Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nosupbnd1lem3 Structured version   Visualization version   GIF version

Theorem nosupbnd1lem3 32300
Description: Lemma for nosupbnd1 32304. If 𝑈 is a prolongment of 𝑆 and in 𝐴, then (𝑈‘dom 𝑆) is not 2𝑜. (Contributed by Scott Fenton, 6-Dec-2021.)
Hypothesis
Ref Expression
nosupbnd1.1 𝑆 = if(∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦, ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2𝑜⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
Assertion
Ref Expression
nosupbnd1lem3 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) → (𝑈‘dom 𝑆) ≠ 2𝑜)
Distinct variable group:   𝐴,𝑔,𝑢,𝑣,𝑥,𝑦
Allowed substitution hints:   𝑆(𝑥,𝑦,𝑣,𝑢,𝑔)   𝑈(𝑥,𝑦,𝑣,𝑢,𝑔)

Proof of Theorem nosupbnd1lem3
Dummy variables 𝑝 𝑞 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nosupbnd1.1 . . . . . 6 𝑆 = if(∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦, ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2𝑜⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
21nosupno 32293 . . . . 5 ((𝐴 No 𝐴 ∈ V) → 𝑆 No )
323ad2ant2 1164 . . . 4 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) → 𝑆 No )
4 nodmord 32250 . . . 4 (𝑆 No → Ord dom 𝑆)
5 ordirr 5926 . . . 4 (Ord dom 𝑆 → ¬ dom 𝑆 ∈ dom 𝑆)
63, 4, 53syl 18 . . 3 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) → ¬ dom 𝑆 ∈ dom 𝑆)
7 simpl3l 1301 . . . . 5 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 2𝑜) → 𝑈𝐴)
8 ndmfv 6405 . . . . . . . 8 (¬ dom 𝑆 ∈ dom 𝑈 → (𝑈‘dom 𝑆) = ∅)
9 2on 7773 . . . . . . . . . . . . 13 2𝑜 ∈ On
109elexi 3366 . . . . . . . . . . . 12 2𝑜 ∈ V
1110prid2 4453 . . . . . . . . . . 11 2𝑜 ∈ {1𝑜, 2𝑜}
1211nosgnn0i 32256 . . . . . . . . . 10 ∅ ≠ 2𝑜
13 neeq1 2999 . . . . . . . . . 10 ((𝑈‘dom 𝑆) = ∅ → ((𝑈‘dom 𝑆) ≠ 2𝑜 ↔ ∅ ≠ 2𝑜))
1412, 13mpbiri 249 . . . . . . . . 9 ((𝑈‘dom 𝑆) = ∅ → (𝑈‘dom 𝑆) ≠ 2𝑜)
1514neneqd 2942 . . . . . . . 8 ((𝑈‘dom 𝑆) = ∅ → ¬ (𝑈‘dom 𝑆) = 2𝑜)
168, 15syl 17 . . . . . . 7 (¬ dom 𝑆 ∈ dom 𝑈 → ¬ (𝑈‘dom 𝑆) = 2𝑜)
1716con4i 114 . . . . . 6 ((𝑈‘dom 𝑆) = 2𝑜 → dom 𝑆 ∈ dom 𝑈)
1817adantl 473 . . . . 5 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 2𝑜) → dom 𝑆 ∈ dom 𝑈)
19 simpl2l 1297 . . . . . . . . . 10 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 2𝑜) → 𝐴 No )
2019adantr 472 . . . . . . . . 9 ((((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 2𝑜) ∧ (𝑞𝐴 ∧ ¬ 𝑞 <s 𝑈)) → 𝐴 No )
217adantr 472 . . . . . . . . 9 ((((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 2𝑜) ∧ (𝑞𝐴 ∧ ¬ 𝑞 <s 𝑈)) → 𝑈𝐴)
2220, 21sseldd 3762 . . . . . . . 8 ((((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 2𝑜) ∧ (𝑞𝐴 ∧ ¬ 𝑞 <s 𝑈)) → 𝑈 No )
23 simprl 787 . . . . . . . . 9 ((((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 2𝑜) ∧ (𝑞𝐴 ∧ ¬ 𝑞 <s 𝑈)) → 𝑞𝐴)
2420, 23sseldd 3762 . . . . . . . 8 ((((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 2𝑜) ∧ (𝑞𝐴 ∧ ¬ 𝑞 <s 𝑈)) → 𝑞 No )
253adantr 472 . . . . . . . . . 10 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 2𝑜) → 𝑆 No )
2625adantr 472 . . . . . . . . 9 ((((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 2𝑜) ∧ (𝑞𝐴 ∧ ¬ 𝑞 <s 𝑈)) → 𝑆 No )
27 nodmon 32247 . . . . . . . . 9 (𝑆 No → dom 𝑆 ∈ On)
2826, 27syl 17 . . . . . . . 8 ((((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 2𝑜) ∧ (𝑞𝐴 ∧ ¬ 𝑞 <s 𝑈)) → dom 𝑆 ∈ On)
29 simpl3r 1303 . . . . . . . . . 10 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 2𝑜) → (𝑈 ↾ dom 𝑆) = 𝑆)
3029adantr 472 . . . . . . . . 9 ((((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 2𝑜) ∧ (𝑞𝐴 ∧ ¬ 𝑞 <s 𝑈)) → (𝑈 ↾ dom 𝑆) = 𝑆)
31 simpll1 1269 . . . . . . . . . 10 ((((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 2𝑜) ∧ (𝑞𝐴 ∧ ¬ 𝑞 <s 𝑈)) → ¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)
32 simpll2 1271 . . . . . . . . . 10 ((((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 2𝑜) ∧ (𝑞𝐴 ∧ ¬ 𝑞 <s 𝑈)) → (𝐴 No 𝐴 ∈ V))
33 simpll3 1273 . . . . . . . . . 10 ((((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 2𝑜) ∧ (𝑞𝐴 ∧ ¬ 𝑞 <s 𝑈)) → (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆))
34 simpr 477 . . . . . . . . . 10 ((((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 2𝑜) ∧ (𝑞𝐴 ∧ ¬ 𝑞 <s 𝑈)) → (𝑞𝐴 ∧ ¬ 𝑞 <s 𝑈))
351nosupbnd1lem2 32299 . . . . . . . . . 10 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ ((𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆) ∧ (𝑞𝐴 ∧ ¬ 𝑞 <s 𝑈))) → (𝑞 ↾ dom 𝑆) = 𝑆)
3631, 32, 33, 34, 35syl112anc 1493 . . . . . . . . 9 ((((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 2𝑜) ∧ (𝑞𝐴 ∧ ¬ 𝑞 <s 𝑈)) → (𝑞 ↾ dom 𝑆) = 𝑆)
3730, 36eqtr4d 2802 . . . . . . . 8 ((((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 2𝑜) ∧ (𝑞𝐴 ∧ ¬ 𝑞 <s 𝑈)) → (𝑈 ↾ dom 𝑆) = (𝑞 ↾ dom 𝑆))
38 simplr 785 . . . . . . . 8 ((((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 2𝑜) ∧ (𝑞𝐴 ∧ ¬ 𝑞 <s 𝑈)) → (𝑈‘dom 𝑆) = 2𝑜)
39 simprr 789 . . . . . . . 8 ((((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 2𝑜) ∧ (𝑞𝐴 ∧ ¬ 𝑞 <s 𝑈)) → ¬ 𝑞 <s 𝑈)
40 nolesgn2ores 32269 . . . . . . . 8 (((𝑈 No 𝑞 No ∧ dom 𝑆 ∈ On) ∧ ((𝑈 ↾ dom 𝑆) = (𝑞 ↾ dom 𝑆) ∧ (𝑈‘dom 𝑆) = 2𝑜) ∧ ¬ 𝑞 <s 𝑈) → (𝑈 ↾ suc dom 𝑆) = (𝑞 ↾ suc dom 𝑆))
4122, 24, 28, 37, 38, 39, 40syl321anc 1511 . . . . . . 7 ((((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 2𝑜) ∧ (𝑞𝐴 ∧ ¬ 𝑞 <s 𝑈)) → (𝑈 ↾ suc dom 𝑆) = (𝑞 ↾ suc dom 𝑆))
4241expr 448 . . . . . 6 ((((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 2𝑜) ∧ 𝑞𝐴) → (¬ 𝑞 <s 𝑈 → (𝑈 ↾ suc dom 𝑆) = (𝑞 ↾ suc dom 𝑆)))
4342ralrimiva 3113 . . . . 5 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 2𝑜) → ∀𝑞𝐴𝑞 <s 𝑈 → (𝑈 ↾ suc dom 𝑆) = (𝑞 ↾ suc dom 𝑆)))
44 dmeq 5492 . . . . . . . 8 (𝑝 = 𝑈 → dom 𝑝 = dom 𝑈)
4544eleq2d 2830 . . . . . . 7 (𝑝 = 𝑈 → (dom 𝑆 ∈ dom 𝑝 ↔ dom 𝑆 ∈ dom 𝑈))
46 breq2 4813 . . . . . . . . . 10 (𝑝 = 𝑈 → (𝑞 <s 𝑝𝑞 <s 𝑈))
4746notbid 309 . . . . . . . . 9 (𝑝 = 𝑈 → (¬ 𝑞 <s 𝑝 ↔ ¬ 𝑞 <s 𝑈))
48 reseq1 5559 . . . . . . . . . 10 (𝑝 = 𝑈 → (𝑝 ↾ suc dom 𝑆) = (𝑈 ↾ suc dom 𝑆))
4948eqeq1d 2767 . . . . . . . . 9 (𝑝 = 𝑈 → ((𝑝 ↾ suc dom 𝑆) = (𝑞 ↾ suc dom 𝑆) ↔ (𝑈 ↾ suc dom 𝑆) = (𝑞 ↾ suc dom 𝑆)))
5047, 49imbi12d 335 . . . . . . . 8 (𝑝 = 𝑈 → ((¬ 𝑞 <s 𝑝 → (𝑝 ↾ suc dom 𝑆) = (𝑞 ↾ suc dom 𝑆)) ↔ (¬ 𝑞 <s 𝑈 → (𝑈 ↾ suc dom 𝑆) = (𝑞 ↾ suc dom 𝑆))))
5150ralbidv 3133 . . . . . . 7 (𝑝 = 𝑈 → (∀𝑞𝐴𝑞 <s 𝑝 → (𝑝 ↾ suc dom 𝑆) = (𝑞 ↾ suc dom 𝑆)) ↔ ∀𝑞𝐴𝑞 <s 𝑈 → (𝑈 ↾ suc dom 𝑆) = (𝑞 ↾ suc dom 𝑆))))
5245, 51anbi12d 624 . . . . . 6 (𝑝 = 𝑈 → ((dom 𝑆 ∈ dom 𝑝 ∧ ∀𝑞𝐴𝑞 <s 𝑝 → (𝑝 ↾ suc dom 𝑆) = (𝑞 ↾ suc dom 𝑆))) ↔ (dom 𝑆 ∈ dom 𝑈 ∧ ∀𝑞𝐴𝑞 <s 𝑈 → (𝑈 ↾ suc dom 𝑆) = (𝑞 ↾ suc dom 𝑆)))))
5352rspcev 3461 . . . . 5 ((𝑈𝐴 ∧ (dom 𝑆 ∈ dom 𝑈 ∧ ∀𝑞𝐴𝑞 <s 𝑈 → (𝑈 ↾ suc dom 𝑆) = (𝑞 ↾ suc dom 𝑆)))) → ∃𝑝𝐴 (dom 𝑆 ∈ dom 𝑝 ∧ ∀𝑞𝐴𝑞 <s 𝑝 → (𝑝 ↾ suc dom 𝑆) = (𝑞 ↾ suc dom 𝑆))))
547, 18, 43, 53syl12anc 865 . . . 4 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 2𝑜) → ∃𝑝𝐴 (dom 𝑆 ∈ dom 𝑝 ∧ ∀𝑞𝐴𝑞 <s 𝑝 → (𝑝 ↾ suc dom 𝑆) = (𝑞 ↾ suc dom 𝑆))))
551nosupdm 32294 . . . . . . . 8 (¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 → dom 𝑆 = {𝑧 ∣ ∃𝑝𝐴 (𝑧 ∈ dom 𝑝 ∧ ∀𝑞𝐴𝑞 <s 𝑝 → (𝑝 ↾ suc 𝑧) = (𝑞 ↾ suc 𝑧)))})
5655eleq2d 2830 . . . . . . 7 (¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 → (dom 𝑆 ∈ dom 𝑆 ↔ dom 𝑆 ∈ {𝑧 ∣ ∃𝑝𝐴 (𝑧 ∈ dom 𝑝 ∧ ∀𝑞𝐴𝑞 <s 𝑝 → (𝑝 ↾ suc 𝑧) = (𝑞 ↾ suc 𝑧)))}))
57563ad2ant1 1163 . . . . . 6 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) → (dom 𝑆 ∈ dom 𝑆 ↔ dom 𝑆 ∈ {𝑧 ∣ ∃𝑝𝐴 (𝑧 ∈ dom 𝑝 ∧ ∀𝑞𝐴𝑞 <s 𝑝 → (𝑝 ↾ suc 𝑧) = (𝑞 ↾ suc 𝑧)))}))
58 eleq1 2832 . . . . . . . . . 10 (𝑧 = dom 𝑆 → (𝑧 ∈ dom 𝑝 ↔ dom 𝑆 ∈ dom 𝑝))
59 suceq 5973 . . . . . . . . . . . . . 14 (𝑧 = dom 𝑆 → suc 𝑧 = suc dom 𝑆)
6059reseq2d 5565 . . . . . . . . . . . . 13 (𝑧 = dom 𝑆 → (𝑝 ↾ suc 𝑧) = (𝑝 ↾ suc dom 𝑆))
6159reseq2d 5565 . . . . . . . . . . . . 13 (𝑧 = dom 𝑆 → (𝑞 ↾ suc 𝑧) = (𝑞 ↾ suc dom 𝑆))
6260, 61eqeq12d 2780 . . . . . . . . . . . 12 (𝑧 = dom 𝑆 → ((𝑝 ↾ suc 𝑧) = (𝑞 ↾ suc 𝑧) ↔ (𝑝 ↾ suc dom 𝑆) = (𝑞 ↾ suc dom 𝑆)))
6362imbi2d 331 . . . . . . . . . . 11 (𝑧 = dom 𝑆 → ((¬ 𝑞 <s 𝑝 → (𝑝 ↾ suc 𝑧) = (𝑞 ↾ suc 𝑧)) ↔ (¬ 𝑞 <s 𝑝 → (𝑝 ↾ suc dom 𝑆) = (𝑞 ↾ suc dom 𝑆))))
6463ralbidv 3133 . . . . . . . . . 10 (𝑧 = dom 𝑆 → (∀𝑞𝐴𝑞 <s 𝑝 → (𝑝 ↾ suc 𝑧) = (𝑞 ↾ suc 𝑧)) ↔ ∀𝑞𝐴𝑞 <s 𝑝 → (𝑝 ↾ suc dom 𝑆) = (𝑞 ↾ suc dom 𝑆))))
6558, 64anbi12d 624 . . . . . . . . 9 (𝑧 = dom 𝑆 → ((𝑧 ∈ dom 𝑝 ∧ ∀𝑞𝐴𝑞 <s 𝑝 → (𝑝 ↾ suc 𝑧) = (𝑞 ↾ suc 𝑧))) ↔ (dom 𝑆 ∈ dom 𝑝 ∧ ∀𝑞𝐴𝑞 <s 𝑝 → (𝑝 ↾ suc dom 𝑆) = (𝑞 ↾ suc dom 𝑆)))))
6665rexbidv 3199 . . . . . . . 8 (𝑧 = dom 𝑆 → (∃𝑝𝐴 (𝑧 ∈ dom 𝑝 ∧ ∀𝑞𝐴𝑞 <s 𝑝 → (𝑝 ↾ suc 𝑧) = (𝑞 ↾ suc 𝑧))) ↔ ∃𝑝𝐴 (dom 𝑆 ∈ dom 𝑝 ∧ ∀𝑞𝐴𝑞 <s 𝑝 → (𝑝 ↾ suc dom 𝑆) = (𝑞 ↾ suc dom 𝑆)))))
6766elabg 3505 . . . . . . 7 (dom 𝑆 ∈ On → (dom 𝑆 ∈ {𝑧 ∣ ∃𝑝𝐴 (𝑧 ∈ dom 𝑝 ∧ ∀𝑞𝐴𝑞 <s 𝑝 → (𝑝 ↾ suc 𝑧) = (𝑞 ↾ suc 𝑧)))} ↔ ∃𝑝𝐴 (dom 𝑆 ∈ dom 𝑝 ∧ ∀𝑞𝐴𝑞 <s 𝑝 → (𝑝 ↾ suc dom 𝑆) = (𝑞 ↾ suc dom 𝑆)))))
683, 27, 673syl 18 . . . . . 6 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) → (dom 𝑆 ∈ {𝑧 ∣ ∃𝑝𝐴 (𝑧 ∈ dom 𝑝 ∧ ∀𝑞𝐴𝑞 <s 𝑝 → (𝑝 ↾ suc 𝑧) = (𝑞 ↾ suc 𝑧)))} ↔ ∃𝑝𝐴 (dom 𝑆 ∈ dom 𝑝 ∧ ∀𝑞𝐴𝑞 <s 𝑝 → (𝑝 ↾ suc dom 𝑆) = (𝑞 ↾ suc dom 𝑆)))))
6957, 68bitrd 270 . . . . 5 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) → (dom 𝑆 ∈ dom 𝑆 ↔ ∃𝑝𝐴 (dom 𝑆 ∈ dom 𝑝 ∧ ∀𝑞𝐴𝑞 <s 𝑝 → (𝑝 ↾ suc dom 𝑆) = (𝑞 ↾ suc dom 𝑆)))))
7069adantr 472 . . . 4 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 2𝑜) → (dom 𝑆 ∈ dom 𝑆 ↔ ∃𝑝𝐴 (dom 𝑆 ∈ dom 𝑝 ∧ ∀𝑞𝐴𝑞 <s 𝑝 → (𝑝 ↾ suc dom 𝑆) = (𝑞 ↾ suc dom 𝑆)))))
7154, 70mpbird 248 . . 3 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 2𝑜) → dom 𝑆 ∈ dom 𝑆)
726, 71mtand 850 . 2 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) → ¬ (𝑈‘dom 𝑆) = 2𝑜)
7372neqned 2944 1 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) → (𝑈‘dom 𝑆) ≠ 2𝑜)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 197  wa 384  w3a 1107   = wceq 1652  wcel 2155  {cab 2751  wne 2937  wral 3055  wrex 3056  Vcvv 3350  cun 3730  wss 3732  c0 4079  ifcif 4243  {csn 4334  cop 4340   class class class wbr 4809  cmpt 4888  dom cdm 5277  cres 5279  Ord word 5907  Oncon0 5908  suc csuc 5910  cio 6029  cfv 6068  crio 6802  1𝑜c1o 7757  2𝑜c2o 7758   No csur 32237   <s cslt 32238
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4930  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-pss 3748  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-tp 4339  df-op 4341  df-uni 4595  df-int 4634  df-iun 4678  df-br 4810  df-opab 4872  df-mpt 4889  df-tr 4912  df-id 5185  df-eprel 5190  df-po 5198  df-so 5199  df-fr 5236  df-we 5238  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-ord 5911  df-on 5912  df-suc 5914  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076  df-riota 6803  df-1o 7764  df-2o 7765  df-no 32240  df-slt 32241  df-bday 32242
This theorem is referenced by:  nosupbnd1lem4  32301  nosupbnd1lem5  32302  nosupbnd1lem6  32303
  Copyright terms: Public domain W3C validator