Step | Hyp | Ref
| Expression |
1 | | nosupbnd1.1 |
. . . . . 6
⊢ 𝑆 = if(∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦, ((℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) ∪ {〈dom (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦), 2o〉}), (𝑔 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥∃𝑢 ∈ 𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥)))) |
2 | 1 | nosupno 33833 |
. . . . 5
⊢ ((𝐴 ⊆
No ∧ 𝐴 ∈
V) → 𝑆 ∈ No ) |
3 | 2 | 3ad2ant2 1132 |
. . . 4
⊢ ((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) → 𝑆 ∈ No
) |
4 | | nodmord 33783 |
. . . 4
⊢ (𝑆 ∈
No → Ord dom 𝑆) |
5 | | ordirr 6269 |
. . . 4
⊢ (Ord dom
𝑆 → ¬ dom 𝑆 ∈ dom 𝑆) |
6 | 3, 4, 5 | 3syl 18 |
. . 3
⊢ ((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) → ¬ dom 𝑆 ∈ dom 𝑆) |
7 | | simpl3l 1226 |
. . . . 5
⊢ (((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 2o) → 𝑈 ∈ 𝐴) |
8 | | ndmfv 6786 |
. . . . . . . 8
⊢ (¬
dom 𝑆 ∈ dom 𝑈 → (𝑈‘dom 𝑆) = ∅) |
9 | | 2on 8275 |
. . . . . . . . . . . . 13
⊢
2o ∈ On |
10 | 9 | elexi 3441 |
. . . . . . . . . . . 12
⊢
2o ∈ V |
11 | 10 | prid2 4696 |
. . . . . . . . . . 11
⊢
2o ∈ {1o, 2o} |
12 | 11 | nosgnn0i 33789 |
. . . . . . . . . 10
⊢ ∅
≠ 2o |
13 | | neeq1 3005 |
. . . . . . . . . 10
⊢ ((𝑈‘dom 𝑆) = ∅ → ((𝑈‘dom 𝑆) ≠ 2o ↔ ∅ ≠
2o)) |
14 | 12, 13 | mpbiri 257 |
. . . . . . . . 9
⊢ ((𝑈‘dom 𝑆) = ∅ → (𝑈‘dom 𝑆) ≠ 2o) |
15 | 14 | neneqd 2947 |
. . . . . . . 8
⊢ ((𝑈‘dom 𝑆) = ∅ → ¬ (𝑈‘dom 𝑆) = 2o) |
16 | 8, 15 | syl 17 |
. . . . . . 7
⊢ (¬
dom 𝑆 ∈ dom 𝑈 → ¬ (𝑈‘dom 𝑆) = 2o) |
17 | 16 | con4i 114 |
. . . . . 6
⊢ ((𝑈‘dom 𝑆) = 2o → dom 𝑆 ∈ dom 𝑈) |
18 | 17 | adantl 481 |
. . . . 5
⊢ (((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 2o) → dom 𝑆 ∈ dom 𝑈) |
19 | | simpl2l 1224 |
. . . . . . . . . 10
⊢ (((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 2o) → 𝐴 ⊆ No
) |
20 | 19 | adantr 480 |
. . . . . . . . 9
⊢ ((((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 2o) ∧ (𝑞 ∈ 𝐴 ∧ ¬ 𝑞 <s 𝑈)) → 𝐴 ⊆ No
) |
21 | 7 | adantr 480 |
. . . . . . . . 9
⊢ ((((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 2o) ∧ (𝑞 ∈ 𝐴 ∧ ¬ 𝑞 <s 𝑈)) → 𝑈 ∈ 𝐴) |
22 | 20, 21 | sseldd 3918 |
. . . . . . . 8
⊢ ((((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 2o) ∧ (𝑞 ∈ 𝐴 ∧ ¬ 𝑞 <s 𝑈)) → 𝑈 ∈ No
) |
23 | | simprl 767 |
. . . . . . . . 9
⊢ ((((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 2o) ∧ (𝑞 ∈ 𝐴 ∧ ¬ 𝑞 <s 𝑈)) → 𝑞 ∈ 𝐴) |
24 | 20, 23 | sseldd 3918 |
. . . . . . . 8
⊢ ((((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 2o) ∧ (𝑞 ∈ 𝐴 ∧ ¬ 𝑞 <s 𝑈)) → 𝑞 ∈ No
) |
25 | 3 | adantr 480 |
. . . . . . . . . 10
⊢ (((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 2o) → 𝑆 ∈ No
) |
26 | 25 | adantr 480 |
. . . . . . . . 9
⊢ ((((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 2o) ∧ (𝑞 ∈ 𝐴 ∧ ¬ 𝑞 <s 𝑈)) → 𝑆 ∈ No
) |
27 | | nodmon 33780 |
. . . . . . . . 9
⊢ (𝑆 ∈
No → dom 𝑆
∈ On) |
28 | 26, 27 | syl 17 |
. . . . . . . 8
⊢ ((((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 2o) ∧ (𝑞 ∈ 𝐴 ∧ ¬ 𝑞 <s 𝑈)) → dom 𝑆 ∈ On) |
29 | | simpl3r 1227 |
. . . . . . . . . 10
⊢ (((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 2o) → (𝑈 ↾ dom 𝑆) = 𝑆) |
30 | 29 | adantr 480 |
. . . . . . . . 9
⊢ ((((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 2o) ∧ (𝑞 ∈ 𝐴 ∧ ¬ 𝑞 <s 𝑈)) → (𝑈 ↾ dom 𝑆) = 𝑆) |
31 | | simpll1 1210 |
. . . . . . . . . 10
⊢ ((((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 2o) ∧ (𝑞 ∈ 𝐴 ∧ ¬ 𝑞 <s 𝑈)) → ¬ ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) |
32 | | simpll2 1211 |
. . . . . . . . . 10
⊢ ((((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 2o) ∧ (𝑞 ∈ 𝐴 ∧ ¬ 𝑞 <s 𝑈)) → (𝐴 ⊆ No
∧ 𝐴 ∈
V)) |
33 | | simpll3 1212 |
. . . . . . . . . 10
⊢ ((((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 2o) ∧ (𝑞 ∈ 𝐴 ∧ ¬ 𝑞 <s 𝑈)) → (𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) |
34 | | simpr 484 |
. . . . . . . . . 10
⊢ ((((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 2o) ∧ (𝑞 ∈ 𝐴 ∧ ¬ 𝑞 <s 𝑈)) → (𝑞 ∈ 𝐴 ∧ ¬ 𝑞 <s 𝑈)) |
35 | 1 | nosupbnd1lem2 33839 |
. . . . . . . . . 10
⊢ ((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
((𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆) ∧ (𝑞 ∈ 𝐴 ∧ ¬ 𝑞 <s 𝑈))) → (𝑞 ↾ dom 𝑆) = 𝑆) |
36 | 31, 32, 33, 34, 35 | syl112anc 1372 |
. . . . . . . . 9
⊢ ((((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 2o) ∧ (𝑞 ∈ 𝐴 ∧ ¬ 𝑞 <s 𝑈)) → (𝑞 ↾ dom 𝑆) = 𝑆) |
37 | 30, 36 | eqtr4d 2781 |
. . . . . . . 8
⊢ ((((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 2o) ∧ (𝑞 ∈ 𝐴 ∧ ¬ 𝑞 <s 𝑈)) → (𝑈 ↾ dom 𝑆) = (𝑞 ↾ dom 𝑆)) |
38 | | simplr 765 |
. . . . . . . 8
⊢ ((((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 2o) ∧ (𝑞 ∈ 𝐴 ∧ ¬ 𝑞 <s 𝑈)) → (𝑈‘dom 𝑆) = 2o) |
39 | | simprr 769 |
. . . . . . . 8
⊢ ((((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 2o) ∧ (𝑞 ∈ 𝐴 ∧ ¬ 𝑞 <s 𝑈)) → ¬ 𝑞 <s 𝑈) |
40 | | nolesgn2ores 33802 |
. . . . . . . 8
⊢ (((𝑈 ∈
No ∧ 𝑞 ∈
No ∧ dom 𝑆 ∈ On) ∧ ((𝑈 ↾ dom 𝑆) = (𝑞 ↾ dom 𝑆) ∧ (𝑈‘dom 𝑆) = 2o) ∧ ¬ 𝑞 <s 𝑈) → (𝑈 ↾ suc dom 𝑆) = (𝑞 ↾ suc dom 𝑆)) |
41 | 22, 24, 28, 37, 38, 39, 40 | syl321anc 1390 |
. . . . . . 7
⊢ ((((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 2o) ∧ (𝑞 ∈ 𝐴 ∧ ¬ 𝑞 <s 𝑈)) → (𝑈 ↾ suc dom 𝑆) = (𝑞 ↾ suc dom 𝑆)) |
42 | 41 | expr 456 |
. . . . . 6
⊢ ((((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 2o) ∧ 𝑞 ∈ 𝐴) → (¬ 𝑞 <s 𝑈 → (𝑈 ↾ suc dom 𝑆) = (𝑞 ↾ suc dom 𝑆))) |
43 | 42 | ralrimiva 3107 |
. . . . 5
⊢ (((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 2o) → ∀𝑞 ∈ 𝐴 (¬ 𝑞 <s 𝑈 → (𝑈 ↾ suc dom 𝑆) = (𝑞 ↾ suc dom 𝑆))) |
44 | | dmeq 5801 |
. . . . . . . 8
⊢ (𝑝 = 𝑈 → dom 𝑝 = dom 𝑈) |
45 | 44 | eleq2d 2824 |
. . . . . . 7
⊢ (𝑝 = 𝑈 → (dom 𝑆 ∈ dom 𝑝 ↔ dom 𝑆 ∈ dom 𝑈)) |
46 | | breq2 5074 |
. . . . . . . . . 10
⊢ (𝑝 = 𝑈 → (𝑞 <s 𝑝 ↔ 𝑞 <s 𝑈)) |
47 | 46 | notbid 317 |
. . . . . . . . 9
⊢ (𝑝 = 𝑈 → (¬ 𝑞 <s 𝑝 ↔ ¬ 𝑞 <s 𝑈)) |
48 | | reseq1 5874 |
. . . . . . . . . 10
⊢ (𝑝 = 𝑈 → (𝑝 ↾ suc dom 𝑆) = (𝑈 ↾ suc dom 𝑆)) |
49 | 48 | eqeq1d 2740 |
. . . . . . . . 9
⊢ (𝑝 = 𝑈 → ((𝑝 ↾ suc dom 𝑆) = (𝑞 ↾ suc dom 𝑆) ↔ (𝑈 ↾ suc dom 𝑆) = (𝑞 ↾ suc dom 𝑆))) |
50 | 47, 49 | imbi12d 344 |
. . . . . . . 8
⊢ (𝑝 = 𝑈 → ((¬ 𝑞 <s 𝑝 → (𝑝 ↾ suc dom 𝑆) = (𝑞 ↾ suc dom 𝑆)) ↔ (¬ 𝑞 <s 𝑈 → (𝑈 ↾ suc dom 𝑆) = (𝑞 ↾ suc dom 𝑆)))) |
51 | 50 | ralbidv 3120 |
. . . . . . 7
⊢ (𝑝 = 𝑈 → (∀𝑞 ∈ 𝐴 (¬ 𝑞 <s 𝑝 → (𝑝 ↾ suc dom 𝑆) = (𝑞 ↾ suc dom 𝑆)) ↔ ∀𝑞 ∈ 𝐴 (¬ 𝑞 <s 𝑈 → (𝑈 ↾ suc dom 𝑆) = (𝑞 ↾ suc dom 𝑆)))) |
52 | 45, 51 | anbi12d 630 |
. . . . . 6
⊢ (𝑝 = 𝑈 → ((dom 𝑆 ∈ dom 𝑝 ∧ ∀𝑞 ∈ 𝐴 (¬ 𝑞 <s 𝑝 → (𝑝 ↾ suc dom 𝑆) = (𝑞 ↾ suc dom 𝑆))) ↔ (dom 𝑆 ∈ dom 𝑈 ∧ ∀𝑞 ∈ 𝐴 (¬ 𝑞 <s 𝑈 → (𝑈 ↾ suc dom 𝑆) = (𝑞 ↾ suc dom 𝑆))))) |
53 | 52 | rspcev 3552 |
. . . . 5
⊢ ((𝑈 ∈ 𝐴 ∧ (dom 𝑆 ∈ dom 𝑈 ∧ ∀𝑞 ∈ 𝐴 (¬ 𝑞 <s 𝑈 → (𝑈 ↾ suc dom 𝑆) = (𝑞 ↾ suc dom 𝑆)))) → ∃𝑝 ∈ 𝐴 (dom 𝑆 ∈ dom 𝑝 ∧ ∀𝑞 ∈ 𝐴 (¬ 𝑞 <s 𝑝 → (𝑝 ↾ suc dom 𝑆) = (𝑞 ↾ suc dom 𝑆)))) |
54 | 7, 18, 43, 53 | syl12anc 833 |
. . . 4
⊢ (((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 2o) → ∃𝑝 ∈ 𝐴 (dom 𝑆 ∈ dom 𝑝 ∧ ∀𝑞 ∈ 𝐴 (¬ 𝑞 <s 𝑝 → (𝑝 ↾ suc dom 𝑆) = (𝑞 ↾ suc dom 𝑆)))) |
55 | 1 | nosupdm 33834 |
. . . . . . . 8
⊢ (¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 → dom 𝑆 = {𝑧 ∣ ∃𝑝 ∈ 𝐴 (𝑧 ∈ dom 𝑝 ∧ ∀𝑞 ∈ 𝐴 (¬ 𝑞 <s 𝑝 → (𝑝 ↾ suc 𝑧) = (𝑞 ↾ suc 𝑧)))}) |
56 | 55 | eleq2d 2824 |
. . . . . . 7
⊢ (¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 → (dom 𝑆 ∈ dom 𝑆 ↔ dom 𝑆 ∈ {𝑧 ∣ ∃𝑝 ∈ 𝐴 (𝑧 ∈ dom 𝑝 ∧ ∀𝑞 ∈ 𝐴 (¬ 𝑞 <s 𝑝 → (𝑝 ↾ suc 𝑧) = (𝑞 ↾ suc 𝑧)))})) |
57 | 56 | 3ad2ant1 1131 |
. . . . . 6
⊢ ((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) → (dom 𝑆 ∈ dom 𝑆 ↔ dom 𝑆 ∈ {𝑧 ∣ ∃𝑝 ∈ 𝐴 (𝑧 ∈ dom 𝑝 ∧ ∀𝑞 ∈ 𝐴 (¬ 𝑞 <s 𝑝 → (𝑝 ↾ suc 𝑧) = (𝑞 ↾ suc 𝑧)))})) |
58 | | eleq1 2826 |
. . . . . . . . . 10
⊢ (𝑧 = dom 𝑆 → (𝑧 ∈ dom 𝑝 ↔ dom 𝑆 ∈ dom 𝑝)) |
59 | | suceq 6316 |
. . . . . . . . . . . . . 14
⊢ (𝑧 = dom 𝑆 → suc 𝑧 = suc dom 𝑆) |
60 | 59 | reseq2d 5880 |
. . . . . . . . . . . . 13
⊢ (𝑧 = dom 𝑆 → (𝑝 ↾ suc 𝑧) = (𝑝 ↾ suc dom 𝑆)) |
61 | 59 | reseq2d 5880 |
. . . . . . . . . . . . 13
⊢ (𝑧 = dom 𝑆 → (𝑞 ↾ suc 𝑧) = (𝑞 ↾ suc dom 𝑆)) |
62 | 60, 61 | eqeq12d 2754 |
. . . . . . . . . . . 12
⊢ (𝑧 = dom 𝑆 → ((𝑝 ↾ suc 𝑧) = (𝑞 ↾ suc 𝑧) ↔ (𝑝 ↾ suc dom 𝑆) = (𝑞 ↾ suc dom 𝑆))) |
63 | 62 | imbi2d 340 |
. . . . . . . . . . 11
⊢ (𝑧 = dom 𝑆 → ((¬ 𝑞 <s 𝑝 → (𝑝 ↾ suc 𝑧) = (𝑞 ↾ suc 𝑧)) ↔ (¬ 𝑞 <s 𝑝 → (𝑝 ↾ suc dom 𝑆) = (𝑞 ↾ suc dom 𝑆)))) |
64 | 63 | ralbidv 3120 |
. . . . . . . . . 10
⊢ (𝑧 = dom 𝑆 → (∀𝑞 ∈ 𝐴 (¬ 𝑞 <s 𝑝 → (𝑝 ↾ suc 𝑧) = (𝑞 ↾ suc 𝑧)) ↔ ∀𝑞 ∈ 𝐴 (¬ 𝑞 <s 𝑝 → (𝑝 ↾ suc dom 𝑆) = (𝑞 ↾ suc dom 𝑆)))) |
65 | 58, 64 | anbi12d 630 |
. . . . . . . . 9
⊢ (𝑧 = dom 𝑆 → ((𝑧 ∈ dom 𝑝 ∧ ∀𝑞 ∈ 𝐴 (¬ 𝑞 <s 𝑝 → (𝑝 ↾ suc 𝑧) = (𝑞 ↾ suc 𝑧))) ↔ (dom 𝑆 ∈ dom 𝑝 ∧ ∀𝑞 ∈ 𝐴 (¬ 𝑞 <s 𝑝 → (𝑝 ↾ suc dom 𝑆) = (𝑞 ↾ suc dom 𝑆))))) |
66 | 65 | rexbidv 3225 |
. . . . . . . 8
⊢ (𝑧 = dom 𝑆 → (∃𝑝 ∈ 𝐴 (𝑧 ∈ dom 𝑝 ∧ ∀𝑞 ∈ 𝐴 (¬ 𝑞 <s 𝑝 → (𝑝 ↾ suc 𝑧) = (𝑞 ↾ suc 𝑧))) ↔ ∃𝑝 ∈ 𝐴 (dom 𝑆 ∈ dom 𝑝 ∧ ∀𝑞 ∈ 𝐴 (¬ 𝑞 <s 𝑝 → (𝑝 ↾ suc dom 𝑆) = (𝑞 ↾ suc dom 𝑆))))) |
67 | 66 | elabg 3600 |
. . . . . . 7
⊢ (dom
𝑆 ∈ On → (dom
𝑆 ∈ {𝑧 ∣ ∃𝑝 ∈ 𝐴 (𝑧 ∈ dom 𝑝 ∧ ∀𝑞 ∈ 𝐴 (¬ 𝑞 <s 𝑝 → (𝑝 ↾ suc 𝑧) = (𝑞 ↾ suc 𝑧)))} ↔ ∃𝑝 ∈ 𝐴 (dom 𝑆 ∈ dom 𝑝 ∧ ∀𝑞 ∈ 𝐴 (¬ 𝑞 <s 𝑝 → (𝑝 ↾ suc dom 𝑆) = (𝑞 ↾ suc dom 𝑆))))) |
68 | 3, 27, 67 | 3syl 18 |
. . . . . 6
⊢ ((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) → (dom 𝑆 ∈ {𝑧 ∣ ∃𝑝 ∈ 𝐴 (𝑧 ∈ dom 𝑝 ∧ ∀𝑞 ∈ 𝐴 (¬ 𝑞 <s 𝑝 → (𝑝 ↾ suc 𝑧) = (𝑞 ↾ suc 𝑧)))} ↔ ∃𝑝 ∈ 𝐴 (dom 𝑆 ∈ dom 𝑝 ∧ ∀𝑞 ∈ 𝐴 (¬ 𝑞 <s 𝑝 → (𝑝 ↾ suc dom 𝑆) = (𝑞 ↾ suc dom 𝑆))))) |
69 | 57, 68 | bitrd 278 |
. . . . 5
⊢ ((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) → (dom 𝑆 ∈ dom 𝑆 ↔ ∃𝑝 ∈ 𝐴 (dom 𝑆 ∈ dom 𝑝 ∧ ∀𝑞 ∈ 𝐴 (¬ 𝑞 <s 𝑝 → (𝑝 ↾ suc dom 𝑆) = (𝑞 ↾ suc dom 𝑆))))) |
70 | 69 | adantr 480 |
. . . 4
⊢ (((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 2o) → (dom 𝑆 ∈ dom 𝑆 ↔ ∃𝑝 ∈ 𝐴 (dom 𝑆 ∈ dom 𝑝 ∧ ∀𝑞 ∈ 𝐴 (¬ 𝑞 <s 𝑝 → (𝑝 ↾ suc dom 𝑆) = (𝑞 ↾ suc dom 𝑆))))) |
71 | 54, 70 | mpbird 256 |
. . 3
⊢ (((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 2o) → dom 𝑆 ∈ dom 𝑆) |
72 | 6, 71 | mtand 812 |
. 2
⊢ ((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) → ¬ (𝑈‘dom 𝑆) = 2o) |
73 | 72 | neqned 2949 |
1
⊢ ((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) → (𝑈‘dom 𝑆) ≠ 2o) |