| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | nosupbnd1.1 | . . . . . 6
⊢ 𝑆 = if(∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦, ((℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) ∪ {〈dom (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦), 2o〉}), (𝑔 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥∃𝑢 ∈ 𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥)))) | 
| 2 | 1 | nosupno 27749 | . . . . 5
⊢ ((𝐴 ⊆ 
No  ∧ 𝐴 ∈
V) → 𝑆 ∈  No ) | 
| 3 | 2 | 3ad2ant2 1134 | . . . 4
⊢ ((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆  No 
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) → 𝑆 ∈  No
) | 
| 4 |  | nodmord 27699 | . . . 4
⊢ (𝑆 ∈ 
No  → Ord dom 𝑆) | 
| 5 |  | ordirr 6401 | . . . 4
⊢ (Ord dom
𝑆 → ¬ dom 𝑆 ∈ dom 𝑆) | 
| 6 | 3, 4, 5 | 3syl 18 | . . 3
⊢ ((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆  No 
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) → ¬ dom 𝑆 ∈ dom 𝑆) | 
| 7 |  | simpl3l 1228 | . . . . 5
⊢ (((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆  No 
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 2o) → 𝑈 ∈ 𝐴) | 
| 8 |  | ndmfv 6940 | . . . . . . . 8
⊢ (¬
dom 𝑆 ∈ dom 𝑈 → (𝑈‘dom 𝑆) = ∅) | 
| 9 |  | 2on 8521 | . . . . . . . . . . . . 13
⊢
2o ∈ On | 
| 10 | 9 | elexi 3502 | . . . . . . . . . . . 12
⊢
2o ∈ V | 
| 11 | 10 | prid2 4762 | . . . . . . . . . . 11
⊢
2o ∈ {1o, 2o} | 
| 12 | 11 | nosgnn0i 27705 | . . . . . . . . . 10
⊢ ∅
≠ 2o | 
| 13 |  | neeq1 3002 | . . . . . . . . . 10
⊢ ((𝑈‘dom 𝑆) = ∅ → ((𝑈‘dom 𝑆) ≠ 2o ↔ ∅ ≠
2o)) | 
| 14 | 12, 13 | mpbiri 258 | . . . . . . . . 9
⊢ ((𝑈‘dom 𝑆) = ∅ → (𝑈‘dom 𝑆) ≠ 2o) | 
| 15 | 14 | neneqd 2944 | . . . . . . . 8
⊢ ((𝑈‘dom 𝑆) = ∅ → ¬ (𝑈‘dom 𝑆) = 2o) | 
| 16 | 8, 15 | syl 17 | . . . . . . 7
⊢ (¬
dom 𝑆 ∈ dom 𝑈 → ¬ (𝑈‘dom 𝑆) = 2o) | 
| 17 | 16 | con4i 114 | . . . . . 6
⊢ ((𝑈‘dom 𝑆) = 2o → dom 𝑆 ∈ dom 𝑈) | 
| 18 | 17 | adantl 481 | . . . . 5
⊢ (((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆  No 
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 2o) → dom 𝑆 ∈ dom 𝑈) | 
| 19 |  | simpl2l 1226 | . . . . . . . . . 10
⊢ (((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆  No 
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 2o) → 𝐴 ⊆  No
) | 
| 20 | 19 | adantr 480 | . . . . . . . . 9
⊢ ((((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆  No 
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 2o) ∧ (𝑞 ∈ 𝐴 ∧ ¬ 𝑞 <s 𝑈)) → 𝐴 ⊆  No
) | 
| 21 | 7 | adantr 480 | . . . . . . . . 9
⊢ ((((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆  No 
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 2o) ∧ (𝑞 ∈ 𝐴 ∧ ¬ 𝑞 <s 𝑈)) → 𝑈 ∈ 𝐴) | 
| 22 | 20, 21 | sseldd 3983 | . . . . . . . 8
⊢ ((((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆  No 
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 2o) ∧ (𝑞 ∈ 𝐴 ∧ ¬ 𝑞 <s 𝑈)) → 𝑈 ∈  No
) | 
| 23 |  | simprl 770 | . . . . . . . . 9
⊢ ((((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆  No 
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 2o) ∧ (𝑞 ∈ 𝐴 ∧ ¬ 𝑞 <s 𝑈)) → 𝑞 ∈ 𝐴) | 
| 24 | 20, 23 | sseldd 3983 | . . . . . . . 8
⊢ ((((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆  No 
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 2o) ∧ (𝑞 ∈ 𝐴 ∧ ¬ 𝑞 <s 𝑈)) → 𝑞 ∈  No
) | 
| 25 | 3 | adantr 480 | . . . . . . . . . 10
⊢ (((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆  No 
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 2o) → 𝑆 ∈  No
) | 
| 26 | 25 | adantr 480 | . . . . . . . . 9
⊢ ((((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆  No 
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 2o) ∧ (𝑞 ∈ 𝐴 ∧ ¬ 𝑞 <s 𝑈)) → 𝑆 ∈  No
) | 
| 27 |  | nodmon 27696 | . . . . . . . . 9
⊢ (𝑆 ∈ 
No  → dom 𝑆
∈ On) | 
| 28 | 26, 27 | syl 17 | . . . . . . . 8
⊢ ((((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆  No 
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 2o) ∧ (𝑞 ∈ 𝐴 ∧ ¬ 𝑞 <s 𝑈)) → dom 𝑆 ∈ On) | 
| 29 |  | simpl3r 1229 | . . . . . . . . . 10
⊢ (((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆  No 
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 2o) → (𝑈 ↾ dom 𝑆) = 𝑆) | 
| 30 | 29 | adantr 480 | . . . . . . . . 9
⊢ ((((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆  No 
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 2o) ∧ (𝑞 ∈ 𝐴 ∧ ¬ 𝑞 <s 𝑈)) → (𝑈 ↾ dom 𝑆) = 𝑆) | 
| 31 |  | simpll1 1212 | . . . . . . . . . 10
⊢ ((((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆  No 
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 2o) ∧ (𝑞 ∈ 𝐴 ∧ ¬ 𝑞 <s 𝑈)) → ¬ ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) | 
| 32 |  | simpll2 1213 | . . . . . . . . . 10
⊢ ((((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆  No 
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 2o) ∧ (𝑞 ∈ 𝐴 ∧ ¬ 𝑞 <s 𝑈)) → (𝐴 ⊆  No 
∧ 𝐴 ∈
V)) | 
| 33 |  | simpll3 1214 | . . . . . . . . . 10
⊢ ((((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆  No 
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 2o) ∧ (𝑞 ∈ 𝐴 ∧ ¬ 𝑞 <s 𝑈)) → (𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) | 
| 34 |  | simpr 484 | . . . . . . . . . 10
⊢ ((((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆  No 
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 2o) ∧ (𝑞 ∈ 𝐴 ∧ ¬ 𝑞 <s 𝑈)) → (𝑞 ∈ 𝐴 ∧ ¬ 𝑞 <s 𝑈)) | 
| 35 | 1 | nosupbnd1lem2 27755 | . . . . . . . . . 10
⊢ ((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆  No 
∧ 𝐴 ∈ V) ∧
((𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆) ∧ (𝑞 ∈ 𝐴 ∧ ¬ 𝑞 <s 𝑈))) → (𝑞 ↾ dom 𝑆) = 𝑆) | 
| 36 | 31, 32, 33, 34, 35 | syl112anc 1375 | . . . . . . . . 9
⊢ ((((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆  No 
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 2o) ∧ (𝑞 ∈ 𝐴 ∧ ¬ 𝑞 <s 𝑈)) → (𝑞 ↾ dom 𝑆) = 𝑆) | 
| 37 | 30, 36 | eqtr4d 2779 | . . . . . . . 8
⊢ ((((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆  No 
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 2o) ∧ (𝑞 ∈ 𝐴 ∧ ¬ 𝑞 <s 𝑈)) → (𝑈 ↾ dom 𝑆) = (𝑞 ↾ dom 𝑆)) | 
| 38 |  | simplr 768 | . . . . . . . 8
⊢ ((((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆  No 
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 2o) ∧ (𝑞 ∈ 𝐴 ∧ ¬ 𝑞 <s 𝑈)) → (𝑈‘dom 𝑆) = 2o) | 
| 39 |  | simprr 772 | . . . . . . . 8
⊢ ((((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆  No 
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 2o) ∧ (𝑞 ∈ 𝐴 ∧ ¬ 𝑞 <s 𝑈)) → ¬ 𝑞 <s 𝑈) | 
| 40 |  | nolesgn2ores 27718 | . . . . . . . 8
⊢ (((𝑈 ∈ 
No  ∧ 𝑞 ∈
 No  ∧ dom 𝑆 ∈ On) ∧ ((𝑈 ↾ dom 𝑆) = (𝑞 ↾ dom 𝑆) ∧ (𝑈‘dom 𝑆) = 2o) ∧ ¬ 𝑞 <s 𝑈) → (𝑈 ↾ suc dom 𝑆) = (𝑞 ↾ suc dom 𝑆)) | 
| 41 | 22, 24, 28, 37, 38, 39, 40 | syl321anc 1393 | . . . . . . 7
⊢ ((((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆  No 
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 2o) ∧ (𝑞 ∈ 𝐴 ∧ ¬ 𝑞 <s 𝑈)) → (𝑈 ↾ suc dom 𝑆) = (𝑞 ↾ suc dom 𝑆)) | 
| 42 | 41 | expr 456 | . . . . . 6
⊢ ((((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆  No 
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 2o) ∧ 𝑞 ∈ 𝐴) → (¬ 𝑞 <s 𝑈 → (𝑈 ↾ suc dom 𝑆) = (𝑞 ↾ suc dom 𝑆))) | 
| 43 | 42 | ralrimiva 3145 | . . . . 5
⊢ (((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆  No 
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 2o) → ∀𝑞 ∈ 𝐴 (¬ 𝑞 <s 𝑈 → (𝑈 ↾ suc dom 𝑆) = (𝑞 ↾ suc dom 𝑆))) | 
| 44 |  | dmeq 5913 | . . . . . . . 8
⊢ (𝑝 = 𝑈 → dom 𝑝 = dom 𝑈) | 
| 45 | 44 | eleq2d 2826 | . . . . . . 7
⊢ (𝑝 = 𝑈 → (dom 𝑆 ∈ dom 𝑝 ↔ dom 𝑆 ∈ dom 𝑈)) | 
| 46 |  | breq2 5146 | . . . . . . . . . 10
⊢ (𝑝 = 𝑈 → (𝑞 <s 𝑝 ↔ 𝑞 <s 𝑈)) | 
| 47 | 46 | notbid 318 | . . . . . . . . 9
⊢ (𝑝 = 𝑈 → (¬ 𝑞 <s 𝑝 ↔ ¬ 𝑞 <s 𝑈)) | 
| 48 |  | reseq1 5990 | . . . . . . . . . 10
⊢ (𝑝 = 𝑈 → (𝑝 ↾ suc dom 𝑆) = (𝑈 ↾ suc dom 𝑆)) | 
| 49 | 48 | eqeq1d 2738 | . . . . . . . . 9
⊢ (𝑝 = 𝑈 → ((𝑝 ↾ suc dom 𝑆) = (𝑞 ↾ suc dom 𝑆) ↔ (𝑈 ↾ suc dom 𝑆) = (𝑞 ↾ suc dom 𝑆))) | 
| 50 | 47, 49 | imbi12d 344 | . . . . . . . 8
⊢ (𝑝 = 𝑈 → ((¬ 𝑞 <s 𝑝 → (𝑝 ↾ suc dom 𝑆) = (𝑞 ↾ suc dom 𝑆)) ↔ (¬ 𝑞 <s 𝑈 → (𝑈 ↾ suc dom 𝑆) = (𝑞 ↾ suc dom 𝑆)))) | 
| 51 | 50 | ralbidv 3177 | . . . . . . 7
⊢ (𝑝 = 𝑈 → (∀𝑞 ∈ 𝐴 (¬ 𝑞 <s 𝑝 → (𝑝 ↾ suc dom 𝑆) = (𝑞 ↾ suc dom 𝑆)) ↔ ∀𝑞 ∈ 𝐴 (¬ 𝑞 <s 𝑈 → (𝑈 ↾ suc dom 𝑆) = (𝑞 ↾ suc dom 𝑆)))) | 
| 52 | 45, 51 | anbi12d 632 | . . . . . 6
⊢ (𝑝 = 𝑈 → ((dom 𝑆 ∈ dom 𝑝 ∧ ∀𝑞 ∈ 𝐴 (¬ 𝑞 <s 𝑝 → (𝑝 ↾ suc dom 𝑆) = (𝑞 ↾ suc dom 𝑆))) ↔ (dom 𝑆 ∈ dom 𝑈 ∧ ∀𝑞 ∈ 𝐴 (¬ 𝑞 <s 𝑈 → (𝑈 ↾ suc dom 𝑆) = (𝑞 ↾ suc dom 𝑆))))) | 
| 53 | 52 | rspcev 3621 | . . . . 5
⊢ ((𝑈 ∈ 𝐴 ∧ (dom 𝑆 ∈ dom 𝑈 ∧ ∀𝑞 ∈ 𝐴 (¬ 𝑞 <s 𝑈 → (𝑈 ↾ suc dom 𝑆) = (𝑞 ↾ suc dom 𝑆)))) → ∃𝑝 ∈ 𝐴 (dom 𝑆 ∈ dom 𝑝 ∧ ∀𝑞 ∈ 𝐴 (¬ 𝑞 <s 𝑝 → (𝑝 ↾ suc dom 𝑆) = (𝑞 ↾ suc dom 𝑆)))) | 
| 54 | 7, 18, 43, 53 | syl12anc 836 | . . . 4
⊢ (((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆  No 
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 2o) → ∃𝑝 ∈ 𝐴 (dom 𝑆 ∈ dom 𝑝 ∧ ∀𝑞 ∈ 𝐴 (¬ 𝑞 <s 𝑝 → (𝑝 ↾ suc dom 𝑆) = (𝑞 ↾ suc dom 𝑆)))) | 
| 55 | 1 | nosupdm 27750 | . . . . . . . 8
⊢ (¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 → dom 𝑆 = {𝑧 ∣ ∃𝑝 ∈ 𝐴 (𝑧 ∈ dom 𝑝 ∧ ∀𝑞 ∈ 𝐴 (¬ 𝑞 <s 𝑝 → (𝑝 ↾ suc 𝑧) = (𝑞 ↾ suc 𝑧)))}) | 
| 56 | 55 | eleq2d 2826 | . . . . . . 7
⊢ (¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 → (dom 𝑆 ∈ dom 𝑆 ↔ dom 𝑆 ∈ {𝑧 ∣ ∃𝑝 ∈ 𝐴 (𝑧 ∈ dom 𝑝 ∧ ∀𝑞 ∈ 𝐴 (¬ 𝑞 <s 𝑝 → (𝑝 ↾ suc 𝑧) = (𝑞 ↾ suc 𝑧)))})) | 
| 57 | 56 | 3ad2ant1 1133 | . . . . . 6
⊢ ((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆  No 
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) → (dom 𝑆 ∈ dom 𝑆 ↔ dom 𝑆 ∈ {𝑧 ∣ ∃𝑝 ∈ 𝐴 (𝑧 ∈ dom 𝑝 ∧ ∀𝑞 ∈ 𝐴 (¬ 𝑞 <s 𝑝 → (𝑝 ↾ suc 𝑧) = (𝑞 ↾ suc 𝑧)))})) | 
| 58 |  | eleq1 2828 | . . . . . . . . . 10
⊢ (𝑧 = dom 𝑆 → (𝑧 ∈ dom 𝑝 ↔ dom 𝑆 ∈ dom 𝑝)) | 
| 59 |  | suceq 6449 | . . . . . . . . . . . . . 14
⊢ (𝑧 = dom 𝑆 → suc 𝑧 = suc dom 𝑆) | 
| 60 | 59 | reseq2d 5996 | . . . . . . . . . . . . 13
⊢ (𝑧 = dom 𝑆 → (𝑝 ↾ suc 𝑧) = (𝑝 ↾ suc dom 𝑆)) | 
| 61 | 59 | reseq2d 5996 | . . . . . . . . . . . . 13
⊢ (𝑧 = dom 𝑆 → (𝑞 ↾ suc 𝑧) = (𝑞 ↾ suc dom 𝑆)) | 
| 62 | 60, 61 | eqeq12d 2752 | . . . . . . . . . . . 12
⊢ (𝑧 = dom 𝑆 → ((𝑝 ↾ suc 𝑧) = (𝑞 ↾ suc 𝑧) ↔ (𝑝 ↾ suc dom 𝑆) = (𝑞 ↾ suc dom 𝑆))) | 
| 63 | 62 | imbi2d 340 | . . . . . . . . . . 11
⊢ (𝑧 = dom 𝑆 → ((¬ 𝑞 <s 𝑝 → (𝑝 ↾ suc 𝑧) = (𝑞 ↾ suc 𝑧)) ↔ (¬ 𝑞 <s 𝑝 → (𝑝 ↾ suc dom 𝑆) = (𝑞 ↾ suc dom 𝑆)))) | 
| 64 | 63 | ralbidv 3177 | . . . . . . . . . 10
⊢ (𝑧 = dom 𝑆 → (∀𝑞 ∈ 𝐴 (¬ 𝑞 <s 𝑝 → (𝑝 ↾ suc 𝑧) = (𝑞 ↾ suc 𝑧)) ↔ ∀𝑞 ∈ 𝐴 (¬ 𝑞 <s 𝑝 → (𝑝 ↾ suc dom 𝑆) = (𝑞 ↾ suc dom 𝑆)))) | 
| 65 | 58, 64 | anbi12d 632 | . . . . . . . . 9
⊢ (𝑧 = dom 𝑆 → ((𝑧 ∈ dom 𝑝 ∧ ∀𝑞 ∈ 𝐴 (¬ 𝑞 <s 𝑝 → (𝑝 ↾ suc 𝑧) = (𝑞 ↾ suc 𝑧))) ↔ (dom 𝑆 ∈ dom 𝑝 ∧ ∀𝑞 ∈ 𝐴 (¬ 𝑞 <s 𝑝 → (𝑝 ↾ suc dom 𝑆) = (𝑞 ↾ suc dom 𝑆))))) | 
| 66 | 65 | rexbidv 3178 | . . . . . . . 8
⊢ (𝑧 = dom 𝑆 → (∃𝑝 ∈ 𝐴 (𝑧 ∈ dom 𝑝 ∧ ∀𝑞 ∈ 𝐴 (¬ 𝑞 <s 𝑝 → (𝑝 ↾ suc 𝑧) = (𝑞 ↾ suc 𝑧))) ↔ ∃𝑝 ∈ 𝐴 (dom 𝑆 ∈ dom 𝑝 ∧ ∀𝑞 ∈ 𝐴 (¬ 𝑞 <s 𝑝 → (𝑝 ↾ suc dom 𝑆) = (𝑞 ↾ suc dom 𝑆))))) | 
| 67 | 66 | elabg 3675 | . . . . . . 7
⊢ (dom
𝑆 ∈ On → (dom
𝑆 ∈ {𝑧 ∣ ∃𝑝 ∈ 𝐴 (𝑧 ∈ dom 𝑝 ∧ ∀𝑞 ∈ 𝐴 (¬ 𝑞 <s 𝑝 → (𝑝 ↾ suc 𝑧) = (𝑞 ↾ suc 𝑧)))} ↔ ∃𝑝 ∈ 𝐴 (dom 𝑆 ∈ dom 𝑝 ∧ ∀𝑞 ∈ 𝐴 (¬ 𝑞 <s 𝑝 → (𝑝 ↾ suc dom 𝑆) = (𝑞 ↾ suc dom 𝑆))))) | 
| 68 | 3, 27, 67 | 3syl 18 | . . . . . 6
⊢ ((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆  No 
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) → (dom 𝑆 ∈ {𝑧 ∣ ∃𝑝 ∈ 𝐴 (𝑧 ∈ dom 𝑝 ∧ ∀𝑞 ∈ 𝐴 (¬ 𝑞 <s 𝑝 → (𝑝 ↾ suc 𝑧) = (𝑞 ↾ suc 𝑧)))} ↔ ∃𝑝 ∈ 𝐴 (dom 𝑆 ∈ dom 𝑝 ∧ ∀𝑞 ∈ 𝐴 (¬ 𝑞 <s 𝑝 → (𝑝 ↾ suc dom 𝑆) = (𝑞 ↾ suc dom 𝑆))))) | 
| 69 | 57, 68 | bitrd 279 | . . . . 5
⊢ ((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆  No 
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) → (dom 𝑆 ∈ dom 𝑆 ↔ ∃𝑝 ∈ 𝐴 (dom 𝑆 ∈ dom 𝑝 ∧ ∀𝑞 ∈ 𝐴 (¬ 𝑞 <s 𝑝 → (𝑝 ↾ suc dom 𝑆) = (𝑞 ↾ suc dom 𝑆))))) | 
| 70 | 69 | adantr 480 | . . . 4
⊢ (((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆  No 
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 2o) → (dom 𝑆 ∈ dom 𝑆 ↔ ∃𝑝 ∈ 𝐴 (dom 𝑆 ∈ dom 𝑝 ∧ ∀𝑞 ∈ 𝐴 (¬ 𝑞 <s 𝑝 → (𝑝 ↾ suc dom 𝑆) = (𝑞 ↾ suc dom 𝑆))))) | 
| 71 | 54, 70 | mpbird 257 | . . 3
⊢ (((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆  No 
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 2o) → dom 𝑆 ∈ dom 𝑆) | 
| 72 | 6, 71 | mtand 815 | . 2
⊢ ((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆  No 
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) → ¬ (𝑈‘dom 𝑆) = 2o) | 
| 73 | 72 | neqned 2946 | 1
⊢ ((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆  No 
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) → (𝑈‘dom 𝑆) ≠ 2o) |