Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2lplnj Structured version   Visualization version   GIF version

Theorem 2lplnj 37257
Description: The join of two different lattice planes in a (3-dimensional) lattice volume equals the volume. (Contributed by NM, 12-Jul-2012.)
Hypotheses
Ref Expression
2lplnj.l = (le‘𝐾)
2lplnj.j = (join‘𝐾)
2lplnj.p 𝑃 = (LPlanes‘𝐾)
2lplnj.v 𝑉 = (LVols‘𝐾)
Assertion
Ref Expression
2lplnj ((𝐾 ∈ HL ∧ (𝑋𝑃𝑌𝑃𝑊𝑉) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) → (𝑋 𝑌) = 𝑊)

Proof of Theorem 2lplnj
Dummy variables 𝑟 𝑞 𝑠 𝑡 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2738 . . . . . . . 8 (Base‘𝐾) = (Base‘𝐾)
2 2lplnj.l . . . . . . . 8 = (le‘𝐾)
3 2lplnj.j . . . . . . . 8 = (join‘𝐾)
4 eqid 2738 . . . . . . . 8 (Atoms‘𝐾) = (Atoms‘𝐾)
5 2lplnj.p . . . . . . . 8 𝑃 = (LPlanes‘𝐾)
61, 2, 3, 4, 5islpln2 37173 . . . . . . 7 (𝐾 ∈ HL → (𝑋𝑃 ↔ (𝑋 ∈ (Base‘𝐾) ∧ ∃𝑞 ∈ (Atoms‘𝐾)∃𝑟 ∈ (Atoms‘𝐾)∃𝑠 ∈ (Atoms‘𝐾)(𝑞𝑟 ∧ ¬ 𝑠 (𝑞 𝑟) ∧ 𝑋 = ((𝑞 𝑟) 𝑠)))))
7 simpr 488 . . . . . . 7 ((𝑋 ∈ (Base‘𝐾) ∧ ∃𝑞 ∈ (Atoms‘𝐾)∃𝑟 ∈ (Atoms‘𝐾)∃𝑠 ∈ (Atoms‘𝐾)(𝑞𝑟 ∧ ¬ 𝑠 (𝑞 𝑟) ∧ 𝑋 = ((𝑞 𝑟) 𝑠))) → ∃𝑞 ∈ (Atoms‘𝐾)∃𝑟 ∈ (Atoms‘𝐾)∃𝑠 ∈ (Atoms‘𝐾)(𝑞𝑟 ∧ ¬ 𝑠 (𝑞 𝑟) ∧ 𝑋 = ((𝑞 𝑟) 𝑠)))
86, 7syl6bi 256 . . . . . 6 (𝐾 ∈ HL → (𝑋𝑃 → ∃𝑞 ∈ (Atoms‘𝐾)∃𝑟 ∈ (Atoms‘𝐾)∃𝑠 ∈ (Atoms‘𝐾)(𝑞𝑟 ∧ ¬ 𝑠 (𝑞 𝑟) ∧ 𝑋 = ((𝑞 𝑟) 𝑠))))
91, 2, 3, 4, 5islpln2 37173 . . . . . . 7 (𝐾 ∈ HL → (𝑌𝑃 ↔ (𝑌 ∈ (Base‘𝐾) ∧ ∃𝑡 ∈ (Atoms‘𝐾)∃𝑢 ∈ (Atoms‘𝐾)∃𝑣 ∈ (Atoms‘𝐾)(𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ 𝑌 = ((𝑡 𝑢) 𝑣)))))
10 simpr 488 . . . . . . 7 ((𝑌 ∈ (Base‘𝐾) ∧ ∃𝑡 ∈ (Atoms‘𝐾)∃𝑢 ∈ (Atoms‘𝐾)∃𝑣 ∈ (Atoms‘𝐾)(𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ 𝑌 = ((𝑡 𝑢) 𝑣))) → ∃𝑡 ∈ (Atoms‘𝐾)∃𝑢 ∈ (Atoms‘𝐾)∃𝑣 ∈ (Atoms‘𝐾)(𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ 𝑌 = ((𝑡 𝑢) 𝑣)))
119, 10syl6bi 256 . . . . . 6 (𝐾 ∈ HL → (𝑌𝑃 → ∃𝑡 ∈ (Atoms‘𝐾)∃𝑢 ∈ (Atoms‘𝐾)∃𝑣 ∈ (Atoms‘𝐾)(𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ 𝑌 = ((𝑡 𝑢) 𝑣))))
128, 11anim12d 612 . . . . 5 (𝐾 ∈ HL → ((𝑋𝑃𝑌𝑃) → (∃𝑞 ∈ (Atoms‘𝐾)∃𝑟 ∈ (Atoms‘𝐾)∃𝑠 ∈ (Atoms‘𝐾)(𝑞𝑟 ∧ ¬ 𝑠 (𝑞 𝑟) ∧ 𝑋 = ((𝑞 𝑟) 𝑠)) ∧ ∃𝑡 ∈ (Atoms‘𝐾)∃𝑢 ∈ (Atoms‘𝐾)∃𝑣 ∈ (Atoms‘𝐾)(𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ 𝑌 = ((𝑡 𝑢) 𝑣)))))
1312imp 410 . . . 4 ((𝐾 ∈ HL ∧ (𝑋𝑃𝑌𝑃)) → (∃𝑞 ∈ (Atoms‘𝐾)∃𝑟 ∈ (Atoms‘𝐾)∃𝑠 ∈ (Atoms‘𝐾)(𝑞𝑟 ∧ ¬ 𝑠 (𝑞 𝑟) ∧ 𝑋 = ((𝑞 𝑟) 𝑠)) ∧ ∃𝑡 ∈ (Atoms‘𝐾)∃𝑢 ∈ (Atoms‘𝐾)∃𝑣 ∈ (Atoms‘𝐾)(𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ 𝑌 = ((𝑡 𝑢) 𝑣))))
14133adantr3 1172 . . 3 ((𝐾 ∈ HL ∧ (𝑋𝑃𝑌𝑃𝑊𝑉)) → (∃𝑞 ∈ (Atoms‘𝐾)∃𝑟 ∈ (Atoms‘𝐾)∃𝑠 ∈ (Atoms‘𝐾)(𝑞𝑟 ∧ ¬ 𝑠 (𝑞 𝑟) ∧ 𝑋 = ((𝑞 𝑟) 𝑠)) ∧ ∃𝑡 ∈ (Atoms‘𝐾)∃𝑢 ∈ (Atoms‘𝐾)∃𝑣 ∈ (Atoms‘𝐾)(𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ 𝑌 = ((𝑡 𝑢) 𝑣))))
15143adant3 1133 . 2 ((𝐾 ∈ HL ∧ (𝑋𝑃𝑌𝑃𝑊𝑉) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) → (∃𝑞 ∈ (Atoms‘𝐾)∃𝑟 ∈ (Atoms‘𝐾)∃𝑠 ∈ (Atoms‘𝐾)(𝑞𝑟 ∧ ¬ 𝑠 (𝑞 𝑟) ∧ 𝑋 = ((𝑞 𝑟) 𝑠)) ∧ ∃𝑡 ∈ (Atoms‘𝐾)∃𝑢 ∈ (Atoms‘𝐾)∃𝑣 ∈ (Atoms‘𝐾)(𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ 𝑌 = ((𝑡 𝑢) 𝑣))))
16 simpl33 1257 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ (𝑋𝑃𝑌𝑃𝑊𝑉) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ (𝑟 ∈ (Atoms‘𝐾) ∧ 𝑠 ∈ (Atoms‘𝐾))) ∧ (𝑞𝑟 ∧ ¬ 𝑠 (𝑞 𝑟) ∧ 𝑋 = ((𝑞 𝑟) 𝑠))) ∧ 𝑡 ∈ (Atoms‘𝐾)) → 𝑋 = ((𝑞 𝑟) 𝑠))
17163ad2ant1 1134 . . . . . . . . . . . 12 (((((𝐾 ∈ HL ∧ (𝑋𝑃𝑌𝑃𝑊𝑉) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ (𝑟 ∈ (Atoms‘𝐾) ∧ 𝑠 ∈ (Atoms‘𝐾))) ∧ (𝑞𝑟 ∧ ¬ 𝑠 (𝑞 𝑟) ∧ 𝑋 = ((𝑞 𝑟) 𝑠))) ∧ 𝑡 ∈ (Atoms‘𝐾)) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ 𝑣 ∈ (Atoms‘𝐾)) ∧ (𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ 𝑌 = ((𝑡 𝑢) 𝑣))) → 𝑋 = ((𝑞 𝑟) 𝑠))
18 simp33 1212 . . . . . . . . . . . 12 (((((𝐾 ∈ HL ∧ (𝑋𝑃𝑌𝑃𝑊𝑉) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ (𝑟 ∈ (Atoms‘𝐾) ∧ 𝑠 ∈ (Atoms‘𝐾))) ∧ (𝑞𝑟 ∧ ¬ 𝑠 (𝑞 𝑟) ∧ 𝑋 = ((𝑞 𝑟) 𝑠))) ∧ 𝑡 ∈ (Atoms‘𝐾)) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ 𝑣 ∈ (Atoms‘𝐾)) ∧ (𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ 𝑌 = ((𝑡 𝑢) 𝑣))) → 𝑌 = ((𝑡 𝑢) 𝑣))
1917, 18oveq12d 7188 . . . . . . . . . . 11 (((((𝐾 ∈ HL ∧ (𝑋𝑃𝑌𝑃𝑊𝑉) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ (𝑟 ∈ (Atoms‘𝐾) ∧ 𝑠 ∈ (Atoms‘𝐾))) ∧ (𝑞𝑟 ∧ ¬ 𝑠 (𝑞 𝑟) ∧ 𝑋 = ((𝑞 𝑟) 𝑠))) ∧ 𝑡 ∈ (Atoms‘𝐾)) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ 𝑣 ∈ (Atoms‘𝐾)) ∧ (𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ 𝑌 = ((𝑡 𝑢) 𝑣))) → (𝑋 𝑌) = (((𝑞 𝑟) 𝑠) ((𝑡 𝑢) 𝑣)))
20 simp11 1204 . . . . . . . . . . . . . . 15 (((𝐾 ∈ HL ∧ (𝑋𝑃𝑌𝑃𝑊𝑉) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ (𝑟 ∈ (Atoms‘𝐾) ∧ 𝑠 ∈ (Atoms‘𝐾))) ∧ (𝑞𝑟 ∧ ¬ 𝑠 (𝑞 𝑟) ∧ 𝑋 = ((𝑞 𝑟) 𝑠))) → 𝐾 ∈ HL)
21 simp123 1308 . . . . . . . . . . . . . . 15 (((𝐾 ∈ HL ∧ (𝑋𝑃𝑌𝑃𝑊𝑉) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ (𝑟 ∈ (Atoms‘𝐾) ∧ 𝑠 ∈ (Atoms‘𝐾))) ∧ (𝑞𝑟 ∧ ¬ 𝑠 (𝑞 𝑟) ∧ 𝑋 = ((𝑞 𝑟) 𝑠))) → 𝑊𝑉)
2220, 21jca 515 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ (𝑋𝑃𝑌𝑃𝑊𝑉) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ (𝑟 ∈ (Atoms‘𝐾) ∧ 𝑠 ∈ (Atoms‘𝐾))) ∧ (𝑞𝑟 ∧ ¬ 𝑠 (𝑞 𝑟) ∧ 𝑋 = ((𝑞 𝑟) 𝑠))) → (𝐾 ∈ HL ∧ 𝑊𝑉))
2322adantr 484 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ (𝑋𝑃𝑌𝑃𝑊𝑉) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ (𝑟 ∈ (Atoms‘𝐾) ∧ 𝑠 ∈ (Atoms‘𝐾))) ∧ (𝑞𝑟 ∧ ¬ 𝑠 (𝑞 𝑟) ∧ 𝑋 = ((𝑞 𝑟) 𝑠))) ∧ 𝑡 ∈ (Atoms‘𝐾)) → (𝐾 ∈ HL ∧ 𝑊𝑉))
24233ad2ant1 1134 . . . . . . . . . . . 12 (((((𝐾 ∈ HL ∧ (𝑋𝑃𝑌𝑃𝑊𝑉) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ (𝑟 ∈ (Atoms‘𝐾) ∧ 𝑠 ∈ (Atoms‘𝐾))) ∧ (𝑞𝑟 ∧ ¬ 𝑠 (𝑞 𝑟) ∧ 𝑋 = ((𝑞 𝑟) 𝑠))) ∧ 𝑡 ∈ (Atoms‘𝐾)) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ 𝑣 ∈ (Atoms‘𝐾)) ∧ (𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ 𝑌 = ((𝑡 𝑢) 𝑣))) → (𝐾 ∈ HL ∧ 𝑊𝑉))
25 simp2l 1200 . . . . . . . . . . . . . . 15 (((𝐾 ∈ HL ∧ (𝑋𝑃𝑌𝑃𝑊𝑉) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ (𝑟 ∈ (Atoms‘𝐾) ∧ 𝑠 ∈ (Atoms‘𝐾))) ∧ (𝑞𝑟 ∧ ¬ 𝑠 (𝑞 𝑟) ∧ 𝑋 = ((𝑞 𝑟) 𝑠))) → 𝑞 ∈ (Atoms‘𝐾))
26 simp2rl 1243 . . . . . . . . . . . . . . 15 (((𝐾 ∈ HL ∧ (𝑋𝑃𝑌𝑃𝑊𝑉) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ (𝑟 ∈ (Atoms‘𝐾) ∧ 𝑠 ∈ (Atoms‘𝐾))) ∧ (𝑞𝑟 ∧ ¬ 𝑠 (𝑞 𝑟) ∧ 𝑋 = ((𝑞 𝑟) 𝑠))) → 𝑟 ∈ (Atoms‘𝐾))
27 simp2rr 1244 . . . . . . . . . . . . . . 15 (((𝐾 ∈ HL ∧ (𝑋𝑃𝑌𝑃𝑊𝑉) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ (𝑟 ∈ (Atoms‘𝐾) ∧ 𝑠 ∈ (Atoms‘𝐾))) ∧ (𝑞𝑟 ∧ ¬ 𝑠 (𝑞 𝑟) ∧ 𝑋 = ((𝑞 𝑟) 𝑠))) → 𝑠 ∈ (Atoms‘𝐾))
2825, 26, 273jca 1129 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ (𝑋𝑃𝑌𝑃𝑊𝑉) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ (𝑟 ∈ (Atoms‘𝐾) ∧ 𝑠 ∈ (Atoms‘𝐾))) ∧ (𝑞𝑟 ∧ ¬ 𝑠 (𝑞 𝑟) ∧ 𝑋 = ((𝑞 𝑟) 𝑠))) → (𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾) ∧ 𝑠 ∈ (Atoms‘𝐾)))
2928adantr 484 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ (𝑋𝑃𝑌𝑃𝑊𝑉) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ (𝑟 ∈ (Atoms‘𝐾) ∧ 𝑠 ∈ (Atoms‘𝐾))) ∧ (𝑞𝑟 ∧ ¬ 𝑠 (𝑞 𝑟) ∧ 𝑋 = ((𝑞 𝑟) 𝑠))) ∧ 𝑡 ∈ (Atoms‘𝐾)) → (𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾) ∧ 𝑠 ∈ (Atoms‘𝐾)))
30293ad2ant1 1134 . . . . . . . . . . . 12 (((((𝐾 ∈ HL ∧ (𝑋𝑃𝑌𝑃𝑊𝑉) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ (𝑟 ∈ (Atoms‘𝐾) ∧ 𝑠 ∈ (Atoms‘𝐾))) ∧ (𝑞𝑟 ∧ ¬ 𝑠 (𝑞 𝑟) ∧ 𝑋 = ((𝑞 𝑟) 𝑠))) ∧ 𝑡 ∈ (Atoms‘𝐾)) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ 𝑣 ∈ (Atoms‘𝐾)) ∧ (𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ 𝑌 = ((𝑡 𝑢) 𝑣))) → (𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾) ∧ 𝑠 ∈ (Atoms‘𝐾)))
31 simpl31 1255 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ (𝑋𝑃𝑌𝑃𝑊𝑉) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ (𝑟 ∈ (Atoms‘𝐾) ∧ 𝑠 ∈ (Atoms‘𝐾))) ∧ (𝑞𝑟 ∧ ¬ 𝑠 (𝑞 𝑟) ∧ 𝑋 = ((𝑞 𝑟) 𝑠))) ∧ 𝑡 ∈ (Atoms‘𝐾)) → 𝑞𝑟)
32313ad2ant1 1134 . . . . . . . . . . . . 13 (((((𝐾 ∈ HL ∧ (𝑋𝑃𝑌𝑃𝑊𝑉) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ (𝑟 ∈ (Atoms‘𝐾) ∧ 𝑠 ∈ (Atoms‘𝐾))) ∧ (𝑞𝑟 ∧ ¬ 𝑠 (𝑞 𝑟) ∧ 𝑋 = ((𝑞 𝑟) 𝑠))) ∧ 𝑡 ∈ (Atoms‘𝐾)) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ 𝑣 ∈ (Atoms‘𝐾)) ∧ (𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ 𝑌 = ((𝑡 𝑢) 𝑣))) → 𝑞𝑟)
33 simpl32 1256 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ (𝑋𝑃𝑌𝑃𝑊𝑉) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ (𝑟 ∈ (Atoms‘𝐾) ∧ 𝑠 ∈ (Atoms‘𝐾))) ∧ (𝑞𝑟 ∧ ¬ 𝑠 (𝑞 𝑟) ∧ 𝑋 = ((𝑞 𝑟) 𝑠))) ∧ 𝑡 ∈ (Atoms‘𝐾)) → ¬ 𝑠 (𝑞 𝑟))
34333ad2ant1 1134 . . . . . . . . . . . . 13 (((((𝐾 ∈ HL ∧ (𝑋𝑃𝑌𝑃𝑊𝑉) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ (𝑟 ∈ (Atoms‘𝐾) ∧ 𝑠 ∈ (Atoms‘𝐾))) ∧ (𝑞𝑟 ∧ ¬ 𝑠 (𝑞 𝑟) ∧ 𝑋 = ((𝑞 𝑟) 𝑠))) ∧ 𝑡 ∈ (Atoms‘𝐾)) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ 𝑣 ∈ (Atoms‘𝐾)) ∧ (𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ 𝑌 = ((𝑡 𝑢) 𝑣))) → ¬ 𝑠 (𝑞 𝑟))
3532, 34jca 515 . . . . . . . . . . . 12 (((((𝐾 ∈ HL ∧ (𝑋𝑃𝑌𝑃𝑊𝑉) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ (𝑟 ∈ (Atoms‘𝐾) ∧ 𝑠 ∈ (Atoms‘𝐾))) ∧ (𝑞𝑟 ∧ ¬ 𝑠 (𝑞 𝑟) ∧ 𝑋 = ((𝑞 𝑟) 𝑠))) ∧ 𝑡 ∈ (Atoms‘𝐾)) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ 𝑣 ∈ (Atoms‘𝐾)) ∧ (𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ 𝑌 = ((𝑡 𝑢) 𝑣))) → (𝑞𝑟 ∧ ¬ 𝑠 (𝑞 𝑟)))
36 simp1r 1199 . . . . . . . . . . . . 13 (((((𝐾 ∈ HL ∧ (𝑋𝑃𝑌𝑃𝑊𝑉) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ (𝑟 ∈ (Atoms‘𝐾) ∧ 𝑠 ∈ (Atoms‘𝐾))) ∧ (𝑞𝑟 ∧ ¬ 𝑠 (𝑞 𝑟) ∧ 𝑋 = ((𝑞 𝑟) 𝑠))) ∧ 𝑡 ∈ (Atoms‘𝐾)) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ 𝑣 ∈ (Atoms‘𝐾)) ∧ (𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ 𝑌 = ((𝑡 𝑢) 𝑣))) → 𝑡 ∈ (Atoms‘𝐾))
37 simp2l 1200 . . . . . . . . . . . . 13 (((((𝐾 ∈ HL ∧ (𝑋𝑃𝑌𝑃𝑊𝑉) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ (𝑟 ∈ (Atoms‘𝐾) ∧ 𝑠 ∈ (Atoms‘𝐾))) ∧ (𝑞𝑟 ∧ ¬ 𝑠 (𝑞 𝑟) ∧ 𝑋 = ((𝑞 𝑟) 𝑠))) ∧ 𝑡 ∈ (Atoms‘𝐾)) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ 𝑣 ∈ (Atoms‘𝐾)) ∧ (𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ 𝑌 = ((𝑡 𝑢) 𝑣))) → 𝑢 ∈ (Atoms‘𝐾))
38 simp2r 1201 . . . . . . . . . . . . 13 (((((𝐾 ∈ HL ∧ (𝑋𝑃𝑌𝑃𝑊𝑉) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ (𝑟 ∈ (Atoms‘𝐾) ∧ 𝑠 ∈ (Atoms‘𝐾))) ∧ (𝑞𝑟 ∧ ¬ 𝑠 (𝑞 𝑟) ∧ 𝑋 = ((𝑞 𝑟) 𝑠))) ∧ 𝑡 ∈ (Atoms‘𝐾)) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ 𝑣 ∈ (Atoms‘𝐾)) ∧ (𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ 𝑌 = ((𝑡 𝑢) 𝑣))) → 𝑣 ∈ (Atoms‘𝐾))
3936, 37, 383jca 1129 . . . . . . . . . . . 12 (((((𝐾 ∈ HL ∧ (𝑋𝑃𝑌𝑃𝑊𝑉) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ (𝑟 ∈ (Atoms‘𝐾) ∧ 𝑠 ∈ (Atoms‘𝐾))) ∧ (𝑞𝑟 ∧ ¬ 𝑠 (𝑞 𝑟) ∧ 𝑋 = ((𝑞 𝑟) 𝑠))) ∧ 𝑡 ∈ (Atoms‘𝐾)) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ 𝑣 ∈ (Atoms‘𝐾)) ∧ (𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ 𝑌 = ((𝑡 𝑢) 𝑣))) → (𝑡 ∈ (Atoms‘𝐾) ∧ 𝑢 ∈ (Atoms‘𝐾) ∧ 𝑣 ∈ (Atoms‘𝐾)))
40 simp31 1210 . . . . . . . . . . . . 13 (((((𝐾 ∈ HL ∧ (𝑋𝑃𝑌𝑃𝑊𝑉) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ (𝑟 ∈ (Atoms‘𝐾) ∧ 𝑠 ∈ (Atoms‘𝐾))) ∧ (𝑞𝑟 ∧ ¬ 𝑠 (𝑞 𝑟) ∧ 𝑋 = ((𝑞 𝑟) 𝑠))) ∧ 𝑡 ∈ (Atoms‘𝐾)) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ 𝑣 ∈ (Atoms‘𝐾)) ∧ (𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ 𝑌 = ((𝑡 𝑢) 𝑣))) → 𝑡𝑢)
41 simp32 1211 . . . . . . . . . . . . 13 (((((𝐾 ∈ HL ∧ (𝑋𝑃𝑌𝑃𝑊𝑉) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ (𝑟 ∈ (Atoms‘𝐾) ∧ 𝑠 ∈ (Atoms‘𝐾))) ∧ (𝑞𝑟 ∧ ¬ 𝑠 (𝑞 𝑟) ∧ 𝑋 = ((𝑞 𝑟) 𝑠))) ∧ 𝑡 ∈ (Atoms‘𝐾)) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ 𝑣 ∈ (Atoms‘𝐾)) ∧ (𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ 𝑌 = ((𝑡 𝑢) 𝑣))) → ¬ 𝑣 (𝑡 𝑢))
4240, 41jca 515 . . . . . . . . . . . 12 (((((𝐾 ∈ HL ∧ (𝑋𝑃𝑌𝑃𝑊𝑉) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ (𝑟 ∈ (Atoms‘𝐾) ∧ 𝑠 ∈ (Atoms‘𝐾))) ∧ (𝑞𝑟 ∧ ¬ 𝑠 (𝑞 𝑟) ∧ 𝑋 = ((𝑞 𝑟) 𝑠))) ∧ 𝑡 ∈ (Atoms‘𝐾)) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ 𝑣 ∈ (Atoms‘𝐾)) ∧ (𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ 𝑌 = ((𝑡 𝑢) 𝑣))) → (𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢)))
43 simpl13 1251 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ (𝑋𝑃𝑌𝑃𝑊𝑉) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ (𝑟 ∈ (Atoms‘𝐾) ∧ 𝑠 ∈ (Atoms‘𝐾))) ∧ (𝑞𝑟 ∧ ¬ 𝑠 (𝑞 𝑟) ∧ 𝑋 = ((𝑞 𝑟) 𝑠))) ∧ 𝑡 ∈ (Atoms‘𝐾)) → (𝑋 𝑊𝑌 𝑊𝑋𝑌))
44433ad2ant1 1134 . . . . . . . . . . . . 13 (((((𝐾 ∈ HL ∧ (𝑋𝑃𝑌𝑃𝑊𝑉) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ (𝑟 ∈ (Atoms‘𝐾) ∧ 𝑠 ∈ (Atoms‘𝐾))) ∧ (𝑞𝑟 ∧ ¬ 𝑠 (𝑞 𝑟) ∧ 𝑋 = ((𝑞 𝑟) 𝑠))) ∧ 𝑡 ∈ (Atoms‘𝐾)) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ 𝑣 ∈ (Atoms‘𝐾)) ∧ (𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ 𝑌 = ((𝑡 𝑢) 𝑣))) → (𝑋 𝑊𝑌 𝑊𝑋𝑌))
45 breq1 5033 . . . . . . . . . . . . . . . 16 (𝑋 = ((𝑞 𝑟) 𝑠) → (𝑋 𝑊 ↔ ((𝑞 𝑟) 𝑠) 𝑊))
46 neeq1 2996 . . . . . . . . . . . . . . . 16 (𝑋 = ((𝑞 𝑟) 𝑠) → (𝑋𝑌 ↔ ((𝑞 𝑟) 𝑠) ≠ 𝑌))
4745, 463anbi13d 1439 . . . . . . . . . . . . . . 15 (𝑋 = ((𝑞 𝑟) 𝑠) → ((𝑋 𝑊𝑌 𝑊𝑋𝑌) ↔ (((𝑞 𝑟) 𝑠) 𝑊𝑌 𝑊 ∧ ((𝑞 𝑟) 𝑠) ≠ 𝑌)))
48 breq1 5033 . . . . . . . . . . . . . . . 16 (𝑌 = ((𝑡 𝑢) 𝑣) → (𝑌 𝑊 ↔ ((𝑡 𝑢) 𝑣) 𝑊))
49 neeq2 2997 . . . . . . . . . . . . . . . 16 (𝑌 = ((𝑡 𝑢) 𝑣) → (((𝑞 𝑟) 𝑠) ≠ 𝑌 ↔ ((𝑞 𝑟) 𝑠) ≠ ((𝑡 𝑢) 𝑣)))
5048, 493anbi23d 1440 . . . . . . . . . . . . . . 15 (𝑌 = ((𝑡 𝑢) 𝑣) → ((((𝑞 𝑟) 𝑠) 𝑊𝑌 𝑊 ∧ ((𝑞 𝑟) 𝑠) ≠ 𝑌) ↔ (((𝑞 𝑟) 𝑠) 𝑊 ∧ ((𝑡 𝑢) 𝑣) 𝑊 ∧ ((𝑞 𝑟) 𝑠) ≠ ((𝑡 𝑢) 𝑣))))
5147, 50sylan9bb 513 . . . . . . . . . . . . . 14 ((𝑋 = ((𝑞 𝑟) 𝑠) ∧ 𝑌 = ((𝑡 𝑢) 𝑣)) → ((𝑋 𝑊𝑌 𝑊𝑋𝑌) ↔ (((𝑞 𝑟) 𝑠) 𝑊 ∧ ((𝑡 𝑢) 𝑣) 𝑊 ∧ ((𝑞 𝑟) 𝑠) ≠ ((𝑡 𝑢) 𝑣))))
5217, 18, 51syl2anc 587 . . . . . . . . . . . . 13 (((((𝐾 ∈ HL ∧ (𝑋𝑃𝑌𝑃𝑊𝑉) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ (𝑟 ∈ (Atoms‘𝐾) ∧ 𝑠 ∈ (Atoms‘𝐾))) ∧ (𝑞𝑟 ∧ ¬ 𝑠 (𝑞 𝑟) ∧ 𝑋 = ((𝑞 𝑟) 𝑠))) ∧ 𝑡 ∈ (Atoms‘𝐾)) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ 𝑣 ∈ (Atoms‘𝐾)) ∧ (𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ 𝑌 = ((𝑡 𝑢) 𝑣))) → ((𝑋 𝑊𝑌 𝑊𝑋𝑌) ↔ (((𝑞 𝑟) 𝑠) 𝑊 ∧ ((𝑡 𝑢) 𝑣) 𝑊 ∧ ((𝑞 𝑟) 𝑠) ≠ ((𝑡 𝑢) 𝑣))))
5344, 52mpbid 235 . . . . . . . . . . . 12 (((((𝐾 ∈ HL ∧ (𝑋𝑃𝑌𝑃𝑊𝑉) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ (𝑟 ∈ (Atoms‘𝐾) ∧ 𝑠 ∈ (Atoms‘𝐾))) ∧ (𝑞𝑟 ∧ ¬ 𝑠 (𝑞 𝑟) ∧ 𝑋 = ((𝑞 𝑟) 𝑠))) ∧ 𝑡 ∈ (Atoms‘𝐾)) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ 𝑣 ∈ (Atoms‘𝐾)) ∧ (𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ 𝑌 = ((𝑡 𝑢) 𝑣))) → (((𝑞 𝑟) 𝑠) 𝑊 ∧ ((𝑡 𝑢) 𝑣) 𝑊 ∧ ((𝑞 𝑟) 𝑠) ≠ ((𝑡 𝑢) 𝑣)))
54 2lplnj.v . . . . . . . . . . . . 13 𝑉 = (LVols‘𝐾)
552, 3, 4, 542lplnja 37256 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝑉) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾) ∧ 𝑠 ∈ (Atoms‘𝐾)) ∧ (𝑞𝑟 ∧ ¬ 𝑠 (𝑞 𝑟))) ∧ ((𝑡 ∈ (Atoms‘𝐾) ∧ 𝑢 ∈ (Atoms‘𝐾) ∧ 𝑣 ∈ (Atoms‘𝐾)) ∧ (𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢))) ∧ (((𝑞 𝑟) 𝑠) 𝑊 ∧ ((𝑡 𝑢) 𝑣) 𝑊 ∧ ((𝑞 𝑟) 𝑠) ≠ ((𝑡 𝑢) 𝑣))) → (((𝑞 𝑟) 𝑠) ((𝑡 𝑢) 𝑣)) = 𝑊)
5624, 30, 35, 39, 42, 53, 55syl321anc 1393 . . . . . . . . . . 11 (((((𝐾 ∈ HL ∧ (𝑋𝑃𝑌𝑃𝑊𝑉) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ (𝑟 ∈ (Atoms‘𝐾) ∧ 𝑠 ∈ (Atoms‘𝐾))) ∧ (𝑞𝑟 ∧ ¬ 𝑠 (𝑞 𝑟) ∧ 𝑋 = ((𝑞 𝑟) 𝑠))) ∧ 𝑡 ∈ (Atoms‘𝐾)) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ 𝑣 ∈ (Atoms‘𝐾)) ∧ (𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ 𝑌 = ((𝑡 𝑢) 𝑣))) → (((𝑞 𝑟) 𝑠) ((𝑡 𝑢) 𝑣)) = 𝑊)
5719, 56eqtrd 2773 . . . . . . . . . 10 (((((𝐾 ∈ HL ∧ (𝑋𝑃𝑌𝑃𝑊𝑉) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ (𝑟 ∈ (Atoms‘𝐾) ∧ 𝑠 ∈ (Atoms‘𝐾))) ∧ (𝑞𝑟 ∧ ¬ 𝑠 (𝑞 𝑟) ∧ 𝑋 = ((𝑞 𝑟) 𝑠))) ∧ 𝑡 ∈ (Atoms‘𝐾)) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ 𝑣 ∈ (Atoms‘𝐾)) ∧ (𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ 𝑌 = ((𝑡 𝑢) 𝑣))) → (𝑋 𝑌) = 𝑊)
58573exp 1120 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ (𝑋𝑃𝑌𝑃𝑊𝑉) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ (𝑟 ∈ (Atoms‘𝐾) ∧ 𝑠 ∈ (Atoms‘𝐾))) ∧ (𝑞𝑟 ∧ ¬ 𝑠 (𝑞 𝑟) ∧ 𝑋 = ((𝑞 𝑟) 𝑠))) ∧ 𝑡 ∈ (Atoms‘𝐾)) → ((𝑢 ∈ (Atoms‘𝐾) ∧ 𝑣 ∈ (Atoms‘𝐾)) → ((𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ 𝑌 = ((𝑡 𝑢) 𝑣)) → (𝑋 𝑌) = 𝑊)))
5958rexlimdvv 3203 . . . . . . . 8 ((((𝐾 ∈ HL ∧ (𝑋𝑃𝑌𝑃𝑊𝑉) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ (𝑟 ∈ (Atoms‘𝐾) ∧ 𝑠 ∈ (Atoms‘𝐾))) ∧ (𝑞𝑟 ∧ ¬ 𝑠 (𝑞 𝑟) ∧ 𝑋 = ((𝑞 𝑟) 𝑠))) ∧ 𝑡 ∈ (Atoms‘𝐾)) → (∃𝑢 ∈ (Atoms‘𝐾)∃𝑣 ∈ (Atoms‘𝐾)(𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ 𝑌 = ((𝑡 𝑢) 𝑣)) → (𝑋 𝑌) = 𝑊))
6059rexlimdva 3194 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑋𝑃𝑌𝑃𝑊𝑉) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ (𝑟 ∈ (Atoms‘𝐾) ∧ 𝑠 ∈ (Atoms‘𝐾))) ∧ (𝑞𝑟 ∧ ¬ 𝑠 (𝑞 𝑟) ∧ 𝑋 = ((𝑞 𝑟) 𝑠))) → (∃𝑡 ∈ (Atoms‘𝐾)∃𝑢 ∈ (Atoms‘𝐾)∃𝑣 ∈ (Atoms‘𝐾)(𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ 𝑌 = ((𝑡 𝑢) 𝑣)) → (𝑋 𝑌) = 𝑊))
61603exp 1120 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑋𝑃𝑌𝑃𝑊𝑉) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) → ((𝑞 ∈ (Atoms‘𝐾) ∧ (𝑟 ∈ (Atoms‘𝐾) ∧ 𝑠 ∈ (Atoms‘𝐾))) → ((𝑞𝑟 ∧ ¬ 𝑠 (𝑞 𝑟) ∧ 𝑋 = ((𝑞 𝑟) 𝑠)) → (∃𝑡 ∈ (Atoms‘𝐾)∃𝑢 ∈ (Atoms‘𝐾)∃𝑣 ∈ (Atoms‘𝐾)(𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ 𝑌 = ((𝑡 𝑢) 𝑣)) → (𝑋 𝑌) = 𝑊))))
6261expdimp 456 . . . . 5 (((𝐾 ∈ HL ∧ (𝑋𝑃𝑌𝑃𝑊𝑉) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) ∧ 𝑞 ∈ (Atoms‘𝐾)) → ((𝑟 ∈ (Atoms‘𝐾) ∧ 𝑠 ∈ (Atoms‘𝐾)) → ((𝑞𝑟 ∧ ¬ 𝑠 (𝑞 𝑟) ∧ 𝑋 = ((𝑞 𝑟) 𝑠)) → (∃𝑡 ∈ (Atoms‘𝐾)∃𝑢 ∈ (Atoms‘𝐾)∃𝑣 ∈ (Atoms‘𝐾)(𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ 𝑌 = ((𝑡 𝑢) 𝑣)) → (𝑋 𝑌) = 𝑊))))
6362rexlimdvv 3203 . . . 4 (((𝐾 ∈ HL ∧ (𝑋𝑃𝑌𝑃𝑊𝑉) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) ∧ 𝑞 ∈ (Atoms‘𝐾)) → (∃𝑟 ∈ (Atoms‘𝐾)∃𝑠 ∈ (Atoms‘𝐾)(𝑞𝑟 ∧ ¬ 𝑠 (𝑞 𝑟) ∧ 𝑋 = ((𝑞 𝑟) 𝑠)) → (∃𝑡 ∈ (Atoms‘𝐾)∃𝑢 ∈ (Atoms‘𝐾)∃𝑣 ∈ (Atoms‘𝐾)(𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ 𝑌 = ((𝑡 𝑢) 𝑣)) → (𝑋 𝑌) = 𝑊)))
6463rexlimdva 3194 . . 3 ((𝐾 ∈ HL ∧ (𝑋𝑃𝑌𝑃𝑊𝑉) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) → (∃𝑞 ∈ (Atoms‘𝐾)∃𝑟 ∈ (Atoms‘𝐾)∃𝑠 ∈ (Atoms‘𝐾)(𝑞𝑟 ∧ ¬ 𝑠 (𝑞 𝑟) ∧ 𝑋 = ((𝑞 𝑟) 𝑠)) → (∃𝑡 ∈ (Atoms‘𝐾)∃𝑢 ∈ (Atoms‘𝐾)∃𝑣 ∈ (Atoms‘𝐾)(𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ 𝑌 = ((𝑡 𝑢) 𝑣)) → (𝑋 𝑌) = 𝑊)))
6564impd 414 . 2 ((𝐾 ∈ HL ∧ (𝑋𝑃𝑌𝑃𝑊𝑉) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) → ((∃𝑞 ∈ (Atoms‘𝐾)∃𝑟 ∈ (Atoms‘𝐾)∃𝑠 ∈ (Atoms‘𝐾)(𝑞𝑟 ∧ ¬ 𝑠 (𝑞 𝑟) ∧ 𝑋 = ((𝑞 𝑟) 𝑠)) ∧ ∃𝑡 ∈ (Atoms‘𝐾)∃𝑢 ∈ (Atoms‘𝐾)∃𝑣 ∈ (Atoms‘𝐾)(𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ 𝑌 = ((𝑡 𝑢) 𝑣))) → (𝑋 𝑌) = 𝑊))
6615, 65mpd 15 1 ((𝐾 ∈ HL ∧ (𝑋𝑃𝑌𝑃𝑊𝑉) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) → (𝑋 𝑌) = 𝑊)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  w3a 1088   = wceq 1542  wcel 2114  wne 2934  wrex 3054   class class class wbr 5030  cfv 6339  (class class class)co 7170  Basecbs 16586  lecple 16675  joincjn 17670  Atomscatm 36900  HLchlt 36987  LPlanesclpl 37129  LVolsclvol 37130
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2710  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5232  ax-pr 5296  ax-un 7479
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-ral 3058  df-rex 3059  df-reu 3060  df-rab 3062  df-v 3400  df-sbc 3681  df-csb 3791  df-dif 3846  df-un 3848  df-in 3850  df-ss 3860  df-nul 4212  df-if 4415  df-pw 4490  df-sn 4517  df-pr 4519  df-op 4523  df-uni 4797  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5429  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-iota 6297  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-riota 7127  df-ov 7173  df-oprab 7174  df-proset 17654  df-poset 17672  df-plt 17684  df-lub 17700  df-glb 17701  df-join 17702  df-meet 17703  df-p0 17765  df-lat 17772  df-clat 17834  df-oposet 36813  df-ol 36815  df-oml 36816  df-covers 36903  df-ats 36904  df-atl 36935  df-cvlat 36959  df-hlat 36988  df-llines 37135  df-lplanes 37136  df-lvols 37137
This theorem is referenced by:  2lplnm2N  37258  dalem13  37313
  Copyright terms: Public domain W3C validator