¬ π£ β€ (π‘ β¨ π’) β§ π = ((π‘ β¨ π’) β¨ π£))) β (π β¨ π) = π) |
58 | 57 | 3exp 1117 |
. . . . . . . . 9
β’ ((((πΎ β HL β§ (π β π β§ π β π β§ π β π) β§ (π β€ π β§ π β€ π β§ π β π)) β§ (π β (AtomsβπΎ) β§ (π β (AtomsβπΎ) β§ π β (AtomsβπΎ))) β§ (π β π β§ Β¬ π β€ (π β¨ π) β§ π = ((π β¨ π) β¨ π ))) β§ π‘ β (AtomsβπΎ)) β ((π’ β (AtomsβπΎ) β§ π£ β (AtomsβπΎ)) β ((π‘ β π’ β§ Β¬ π£ β€ (π‘ β¨ π’) β§ π = ((π‘ β¨ π’) β¨ π£)) β (π β¨ π) = π))) |
59 | 58 | rexlimdvv 3208 |
. . . . . . . 8
β’ ((((πΎ β HL β§ (π β π β§ π β π β§ π β π) β§ (π β€ π β§ π β€ π β§ π β π)) β§ (π β (AtomsβπΎ) β§ (π β (AtomsβπΎ) β§ π β (AtomsβπΎ))) β§ (π β π β§ Β¬ π β€ (π β¨ π) β§ π = ((π β¨ π) β¨ π ))) β§ π‘ β (AtomsβπΎ)) β (βπ’ β (AtomsβπΎ)βπ£ β (AtomsβπΎ)(π‘ β π’ β§ Β¬ π£ β€ (π‘ β¨ π’) β§ π = ((π‘ β¨ π’) β¨ π£)) β (π β¨ π) = π)) |
60 | 59 | rexlimdva 3153 |
. . . . . . 7
β’ (((πΎ β HL β§ (π β π β§ π β π β§ π β π) β§ (π β€ π β§ π β€ π β§ π β π)) β§ (π β (AtomsβπΎ) β§ (π β (AtomsβπΎ) β§ π β (AtomsβπΎ))) β§ (π β π β§ Β¬ π β€ (π β¨ π) β§ π = ((π β¨ π) β¨ π ))) β (βπ‘ β (AtomsβπΎ)βπ’ β (AtomsβπΎ)βπ£ β (AtomsβπΎ)(π‘ β π’ β§ Β¬ π£ β€ (π‘ β¨ π’) β§ π = ((π‘ β¨ π’) β¨ π£)) β (π β¨ π) = π)) |
61 | 60 | 3exp 1117 |
. . . . . 6
β’ ((πΎ β HL β§ (π β π β§ π β π β§ π β π) β§ (π β€ π β§ π β€ π β§ π β π)) β ((π β (AtomsβπΎ) β§ (π β (AtomsβπΎ) β§ π β (AtomsβπΎ))) β ((π β π β§ Β¬ π β€ (π β¨ π) β§ π = ((π β¨ π) β¨ π )) β (βπ‘ β (AtomsβπΎ)βπ’ β (AtomsβπΎ)βπ£ β (AtomsβπΎ)(π‘ β π’ β§ Β¬ π£ β€ (π‘ β¨ π’) β§ π = ((π‘ β¨ π’) β¨ π£)) β (π β¨ π) = π)))) |
62 | 61 | expdimp 451 |
. . . . 5
β’ (((πΎ β HL β§ (π β π β§ π β π β§ π β π) β§ (π β€ π β§ π β€ π β§ π β π)) β§ π β (AtomsβπΎ)) β ((π β (AtomsβπΎ) β§ π β (AtomsβπΎ)) β ((π β π β§ Β¬ π β€ (π β¨ π) β§ π = ((π β¨ π) β¨ π )) β (βπ‘ β (AtomsβπΎ)βπ’ β (AtomsβπΎ)βπ£ β (AtomsβπΎ)(π‘ β π’ β§ Β¬ π£ β€ (π‘ β¨ π’) β§ π = ((π‘ β¨ π’) β¨ π£)) β (π β¨ π) = π)))) |
63 | 62 | rexlimdvv 3208 |
. . . 4
β’ (((πΎ β HL β§ (π β π β§ π β π β§ π β π) β§ (π β€ π β§ π β€ π β§ π β π)) β§ π β (AtomsβπΎ)) β (βπ β (AtomsβπΎ)βπ β (AtomsβπΎ)(π β π β§ Β¬ π β€ (π β¨ π) β§ π = ((π β¨ π) β¨ π )) β (βπ‘ β (AtomsβπΎ)βπ’ β (AtomsβπΎ)βπ£ β (AtomsβπΎ)(π‘ β π’ β§ Β¬ π£ β€ (π‘ β¨ π’) β§ π = ((π‘ β¨ π’) β¨ π£)) β (π β¨ π) = π))) |
64 | 63 | rexlimdva 3153 |
. . 3
β’ ((πΎ β HL β§ (π β π β§ π β π β§ π β π) β§ (π β€ π β§ π β€ π β§ π β π)) β (βπ β (AtomsβπΎ)βπ β (AtomsβπΎ)βπ β (AtomsβπΎ)(π β π β§ Β¬ π β€ (π β¨ π) β§ π = ((π β¨ π) β¨ π )) β (βπ‘ β (AtomsβπΎ)βπ’ β (AtomsβπΎ)βπ£ β (AtomsβπΎ)(π‘ β π’ β§ Β¬ π£ β€ (π‘ β¨ π’) β§ π = ((π‘ β¨ π’) β¨ π£)) β (π β¨ π) = π))) |
65 | 64 | impd 409 |
. 2
β’ ((πΎ β HL β§ (π β π β§ π β π β§ π β π) β§ (π β€ π β§ π β€ π β§ π β π)) β ((βπ β (AtomsβπΎ)βπ β (AtomsβπΎ)βπ β (AtomsβπΎ)(π β π β§ Β¬ π β€ (π β¨ π) β§ π = ((π β¨ π) β¨ π )) β§ βπ‘ β (AtomsβπΎ)βπ’ β (AtomsβπΎ)βπ£ β (AtomsβπΎ)(π‘ β π’ β§ Β¬ π£ β€ (π‘ β¨ π’) β§ π = ((π‘ β¨ π’) β¨ π£))) β (π β¨ π) = π)) |
66 | 15, 65 | mpd 15 |
1
β’ ((πΎ β HL β§ (π β π β§ π β π β§ π β π) β§ (π β€ π β§ π β€ π β§ π β π)) β (π β¨ π) = π) |