Step | Hyp | Ref
| Expression |
1 | | eqid 2738 |
. . . . . . . 8
⊢
(Base‘𝐾) =
(Base‘𝐾) |
2 | | 2lplnj.l |
. . . . . . . 8
⊢ ≤ =
(le‘𝐾) |
3 | | 2lplnj.j |
. . . . . . . 8
⊢ ∨ =
(join‘𝐾) |
4 | | eqid 2738 |
. . . . . . . 8
⊢
(Atoms‘𝐾) =
(Atoms‘𝐾) |
5 | | 2lplnj.p |
. . . . . . . 8
⊢ 𝑃 = (LPlanes‘𝐾) |
6 | 1, 2, 3, 4, 5 | islpln2 37173 |
. . . . . . 7
⊢ (𝐾 ∈ HL → (𝑋 ∈ 𝑃 ↔ (𝑋 ∈ (Base‘𝐾) ∧ ∃𝑞 ∈ (Atoms‘𝐾)∃𝑟 ∈ (Atoms‘𝐾)∃𝑠 ∈ (Atoms‘𝐾)(𝑞 ≠ 𝑟 ∧ ¬ 𝑠 ≤ (𝑞 ∨ 𝑟) ∧ 𝑋 = ((𝑞 ∨ 𝑟) ∨ 𝑠))))) |
7 | | simpr 488 |
. . . . . . 7
⊢ ((𝑋 ∈ (Base‘𝐾) ∧ ∃𝑞 ∈ (Atoms‘𝐾)∃𝑟 ∈ (Atoms‘𝐾)∃𝑠 ∈ (Atoms‘𝐾)(𝑞 ≠ 𝑟 ∧ ¬ 𝑠 ≤ (𝑞 ∨ 𝑟) ∧ 𝑋 = ((𝑞 ∨ 𝑟) ∨ 𝑠))) → ∃𝑞 ∈ (Atoms‘𝐾)∃𝑟 ∈ (Atoms‘𝐾)∃𝑠 ∈ (Atoms‘𝐾)(𝑞 ≠ 𝑟 ∧ ¬ 𝑠 ≤ (𝑞 ∨ 𝑟) ∧ 𝑋 = ((𝑞 ∨ 𝑟) ∨ 𝑠))) |
8 | 6, 7 | syl6bi 256 |
. . . . . 6
⊢ (𝐾 ∈ HL → (𝑋 ∈ 𝑃 → ∃𝑞 ∈ (Atoms‘𝐾)∃𝑟 ∈ (Atoms‘𝐾)∃𝑠 ∈ (Atoms‘𝐾)(𝑞 ≠ 𝑟 ∧ ¬ 𝑠 ≤ (𝑞 ∨ 𝑟) ∧ 𝑋 = ((𝑞 ∨ 𝑟) ∨ 𝑠)))) |
9 | 1, 2, 3, 4, 5 | islpln2 37173 |
. . . . . . 7
⊢ (𝐾 ∈ HL → (𝑌 ∈ 𝑃 ↔ (𝑌 ∈ (Base‘𝐾) ∧ ∃𝑡 ∈ (Atoms‘𝐾)∃𝑢 ∈ (Atoms‘𝐾)∃𝑣 ∈ (Atoms‘𝐾)(𝑡 ≠ 𝑢 ∧ ¬ 𝑣 ≤ (𝑡 ∨ 𝑢) ∧ 𝑌 = ((𝑡 ∨ 𝑢) ∨ 𝑣))))) |
10 | | simpr 488 |
. . . . . . 7
⊢ ((𝑌 ∈ (Base‘𝐾) ∧ ∃𝑡 ∈ (Atoms‘𝐾)∃𝑢 ∈ (Atoms‘𝐾)∃𝑣 ∈ (Atoms‘𝐾)(𝑡 ≠ 𝑢 ∧ ¬ 𝑣 ≤ (𝑡 ∨ 𝑢) ∧ 𝑌 = ((𝑡 ∨ 𝑢) ∨ 𝑣))) → ∃𝑡 ∈ (Atoms‘𝐾)∃𝑢 ∈ (Atoms‘𝐾)∃𝑣 ∈ (Atoms‘𝐾)(𝑡 ≠ 𝑢 ∧ ¬ 𝑣 ≤ (𝑡 ∨ 𝑢) ∧ 𝑌 = ((𝑡 ∨ 𝑢) ∨ 𝑣))) |
11 | 9, 10 | syl6bi 256 |
. . . . . 6
⊢ (𝐾 ∈ HL → (𝑌 ∈ 𝑃 → ∃𝑡 ∈ (Atoms‘𝐾)∃𝑢 ∈ (Atoms‘𝐾)∃𝑣 ∈ (Atoms‘𝐾)(𝑡 ≠ 𝑢 ∧ ¬ 𝑣 ≤ (𝑡 ∨ 𝑢) ∧ 𝑌 = ((𝑡 ∨ 𝑢) ∨ 𝑣)))) |
12 | 8, 11 | anim12d 612 |
. . . . 5
⊢ (𝐾 ∈ HL → ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃) → (∃𝑞 ∈ (Atoms‘𝐾)∃𝑟 ∈ (Atoms‘𝐾)∃𝑠 ∈ (Atoms‘𝐾)(𝑞 ≠ 𝑟 ∧ ¬ 𝑠 ≤ (𝑞 ∨ 𝑟) ∧ 𝑋 = ((𝑞 ∨ 𝑟) ∨ 𝑠)) ∧ ∃𝑡 ∈ (Atoms‘𝐾)∃𝑢 ∈ (Atoms‘𝐾)∃𝑣 ∈ (Atoms‘𝐾)(𝑡 ≠ 𝑢 ∧ ¬ 𝑣 ≤ (𝑡 ∨ 𝑢) ∧ 𝑌 = ((𝑡 ∨ 𝑢) ∨ 𝑣))))) |
13 | 12 | imp 410 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃)) → (∃𝑞 ∈ (Atoms‘𝐾)∃𝑟 ∈ (Atoms‘𝐾)∃𝑠 ∈ (Atoms‘𝐾)(𝑞 ≠ 𝑟 ∧ ¬ 𝑠 ≤ (𝑞 ∨ 𝑟) ∧ 𝑋 = ((𝑞 ∨ 𝑟) ∨ 𝑠)) ∧ ∃𝑡 ∈ (Atoms‘𝐾)∃𝑢 ∈ (Atoms‘𝐾)∃𝑣 ∈ (Atoms‘𝐾)(𝑡 ≠ 𝑢 ∧ ¬ 𝑣 ≤ (𝑡 ∨ 𝑢) ∧ 𝑌 = ((𝑡 ∨ 𝑢) ∨ 𝑣)))) |
14 | 13 | 3adantr3 1172 |
. . 3
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑊 ∈ 𝑉)) → (∃𝑞 ∈ (Atoms‘𝐾)∃𝑟 ∈ (Atoms‘𝐾)∃𝑠 ∈ (Atoms‘𝐾)(𝑞 ≠ 𝑟 ∧ ¬ 𝑠 ≤ (𝑞 ∨ 𝑟) ∧ 𝑋 = ((𝑞 ∨ 𝑟) ∨ 𝑠)) ∧ ∃𝑡 ∈ (Atoms‘𝐾)∃𝑢 ∈ (Atoms‘𝐾)∃𝑣 ∈ (Atoms‘𝐾)(𝑡 ≠ 𝑢 ∧ ¬ 𝑣 ≤ (𝑡 ∨ 𝑢) ∧ 𝑌 = ((𝑡 ∨ 𝑢) ∨ 𝑣)))) |
15 | 14 | 3adant3 1133 |
. 2
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑊 ∈ 𝑉) ∧ (𝑋 ≤ 𝑊 ∧ 𝑌 ≤ 𝑊 ∧ 𝑋 ≠ 𝑌)) → (∃𝑞 ∈ (Atoms‘𝐾)∃𝑟 ∈ (Atoms‘𝐾)∃𝑠 ∈ (Atoms‘𝐾)(𝑞 ≠ 𝑟 ∧ ¬ 𝑠 ≤ (𝑞 ∨ 𝑟) ∧ 𝑋 = ((𝑞 ∨ 𝑟) ∨ 𝑠)) ∧ ∃𝑡 ∈ (Atoms‘𝐾)∃𝑢 ∈ (Atoms‘𝐾)∃𝑣 ∈ (Atoms‘𝐾)(𝑡 ≠ 𝑢 ∧ ¬ 𝑣 ≤ (𝑡 ∨ 𝑢) ∧ 𝑌 = ((𝑡 ∨ 𝑢) ∨ 𝑣)))) |
16 | | simpl33 1257 |
. . . . . . . . . . . . 13
⊢ ((((𝐾 ∈ HL ∧ (𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑊 ∈ 𝑉) ∧ (𝑋 ≤ 𝑊 ∧ 𝑌 ≤ 𝑊 ∧ 𝑋 ≠ 𝑌)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ (𝑟 ∈ (Atoms‘𝐾) ∧ 𝑠 ∈ (Atoms‘𝐾))) ∧ (𝑞 ≠ 𝑟 ∧ ¬ 𝑠 ≤ (𝑞 ∨ 𝑟) ∧ 𝑋 = ((𝑞 ∨ 𝑟) ∨ 𝑠))) ∧ 𝑡 ∈ (Atoms‘𝐾)) → 𝑋 = ((𝑞 ∨ 𝑟) ∨ 𝑠)) |
17 | 16 | 3ad2ant1 1134 |
. . . . . . . . . . . 12
⊢
(((((𝐾 ∈ HL
∧ (𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑊 ∈ 𝑉) ∧ (𝑋 ≤ 𝑊 ∧ 𝑌 ≤ 𝑊 ∧ 𝑋 ≠ 𝑌)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ (𝑟 ∈ (Atoms‘𝐾) ∧ 𝑠 ∈ (Atoms‘𝐾))) ∧ (𝑞 ≠ 𝑟 ∧ ¬ 𝑠 ≤ (𝑞 ∨ 𝑟) ∧ 𝑋 = ((𝑞 ∨ 𝑟) ∨ 𝑠))) ∧ 𝑡 ∈ (Atoms‘𝐾)) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ 𝑣 ∈ (Atoms‘𝐾)) ∧ (𝑡 ≠ 𝑢 ∧ ¬ 𝑣 ≤ (𝑡 ∨ 𝑢) ∧ 𝑌 = ((𝑡 ∨ 𝑢) ∨ 𝑣))) → 𝑋 = ((𝑞 ∨ 𝑟) ∨ 𝑠)) |
18 | | simp33 1212 |
. . . . . . . . . . . 12
⊢
(((((𝐾 ∈ HL
∧ (𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑊 ∈ 𝑉) ∧ (𝑋 ≤ 𝑊 ∧ 𝑌 ≤ 𝑊 ∧ 𝑋 ≠ 𝑌)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ (𝑟 ∈ (Atoms‘𝐾) ∧ 𝑠 ∈ (Atoms‘𝐾))) ∧ (𝑞 ≠ 𝑟 ∧ ¬ 𝑠 ≤ (𝑞 ∨ 𝑟) ∧ 𝑋 = ((𝑞 ∨ 𝑟) ∨ 𝑠))) ∧ 𝑡 ∈ (Atoms‘𝐾)) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ 𝑣 ∈ (Atoms‘𝐾)) ∧ (𝑡 ≠ 𝑢 ∧ ¬ 𝑣 ≤ (𝑡 ∨ 𝑢) ∧ 𝑌 = ((𝑡 ∨ 𝑢) ∨ 𝑣))) → 𝑌 = ((𝑡 ∨ 𝑢) ∨ 𝑣)) |
19 | 17, 18 | oveq12d 7188 |
. . . . . . . . . . 11
⊢
(((((𝐾 ∈ HL
∧ (𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑊 ∈ 𝑉) ∧ (𝑋 ≤ 𝑊 ∧ 𝑌 ≤ 𝑊 ∧ 𝑋 ≠ 𝑌)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ (𝑟 ∈ (Atoms‘𝐾) ∧ 𝑠 ∈ (Atoms‘𝐾))) ∧ (𝑞 ≠ 𝑟 ∧ ¬ 𝑠 ≤ (𝑞 ∨ 𝑟) ∧ 𝑋 = ((𝑞 ∨ 𝑟) ∨ 𝑠))) ∧ 𝑡 ∈ (Atoms‘𝐾)) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ 𝑣 ∈ (Atoms‘𝐾)) ∧ (𝑡 ≠ 𝑢 ∧ ¬ 𝑣 ≤ (𝑡 ∨ 𝑢) ∧ 𝑌 = ((𝑡 ∨ 𝑢) ∨ 𝑣))) → (𝑋 ∨ 𝑌) = (((𝑞 ∨ 𝑟) ∨ 𝑠) ∨ ((𝑡 ∨ 𝑢) ∨ 𝑣))) |
20 | | simp11 1204 |
. . . . . . . . . . . . . . 15
⊢ (((𝐾 ∈ HL ∧ (𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑊 ∈ 𝑉) ∧ (𝑋 ≤ 𝑊 ∧ 𝑌 ≤ 𝑊 ∧ 𝑋 ≠ 𝑌)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ (𝑟 ∈ (Atoms‘𝐾) ∧ 𝑠 ∈ (Atoms‘𝐾))) ∧ (𝑞 ≠ 𝑟 ∧ ¬ 𝑠 ≤ (𝑞 ∨ 𝑟) ∧ 𝑋 = ((𝑞 ∨ 𝑟) ∨ 𝑠))) → 𝐾 ∈ HL) |
21 | | simp123 1308 |
. . . . . . . . . . . . . . 15
⊢ (((𝐾 ∈ HL ∧ (𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑊 ∈ 𝑉) ∧ (𝑋 ≤ 𝑊 ∧ 𝑌 ≤ 𝑊 ∧ 𝑋 ≠ 𝑌)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ (𝑟 ∈ (Atoms‘𝐾) ∧ 𝑠 ∈ (Atoms‘𝐾))) ∧ (𝑞 ≠ 𝑟 ∧ ¬ 𝑠 ≤ (𝑞 ∨ 𝑟) ∧ 𝑋 = ((𝑞 ∨ 𝑟) ∨ 𝑠))) → 𝑊 ∈ 𝑉) |
22 | 20, 21 | jca 515 |
. . . . . . . . . . . . . 14
⊢ (((𝐾 ∈ HL ∧ (𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑊 ∈ 𝑉) ∧ (𝑋 ≤ 𝑊 ∧ 𝑌 ≤ 𝑊 ∧ 𝑋 ≠ 𝑌)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ (𝑟 ∈ (Atoms‘𝐾) ∧ 𝑠 ∈ (Atoms‘𝐾))) ∧ (𝑞 ≠ 𝑟 ∧ ¬ 𝑠 ≤ (𝑞 ∨ 𝑟) ∧ 𝑋 = ((𝑞 ∨ 𝑟) ∨ 𝑠))) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝑉)) |
23 | 22 | adantr 484 |
. . . . . . . . . . . . 13
⊢ ((((𝐾 ∈ HL ∧ (𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑊 ∈ 𝑉) ∧ (𝑋 ≤ 𝑊 ∧ 𝑌 ≤ 𝑊 ∧ 𝑋 ≠ 𝑌)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ (𝑟 ∈ (Atoms‘𝐾) ∧ 𝑠 ∈ (Atoms‘𝐾))) ∧ (𝑞 ≠ 𝑟 ∧ ¬ 𝑠 ≤ (𝑞 ∨ 𝑟) ∧ 𝑋 = ((𝑞 ∨ 𝑟) ∨ 𝑠))) ∧ 𝑡 ∈ (Atoms‘𝐾)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝑉)) |
24 | 23 | 3ad2ant1 1134 |
. . . . . . . . . . . 12
⊢
(((((𝐾 ∈ HL
∧ (𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑊 ∈ 𝑉) ∧ (𝑋 ≤ 𝑊 ∧ 𝑌 ≤ 𝑊 ∧ 𝑋 ≠ 𝑌)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ (𝑟 ∈ (Atoms‘𝐾) ∧ 𝑠 ∈ (Atoms‘𝐾))) ∧ (𝑞 ≠ 𝑟 ∧ ¬ 𝑠 ≤ (𝑞 ∨ 𝑟) ∧ 𝑋 = ((𝑞 ∨ 𝑟) ∨ 𝑠))) ∧ 𝑡 ∈ (Atoms‘𝐾)) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ 𝑣 ∈ (Atoms‘𝐾)) ∧ (𝑡 ≠ 𝑢 ∧ ¬ 𝑣 ≤ (𝑡 ∨ 𝑢) ∧ 𝑌 = ((𝑡 ∨ 𝑢) ∨ 𝑣))) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝑉)) |
25 | | simp2l 1200 |
. . . . . . . . . . . . . . 15
⊢ (((𝐾 ∈ HL ∧ (𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑊 ∈ 𝑉) ∧ (𝑋 ≤ 𝑊 ∧ 𝑌 ≤ 𝑊 ∧ 𝑋 ≠ 𝑌)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ (𝑟 ∈ (Atoms‘𝐾) ∧ 𝑠 ∈ (Atoms‘𝐾))) ∧ (𝑞 ≠ 𝑟 ∧ ¬ 𝑠 ≤ (𝑞 ∨ 𝑟) ∧ 𝑋 = ((𝑞 ∨ 𝑟) ∨ 𝑠))) → 𝑞 ∈ (Atoms‘𝐾)) |
26 | | simp2rl 1243 |
. . . . . . . . . . . . . . 15
⊢ (((𝐾 ∈ HL ∧ (𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑊 ∈ 𝑉) ∧ (𝑋 ≤ 𝑊 ∧ 𝑌 ≤ 𝑊 ∧ 𝑋 ≠ 𝑌)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ (𝑟 ∈ (Atoms‘𝐾) ∧ 𝑠 ∈ (Atoms‘𝐾))) ∧ (𝑞 ≠ 𝑟 ∧ ¬ 𝑠 ≤ (𝑞 ∨ 𝑟) ∧ 𝑋 = ((𝑞 ∨ 𝑟) ∨ 𝑠))) → 𝑟 ∈ (Atoms‘𝐾)) |
27 | | simp2rr 1244 |
. . . . . . . . . . . . . . 15
⊢ (((𝐾 ∈ HL ∧ (𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑊 ∈ 𝑉) ∧ (𝑋 ≤ 𝑊 ∧ 𝑌 ≤ 𝑊 ∧ 𝑋 ≠ 𝑌)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ (𝑟 ∈ (Atoms‘𝐾) ∧ 𝑠 ∈ (Atoms‘𝐾))) ∧ (𝑞 ≠ 𝑟 ∧ ¬ 𝑠 ≤ (𝑞 ∨ 𝑟) ∧ 𝑋 = ((𝑞 ∨ 𝑟) ∨ 𝑠))) → 𝑠 ∈ (Atoms‘𝐾)) |
28 | 25, 26, 27 | 3jca 1129 |
. . . . . . . . . . . . . 14
⊢ (((𝐾 ∈ HL ∧ (𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑊 ∈ 𝑉) ∧ (𝑋 ≤ 𝑊 ∧ 𝑌 ≤ 𝑊 ∧ 𝑋 ≠ 𝑌)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ (𝑟 ∈ (Atoms‘𝐾) ∧ 𝑠 ∈ (Atoms‘𝐾))) ∧ (𝑞 ≠ 𝑟 ∧ ¬ 𝑠 ≤ (𝑞 ∨ 𝑟) ∧ 𝑋 = ((𝑞 ∨ 𝑟) ∨ 𝑠))) → (𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾) ∧ 𝑠 ∈ (Atoms‘𝐾))) |
29 | 28 | adantr 484 |
. . . . . . . . . . . . 13
⊢ ((((𝐾 ∈ HL ∧ (𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑊 ∈ 𝑉) ∧ (𝑋 ≤ 𝑊 ∧ 𝑌 ≤ 𝑊 ∧ 𝑋 ≠ 𝑌)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ (𝑟 ∈ (Atoms‘𝐾) ∧ 𝑠 ∈ (Atoms‘𝐾))) ∧ (𝑞 ≠ 𝑟 ∧ ¬ 𝑠 ≤ (𝑞 ∨ 𝑟) ∧ 𝑋 = ((𝑞 ∨ 𝑟) ∨ 𝑠))) ∧ 𝑡 ∈ (Atoms‘𝐾)) → (𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾) ∧ 𝑠 ∈ (Atoms‘𝐾))) |
30 | 29 | 3ad2ant1 1134 |
. . . . . . . . . . . 12
⊢
(((((𝐾 ∈ HL
∧ (𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑊 ∈ 𝑉) ∧ (𝑋 ≤ 𝑊 ∧ 𝑌 ≤ 𝑊 ∧ 𝑋 ≠ 𝑌)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ (𝑟 ∈ (Atoms‘𝐾) ∧ 𝑠 ∈ (Atoms‘𝐾))) ∧ (𝑞 ≠ 𝑟 ∧ ¬ 𝑠 ≤ (𝑞 ∨ 𝑟) ∧ 𝑋 = ((𝑞 ∨ 𝑟) ∨ 𝑠))) ∧ 𝑡 ∈ (Atoms‘𝐾)) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ 𝑣 ∈ (Atoms‘𝐾)) ∧ (𝑡 ≠ 𝑢 ∧ ¬ 𝑣 ≤ (𝑡 ∨ 𝑢) ∧ 𝑌 = ((𝑡 ∨ 𝑢) ∨ 𝑣))) → (𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾) ∧ 𝑠 ∈ (Atoms‘𝐾))) |
31 | | simpl31 1255 |
. . . . . . . . . . . . . 14
⊢ ((((𝐾 ∈ HL ∧ (𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑊 ∈ 𝑉) ∧ (𝑋 ≤ 𝑊 ∧ 𝑌 ≤ 𝑊 ∧ 𝑋 ≠ 𝑌)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ (𝑟 ∈ (Atoms‘𝐾) ∧ 𝑠 ∈ (Atoms‘𝐾))) ∧ (𝑞 ≠ 𝑟 ∧ ¬ 𝑠 ≤ (𝑞 ∨ 𝑟) ∧ 𝑋 = ((𝑞 ∨ 𝑟) ∨ 𝑠))) ∧ 𝑡 ∈ (Atoms‘𝐾)) → 𝑞 ≠ 𝑟) |
32 | 31 | 3ad2ant1 1134 |
. . . . . . . . . . . . 13
⊢
(((((𝐾 ∈ HL
∧ (𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑊 ∈ 𝑉) ∧ (𝑋 ≤ 𝑊 ∧ 𝑌 ≤ 𝑊 ∧ 𝑋 ≠ 𝑌)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ (𝑟 ∈ (Atoms‘𝐾) ∧ 𝑠 ∈ (Atoms‘𝐾))) ∧ (𝑞 ≠ 𝑟 ∧ ¬ 𝑠 ≤ (𝑞 ∨ 𝑟) ∧ 𝑋 = ((𝑞 ∨ 𝑟) ∨ 𝑠))) ∧ 𝑡 ∈ (Atoms‘𝐾)) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ 𝑣 ∈ (Atoms‘𝐾)) ∧ (𝑡 ≠ 𝑢 ∧ ¬ 𝑣 ≤ (𝑡 ∨ 𝑢) ∧ 𝑌 = ((𝑡 ∨ 𝑢) ∨ 𝑣))) → 𝑞 ≠ 𝑟) |
33 | | simpl32 1256 |
. . . . . . . . . . . . . 14
⊢ ((((𝐾 ∈ HL ∧ (𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑊 ∈ 𝑉) ∧ (𝑋 ≤ 𝑊 ∧ 𝑌 ≤ 𝑊 ∧ 𝑋 ≠ 𝑌)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ (𝑟 ∈ (Atoms‘𝐾) ∧ 𝑠 ∈ (Atoms‘𝐾))) ∧ (𝑞 ≠ 𝑟 ∧ ¬ 𝑠 ≤ (𝑞 ∨ 𝑟) ∧ 𝑋 = ((𝑞 ∨ 𝑟) ∨ 𝑠))) ∧ 𝑡 ∈ (Atoms‘𝐾)) → ¬ 𝑠 ≤ (𝑞 ∨ 𝑟)) |
34 | 33 | 3ad2ant1 1134 |
. . . . . . . . . . . . 13
⊢
(((((𝐾 ∈ HL
∧ (𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑊 ∈ 𝑉) ∧ (𝑋 ≤ 𝑊 ∧ 𝑌 ≤ 𝑊 ∧ 𝑋 ≠ 𝑌)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ (𝑟 ∈ (Atoms‘𝐾) ∧ 𝑠 ∈ (Atoms‘𝐾))) ∧ (𝑞 ≠ 𝑟 ∧ ¬ 𝑠 ≤ (𝑞 ∨ 𝑟) ∧ 𝑋 = ((𝑞 ∨ 𝑟) ∨ 𝑠))) ∧ 𝑡 ∈ (Atoms‘𝐾)) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ 𝑣 ∈ (Atoms‘𝐾)) ∧ (𝑡 ≠ 𝑢 ∧ ¬ 𝑣 ≤ (𝑡 ∨ 𝑢) ∧ 𝑌 = ((𝑡 ∨ 𝑢) ∨ 𝑣))) → ¬ 𝑠 ≤ (𝑞 ∨ 𝑟)) |
35 | 32, 34 | jca 515 |
. . . . . . . . . . . 12
⊢
(((((𝐾 ∈ HL
∧ (𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑊 ∈ 𝑉) ∧ (𝑋 ≤ 𝑊 ∧ 𝑌 ≤ 𝑊 ∧ 𝑋 ≠ 𝑌)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ (𝑟 ∈ (Atoms‘𝐾) ∧ 𝑠 ∈ (Atoms‘𝐾))) ∧ (𝑞 ≠ 𝑟 ∧ ¬ 𝑠 ≤ (𝑞 ∨ 𝑟) ∧ 𝑋 = ((𝑞 ∨ 𝑟) ∨ 𝑠))) ∧ 𝑡 ∈ (Atoms‘𝐾)) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ 𝑣 ∈ (Atoms‘𝐾)) ∧ (𝑡 ≠ 𝑢 ∧ ¬ 𝑣 ≤ (𝑡 ∨ 𝑢) ∧ 𝑌 = ((𝑡 ∨ 𝑢) ∨ 𝑣))) → (𝑞 ≠ 𝑟 ∧ ¬ 𝑠 ≤ (𝑞 ∨ 𝑟))) |
36 | | simp1r 1199 |
. . . . . . . . . . . . 13
⊢
(((((𝐾 ∈ HL
∧ (𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑊 ∈ 𝑉) ∧ (𝑋 ≤ 𝑊 ∧ 𝑌 ≤ 𝑊 ∧ 𝑋 ≠ 𝑌)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ (𝑟 ∈ (Atoms‘𝐾) ∧ 𝑠 ∈ (Atoms‘𝐾))) ∧ (𝑞 ≠ 𝑟 ∧ ¬ 𝑠 ≤ (𝑞 ∨ 𝑟) ∧ 𝑋 = ((𝑞 ∨ 𝑟) ∨ 𝑠))) ∧ 𝑡 ∈ (Atoms‘𝐾)) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ 𝑣 ∈ (Atoms‘𝐾)) ∧ (𝑡 ≠ 𝑢 ∧ ¬ 𝑣 ≤ (𝑡 ∨ 𝑢) ∧ 𝑌 = ((𝑡 ∨ 𝑢) ∨ 𝑣))) → 𝑡 ∈ (Atoms‘𝐾)) |
37 | | simp2l 1200 |
. . . . . . . . . . . . 13
⊢
(((((𝐾 ∈ HL
∧ (𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑊 ∈ 𝑉) ∧ (𝑋 ≤ 𝑊 ∧ 𝑌 ≤ 𝑊 ∧ 𝑋 ≠ 𝑌)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ (𝑟 ∈ (Atoms‘𝐾) ∧ 𝑠 ∈ (Atoms‘𝐾))) ∧ (𝑞 ≠ 𝑟 ∧ ¬ 𝑠 ≤ (𝑞 ∨ 𝑟) ∧ 𝑋 = ((𝑞 ∨ 𝑟) ∨ 𝑠))) ∧ 𝑡 ∈ (Atoms‘𝐾)) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ 𝑣 ∈ (Atoms‘𝐾)) ∧ (𝑡 ≠ 𝑢 ∧ ¬ 𝑣 ≤ (𝑡 ∨ 𝑢) ∧ 𝑌 = ((𝑡 ∨ 𝑢) ∨ 𝑣))) → 𝑢 ∈ (Atoms‘𝐾)) |
38 | | simp2r 1201 |
. . . . . . . . . . . . 13
⊢
(((((𝐾 ∈ HL
∧ (𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑊 ∈ 𝑉) ∧ (𝑋 ≤ 𝑊 ∧ 𝑌 ≤ 𝑊 ∧ 𝑋 ≠ 𝑌)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ (𝑟 ∈ (Atoms‘𝐾) ∧ 𝑠 ∈ (Atoms‘𝐾))) ∧ (𝑞 ≠ 𝑟 ∧ ¬ 𝑠 ≤ (𝑞 ∨ 𝑟) ∧ 𝑋 = ((𝑞 ∨ 𝑟) ∨ 𝑠))) ∧ 𝑡 ∈ (Atoms‘𝐾)) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ 𝑣 ∈ (Atoms‘𝐾)) ∧ (𝑡 ≠ 𝑢 ∧ ¬ 𝑣 ≤ (𝑡 ∨ 𝑢) ∧ 𝑌 = ((𝑡 ∨ 𝑢) ∨ 𝑣))) → 𝑣 ∈ (Atoms‘𝐾)) |
39 | 36, 37, 38 | 3jca 1129 |
. . . . . . . . . . . 12
⊢
(((((𝐾 ∈ HL
∧ (𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑊 ∈ 𝑉) ∧ (𝑋 ≤ 𝑊 ∧ 𝑌 ≤ 𝑊 ∧ 𝑋 ≠ 𝑌)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ (𝑟 ∈ (Atoms‘𝐾) ∧ 𝑠 ∈ (Atoms‘𝐾))) ∧ (𝑞 ≠ 𝑟 ∧ ¬ 𝑠 ≤ (𝑞 ∨ 𝑟) ∧ 𝑋 = ((𝑞 ∨ 𝑟) ∨ 𝑠))) ∧ 𝑡 ∈ (Atoms‘𝐾)) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ 𝑣 ∈ (Atoms‘𝐾)) ∧ (𝑡 ≠ 𝑢 ∧ ¬ 𝑣 ≤ (𝑡 ∨ 𝑢) ∧ 𝑌 = ((𝑡 ∨ 𝑢) ∨ 𝑣))) → (𝑡 ∈ (Atoms‘𝐾) ∧ 𝑢 ∈ (Atoms‘𝐾) ∧ 𝑣 ∈ (Atoms‘𝐾))) |
40 | | simp31 1210 |
. . . . . . . . . . . . 13
⊢
(((((𝐾 ∈ HL
∧ (𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑊 ∈ 𝑉) ∧ (𝑋 ≤ 𝑊 ∧ 𝑌 ≤ 𝑊 ∧ 𝑋 ≠ 𝑌)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ (𝑟 ∈ (Atoms‘𝐾) ∧ 𝑠 ∈ (Atoms‘𝐾))) ∧ (𝑞 ≠ 𝑟 ∧ ¬ 𝑠 ≤ (𝑞 ∨ 𝑟) ∧ 𝑋 = ((𝑞 ∨ 𝑟) ∨ 𝑠))) ∧ 𝑡 ∈ (Atoms‘𝐾)) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ 𝑣 ∈ (Atoms‘𝐾)) ∧ (𝑡 ≠ 𝑢 ∧ ¬ 𝑣 ≤ (𝑡 ∨ 𝑢) ∧ 𝑌 = ((𝑡 ∨ 𝑢) ∨ 𝑣))) → 𝑡 ≠ 𝑢) |
41 | | simp32 1211 |
. . . . . . . . . . . . 13
⊢
(((((𝐾 ∈ HL
∧ (𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑊 ∈ 𝑉) ∧ (𝑋 ≤ 𝑊 ∧ 𝑌 ≤ 𝑊 ∧ 𝑋 ≠ 𝑌)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ (𝑟 ∈ (Atoms‘𝐾) ∧ 𝑠 ∈ (Atoms‘𝐾))) ∧ (𝑞 ≠ 𝑟 ∧ ¬ 𝑠 ≤ (𝑞 ∨ 𝑟) ∧ 𝑋 = ((𝑞 ∨ 𝑟) ∨ 𝑠))) ∧ 𝑡 ∈ (Atoms‘𝐾)) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ 𝑣 ∈ (Atoms‘𝐾)) ∧ (𝑡 ≠ 𝑢 ∧ ¬ 𝑣 ≤ (𝑡 ∨ 𝑢) ∧ 𝑌 = ((𝑡 ∨ 𝑢) ∨ 𝑣))) → ¬ 𝑣 ≤ (𝑡 ∨ 𝑢)) |
42 | 40, 41 | jca 515 |
. . . . . . . . . . . 12
⊢
(((((𝐾 ∈ HL
∧ (𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑊 ∈ 𝑉) ∧ (𝑋 ≤ 𝑊 ∧ 𝑌 ≤ 𝑊 ∧ 𝑋 ≠ 𝑌)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ (𝑟 ∈ (Atoms‘𝐾) ∧ 𝑠 ∈ (Atoms‘𝐾))) ∧ (𝑞 ≠ 𝑟 ∧ ¬ 𝑠 ≤ (𝑞 ∨ 𝑟) ∧ 𝑋 = ((𝑞 ∨ 𝑟) ∨ 𝑠))) ∧ 𝑡 ∈ (Atoms‘𝐾)) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ 𝑣 ∈ (Atoms‘𝐾)) ∧ (𝑡 ≠ 𝑢 ∧ ¬ 𝑣 ≤ (𝑡 ∨ 𝑢) ∧ 𝑌 = ((𝑡 ∨ 𝑢) ∨ 𝑣))) → (𝑡 ≠ 𝑢 ∧ ¬ 𝑣 ≤ (𝑡 ∨ 𝑢))) |
43 | | simpl13 1251 |
. . . . . . . . . . . . . 14
⊢ ((((𝐾 ∈ HL ∧ (𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑊 ∈ 𝑉) ∧ (𝑋 ≤ 𝑊 ∧ 𝑌 ≤ 𝑊 ∧ 𝑋 ≠ 𝑌)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ (𝑟 ∈ (Atoms‘𝐾) ∧ 𝑠 ∈ (Atoms‘𝐾))) ∧ (𝑞 ≠ 𝑟 ∧ ¬ 𝑠 ≤ (𝑞 ∨ 𝑟) ∧ 𝑋 = ((𝑞 ∨ 𝑟) ∨ 𝑠))) ∧ 𝑡 ∈ (Atoms‘𝐾)) → (𝑋 ≤ 𝑊 ∧ 𝑌 ≤ 𝑊 ∧ 𝑋 ≠ 𝑌)) |
44 | 43 | 3ad2ant1 1134 |
. . . . . . . . . . . . 13
⊢
(((((𝐾 ∈ HL
∧ (𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑊 ∈ 𝑉) ∧ (𝑋 ≤ 𝑊 ∧ 𝑌 ≤ 𝑊 ∧ 𝑋 ≠ 𝑌)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ (𝑟 ∈ (Atoms‘𝐾) ∧ 𝑠 ∈ (Atoms‘𝐾))) ∧ (𝑞 ≠ 𝑟 ∧ ¬ 𝑠 ≤ (𝑞 ∨ 𝑟) ∧ 𝑋 = ((𝑞 ∨ 𝑟) ∨ 𝑠))) ∧ 𝑡 ∈ (Atoms‘𝐾)) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ 𝑣 ∈ (Atoms‘𝐾)) ∧ (𝑡 ≠ 𝑢 ∧ ¬ 𝑣 ≤ (𝑡 ∨ 𝑢) ∧ 𝑌 = ((𝑡 ∨ 𝑢) ∨ 𝑣))) → (𝑋 ≤ 𝑊 ∧ 𝑌 ≤ 𝑊 ∧ 𝑋 ≠ 𝑌)) |
45 | | breq1 5033 |
. . . . . . . . . . . . . . . 16
⊢ (𝑋 = ((𝑞 ∨ 𝑟) ∨ 𝑠) → (𝑋 ≤ 𝑊 ↔ ((𝑞 ∨ 𝑟) ∨ 𝑠) ≤ 𝑊)) |
46 | | neeq1 2996 |
. . . . . . . . . . . . . . . 16
⊢ (𝑋 = ((𝑞 ∨ 𝑟) ∨ 𝑠) → (𝑋 ≠ 𝑌 ↔ ((𝑞 ∨ 𝑟) ∨ 𝑠) ≠ 𝑌)) |
47 | 45, 46 | 3anbi13d 1439 |
. . . . . . . . . . . . . . 15
⊢ (𝑋 = ((𝑞 ∨ 𝑟) ∨ 𝑠) → ((𝑋 ≤ 𝑊 ∧ 𝑌 ≤ 𝑊 ∧ 𝑋 ≠ 𝑌) ↔ (((𝑞 ∨ 𝑟) ∨ 𝑠) ≤ 𝑊 ∧ 𝑌 ≤ 𝑊 ∧ ((𝑞 ∨ 𝑟) ∨ 𝑠) ≠ 𝑌))) |
48 | | breq1 5033 |
. . . . . . . . . . . . . . . 16
⊢ (𝑌 = ((𝑡 ∨ 𝑢) ∨ 𝑣) → (𝑌 ≤ 𝑊 ↔ ((𝑡 ∨ 𝑢) ∨ 𝑣) ≤ 𝑊)) |
49 | | neeq2 2997 |
. . . . . . . . . . . . . . . 16
⊢ (𝑌 = ((𝑡 ∨ 𝑢) ∨ 𝑣) → (((𝑞 ∨ 𝑟) ∨ 𝑠) ≠ 𝑌 ↔ ((𝑞 ∨ 𝑟) ∨ 𝑠) ≠ ((𝑡 ∨ 𝑢) ∨ 𝑣))) |
50 | 48, 49 | 3anbi23d 1440 |
. . . . . . . . . . . . . . 15
⊢ (𝑌 = ((𝑡 ∨ 𝑢) ∨ 𝑣) → ((((𝑞 ∨ 𝑟) ∨ 𝑠) ≤ 𝑊 ∧ 𝑌 ≤ 𝑊 ∧ ((𝑞 ∨ 𝑟) ∨ 𝑠) ≠ 𝑌) ↔ (((𝑞 ∨ 𝑟) ∨ 𝑠) ≤ 𝑊 ∧ ((𝑡 ∨ 𝑢) ∨ 𝑣) ≤ 𝑊 ∧ ((𝑞 ∨ 𝑟) ∨ 𝑠) ≠ ((𝑡 ∨ 𝑢) ∨ 𝑣)))) |
51 | 47, 50 | sylan9bb 513 |
. . . . . . . . . . . . . 14
⊢ ((𝑋 = ((𝑞 ∨ 𝑟) ∨ 𝑠) ∧ 𝑌 = ((𝑡 ∨ 𝑢) ∨ 𝑣)) → ((𝑋 ≤ 𝑊 ∧ 𝑌 ≤ 𝑊 ∧ 𝑋 ≠ 𝑌) ↔ (((𝑞 ∨ 𝑟) ∨ 𝑠) ≤ 𝑊 ∧ ((𝑡 ∨ 𝑢) ∨ 𝑣) ≤ 𝑊 ∧ ((𝑞 ∨ 𝑟) ∨ 𝑠) ≠ ((𝑡 ∨ 𝑢) ∨ 𝑣)))) |
52 | 17, 18, 51 | syl2anc 587 |
. . . . . . . . . . . . 13
⊢
(((((𝐾 ∈ HL
∧ (𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑊 ∈ 𝑉) ∧ (𝑋 ≤ 𝑊 ∧ 𝑌 ≤ 𝑊 ∧ 𝑋 ≠ 𝑌)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ (𝑟 ∈ (Atoms‘𝐾) ∧ 𝑠 ∈ (Atoms‘𝐾))) ∧ (𝑞 ≠ 𝑟 ∧ ¬ 𝑠 ≤ (𝑞 ∨ 𝑟) ∧ 𝑋 = ((𝑞 ∨ 𝑟) ∨ 𝑠))) ∧ 𝑡 ∈ (Atoms‘𝐾)) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ 𝑣 ∈ (Atoms‘𝐾)) ∧ (𝑡 ≠ 𝑢 ∧ ¬ 𝑣 ≤ (𝑡 ∨ 𝑢) ∧ 𝑌 = ((𝑡 ∨ 𝑢) ∨ 𝑣))) → ((𝑋 ≤ 𝑊 ∧ 𝑌 ≤ 𝑊 ∧ 𝑋 ≠ 𝑌) ↔ (((𝑞 ∨ 𝑟) ∨ 𝑠) ≤ 𝑊 ∧ ((𝑡 ∨ 𝑢) ∨ 𝑣) ≤ 𝑊 ∧ ((𝑞 ∨ 𝑟) ∨ 𝑠) ≠ ((𝑡 ∨ 𝑢) ∨ 𝑣)))) |
53 | 44, 52 | mpbid 235 |
. . . . . . . . . . . 12
⊢
(((((𝐾 ∈ HL
∧ (𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑊 ∈ 𝑉) ∧ (𝑋 ≤ 𝑊 ∧ 𝑌 ≤ 𝑊 ∧ 𝑋 ≠ 𝑌)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ (𝑟 ∈ (Atoms‘𝐾) ∧ 𝑠 ∈ (Atoms‘𝐾))) ∧ (𝑞 ≠ 𝑟 ∧ ¬ 𝑠 ≤ (𝑞 ∨ 𝑟) ∧ 𝑋 = ((𝑞 ∨ 𝑟) ∨ 𝑠))) ∧ 𝑡 ∈ (Atoms‘𝐾)) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ 𝑣 ∈ (Atoms‘𝐾)) ∧ (𝑡 ≠ 𝑢 ∧ ¬ 𝑣 ≤ (𝑡 ∨ 𝑢) ∧ 𝑌 = ((𝑡 ∨ 𝑢) ∨ 𝑣))) → (((𝑞 ∨ 𝑟) ∨ 𝑠) ≤ 𝑊 ∧ ((𝑡 ∨ 𝑢) ∨ 𝑣) ≤ 𝑊 ∧ ((𝑞 ∨ 𝑟) ∨ 𝑠) ≠ ((𝑡 ∨ 𝑢) ∨ 𝑣))) |
54 | | 2lplnj.v |
. . . . . . . . . . . . 13
⊢ 𝑉 = (LVols‘𝐾) |
55 | 2, 3, 4, 54 | 2lplnja 37256 |
. . . . . . . . . . . 12
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝑉) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾) ∧ 𝑠 ∈ (Atoms‘𝐾)) ∧ (𝑞 ≠ 𝑟 ∧ ¬ 𝑠 ≤ (𝑞 ∨ 𝑟))) ∧ ((𝑡 ∈ (Atoms‘𝐾) ∧ 𝑢 ∈ (Atoms‘𝐾) ∧ 𝑣 ∈ (Atoms‘𝐾)) ∧ (𝑡 ≠ 𝑢 ∧ ¬ 𝑣 ≤ (𝑡 ∨ 𝑢))) ∧ (((𝑞 ∨ 𝑟) ∨ 𝑠) ≤ 𝑊 ∧ ((𝑡 ∨ 𝑢) ∨ 𝑣) ≤ 𝑊 ∧ ((𝑞 ∨ 𝑟) ∨ 𝑠) ≠ ((𝑡 ∨ 𝑢) ∨ 𝑣))) → (((𝑞 ∨ 𝑟) ∨ 𝑠) ∨ ((𝑡 ∨ 𝑢) ∨ 𝑣)) = 𝑊) |
56 | 24, 30, 35, 39, 42, 53, 55 | syl321anc 1393 |
. . . . . . . . . . 11
⊢
(((((𝐾 ∈ HL
∧ (𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑊 ∈ 𝑉) ∧ (𝑋 ≤ 𝑊 ∧ 𝑌 ≤ 𝑊 ∧ 𝑋 ≠ 𝑌)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ (𝑟 ∈ (Atoms‘𝐾) ∧ 𝑠 ∈ (Atoms‘𝐾))) ∧ (𝑞 ≠ 𝑟 ∧ ¬ 𝑠 ≤ (𝑞 ∨ 𝑟) ∧ 𝑋 = ((𝑞 ∨ 𝑟) ∨ 𝑠))) ∧ 𝑡 ∈ (Atoms‘𝐾)) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ 𝑣 ∈ (Atoms‘𝐾)) ∧ (𝑡 ≠ 𝑢 ∧ ¬ 𝑣 ≤ (𝑡 ∨ 𝑢) ∧ 𝑌 = ((𝑡 ∨ 𝑢) ∨ 𝑣))) → (((𝑞 ∨ 𝑟) ∨ 𝑠) ∨ ((𝑡 ∨ 𝑢) ∨ 𝑣)) = 𝑊) |
57 | 19, 56 | eqtrd 2773 |
. . . . . . . . . 10
⊢
(((((𝐾 ∈ HL
∧ (𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑊 ∈ 𝑉) ∧ (𝑋 ≤ 𝑊 ∧ 𝑌 ≤ 𝑊 ∧ 𝑋 ≠ 𝑌)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ (𝑟 ∈ (Atoms‘𝐾) ∧ 𝑠 ∈ (Atoms‘𝐾))) ∧ (𝑞 ≠ 𝑟 ∧ ¬ 𝑠 ≤ (𝑞 ∨ 𝑟) ∧ 𝑋 = ((𝑞 ∨ 𝑟) ∨ 𝑠))) ∧ 𝑡 ∈ (Atoms‘𝐾)) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ 𝑣 ∈ (Atoms‘𝐾)) ∧ (𝑡 ≠ 𝑢 ∧ ¬ 𝑣 ≤ (𝑡 ∨ 𝑢) ∧ 𝑌 = ((𝑡 ∨ 𝑢) ∨ 𝑣))) → (𝑋 ∨ 𝑌) = 𝑊) |
58 | 57 | 3exp 1120 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ (𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑊 ∈ 𝑉) ∧ (𝑋 ≤ 𝑊 ∧ 𝑌 ≤ 𝑊 ∧ 𝑋 ≠ 𝑌)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ (𝑟 ∈ (Atoms‘𝐾) ∧ 𝑠 ∈ (Atoms‘𝐾))) ∧ (𝑞 ≠ 𝑟 ∧ ¬ 𝑠 ≤ (𝑞 ∨ 𝑟) ∧ 𝑋 = ((𝑞 ∨ 𝑟) ∨ 𝑠))) ∧ 𝑡 ∈ (Atoms‘𝐾)) → ((𝑢 ∈ (Atoms‘𝐾) ∧ 𝑣 ∈ (Atoms‘𝐾)) → ((𝑡 ≠ 𝑢 ∧ ¬ 𝑣 ≤ (𝑡 ∨ 𝑢) ∧ 𝑌 = ((𝑡 ∨ 𝑢) ∨ 𝑣)) → (𝑋 ∨ 𝑌) = 𝑊))) |
59 | 58 | rexlimdvv 3203 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ (𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑊 ∈ 𝑉) ∧ (𝑋 ≤ 𝑊 ∧ 𝑌 ≤ 𝑊 ∧ 𝑋 ≠ 𝑌)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ (𝑟 ∈ (Atoms‘𝐾) ∧ 𝑠 ∈ (Atoms‘𝐾))) ∧ (𝑞 ≠ 𝑟 ∧ ¬ 𝑠 ≤ (𝑞 ∨ 𝑟) ∧ 𝑋 = ((𝑞 ∨ 𝑟) ∨ 𝑠))) ∧ 𝑡 ∈ (Atoms‘𝐾)) → (∃𝑢 ∈ (Atoms‘𝐾)∃𝑣 ∈ (Atoms‘𝐾)(𝑡 ≠ 𝑢 ∧ ¬ 𝑣 ≤ (𝑡 ∨ 𝑢) ∧ 𝑌 = ((𝑡 ∨ 𝑢) ∨ 𝑣)) → (𝑋 ∨ 𝑌) = 𝑊)) |
60 | 59 | rexlimdva 3194 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ (𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑊 ∈ 𝑉) ∧ (𝑋 ≤ 𝑊 ∧ 𝑌 ≤ 𝑊 ∧ 𝑋 ≠ 𝑌)) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ (𝑟 ∈ (Atoms‘𝐾) ∧ 𝑠 ∈ (Atoms‘𝐾))) ∧ (𝑞 ≠ 𝑟 ∧ ¬ 𝑠 ≤ (𝑞 ∨ 𝑟) ∧ 𝑋 = ((𝑞 ∨ 𝑟) ∨ 𝑠))) → (∃𝑡 ∈ (Atoms‘𝐾)∃𝑢 ∈ (Atoms‘𝐾)∃𝑣 ∈ (Atoms‘𝐾)(𝑡 ≠ 𝑢 ∧ ¬ 𝑣 ≤ (𝑡 ∨ 𝑢) ∧ 𝑌 = ((𝑡 ∨ 𝑢) ∨ 𝑣)) → (𝑋 ∨ 𝑌) = 𝑊)) |
61 | 60 | 3exp 1120 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑊 ∈ 𝑉) ∧ (𝑋 ≤ 𝑊 ∧ 𝑌 ≤ 𝑊 ∧ 𝑋 ≠ 𝑌)) → ((𝑞 ∈ (Atoms‘𝐾) ∧ (𝑟 ∈ (Atoms‘𝐾) ∧ 𝑠 ∈ (Atoms‘𝐾))) → ((𝑞 ≠ 𝑟 ∧ ¬ 𝑠 ≤ (𝑞 ∨ 𝑟) ∧ 𝑋 = ((𝑞 ∨ 𝑟) ∨ 𝑠)) → (∃𝑡 ∈ (Atoms‘𝐾)∃𝑢 ∈ (Atoms‘𝐾)∃𝑣 ∈ (Atoms‘𝐾)(𝑡 ≠ 𝑢 ∧ ¬ 𝑣 ≤ (𝑡 ∨ 𝑢) ∧ 𝑌 = ((𝑡 ∨ 𝑢) ∨ 𝑣)) → (𝑋 ∨ 𝑌) = 𝑊)))) |
62 | 61 | expdimp 456 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ (𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑊 ∈ 𝑉) ∧ (𝑋 ≤ 𝑊 ∧ 𝑌 ≤ 𝑊 ∧ 𝑋 ≠ 𝑌)) ∧ 𝑞 ∈ (Atoms‘𝐾)) → ((𝑟 ∈ (Atoms‘𝐾) ∧ 𝑠 ∈ (Atoms‘𝐾)) → ((𝑞 ≠ 𝑟 ∧ ¬ 𝑠 ≤ (𝑞 ∨ 𝑟) ∧ 𝑋 = ((𝑞 ∨ 𝑟) ∨ 𝑠)) → (∃𝑡 ∈ (Atoms‘𝐾)∃𝑢 ∈ (Atoms‘𝐾)∃𝑣 ∈ (Atoms‘𝐾)(𝑡 ≠ 𝑢 ∧ ¬ 𝑣 ≤ (𝑡 ∨ 𝑢) ∧ 𝑌 = ((𝑡 ∨ 𝑢) ∨ 𝑣)) → (𝑋 ∨ 𝑌) = 𝑊)))) |
63 | 62 | rexlimdvv 3203 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ (𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑊 ∈ 𝑉) ∧ (𝑋 ≤ 𝑊 ∧ 𝑌 ≤ 𝑊 ∧ 𝑋 ≠ 𝑌)) ∧ 𝑞 ∈ (Atoms‘𝐾)) → (∃𝑟 ∈ (Atoms‘𝐾)∃𝑠 ∈ (Atoms‘𝐾)(𝑞 ≠ 𝑟 ∧ ¬ 𝑠 ≤ (𝑞 ∨ 𝑟) ∧ 𝑋 = ((𝑞 ∨ 𝑟) ∨ 𝑠)) → (∃𝑡 ∈ (Atoms‘𝐾)∃𝑢 ∈ (Atoms‘𝐾)∃𝑣 ∈ (Atoms‘𝐾)(𝑡 ≠ 𝑢 ∧ ¬ 𝑣 ≤ (𝑡 ∨ 𝑢) ∧ 𝑌 = ((𝑡 ∨ 𝑢) ∨ 𝑣)) → (𝑋 ∨ 𝑌) = 𝑊))) |
64 | 63 | rexlimdva 3194 |
. . 3
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑊 ∈ 𝑉) ∧ (𝑋 ≤ 𝑊 ∧ 𝑌 ≤ 𝑊 ∧ 𝑋 ≠ 𝑌)) → (∃𝑞 ∈ (Atoms‘𝐾)∃𝑟 ∈ (Atoms‘𝐾)∃𝑠 ∈ (Atoms‘𝐾)(𝑞 ≠ 𝑟 ∧ ¬ 𝑠 ≤ (𝑞 ∨ 𝑟) ∧ 𝑋 = ((𝑞 ∨ 𝑟) ∨ 𝑠)) → (∃𝑡 ∈ (Atoms‘𝐾)∃𝑢 ∈ (Atoms‘𝐾)∃𝑣 ∈ (Atoms‘𝐾)(𝑡 ≠ 𝑢 ∧ ¬ 𝑣 ≤ (𝑡 ∨ 𝑢) ∧ 𝑌 = ((𝑡 ∨ 𝑢) ∨ 𝑣)) → (𝑋 ∨ 𝑌) = 𝑊))) |
65 | 64 | impd 414 |
. 2
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑊 ∈ 𝑉) ∧ (𝑋 ≤ 𝑊 ∧ 𝑌 ≤ 𝑊 ∧ 𝑋 ≠ 𝑌)) → ((∃𝑞 ∈ (Atoms‘𝐾)∃𝑟 ∈ (Atoms‘𝐾)∃𝑠 ∈ (Atoms‘𝐾)(𝑞 ≠ 𝑟 ∧ ¬ 𝑠 ≤ (𝑞 ∨ 𝑟) ∧ 𝑋 = ((𝑞 ∨ 𝑟) ∨ 𝑠)) ∧ ∃𝑡 ∈ (Atoms‘𝐾)∃𝑢 ∈ (Atoms‘𝐾)∃𝑣 ∈ (Atoms‘𝐾)(𝑡 ≠ 𝑢 ∧ ¬ 𝑣 ≤ (𝑡 ∨ 𝑢) ∧ 𝑌 = ((𝑡 ∨ 𝑢) ∨ 𝑣))) → (𝑋 ∨ 𝑌) = 𝑊)) |
66 | 15, 65 | mpd 15 |
1
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑊 ∈ 𝑉) ∧ (𝑋 ≤ 𝑊 ∧ 𝑌 ≤ 𝑊 ∧ 𝑋 ≠ 𝑌)) → (𝑋 ∨ 𝑌) = 𝑊) |