MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nosupbnd1lem3 Structured version   Visualization version   GIF version

Theorem nosupbnd1lem3 27649
Description: Lemma for nosupbnd1 27653. If 𝑈 is a prolongment of 𝑆 and in 𝐴, then (𝑈‘dom 𝑆) is not 2o. (Contributed by Scott Fenton, 6-Dec-2021.)
Hypothesis
Ref Expression
nosupbnd1.1 𝑆 = if(∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦, ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
Assertion
Ref Expression
nosupbnd1lem3 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) → (𝑈‘dom 𝑆) ≠ 2o)
Distinct variable group:   𝐴,𝑔,𝑢,𝑣,𝑥,𝑦
Allowed substitution hints:   𝑆(𝑥,𝑦,𝑣,𝑢,𝑔)   𝑈(𝑥,𝑦,𝑣,𝑢,𝑔)

Proof of Theorem nosupbnd1lem3
Dummy variables 𝑝 𝑞 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nosupbnd1.1 . . . . . 6 𝑆 = if(∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦, ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
21nosupno 27642 . . . . 5 ((𝐴 No 𝐴 ∈ V) → 𝑆 No )
323ad2ant2 1134 . . . 4 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) → 𝑆 No )
4 nodmord 27592 . . . 4 (𝑆 No → Ord dom 𝑆)
5 ordirr 6324 . . . 4 (Ord dom 𝑆 → ¬ dom 𝑆 ∈ dom 𝑆)
63, 4, 53syl 18 . . 3 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) → ¬ dom 𝑆 ∈ dom 𝑆)
7 simpl3l 1229 . . . . 5 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 2o) → 𝑈𝐴)
8 ndmfv 6854 . . . . . . . 8 (¬ dom 𝑆 ∈ dom 𝑈 → (𝑈‘dom 𝑆) = ∅)
9 2on 8398 . . . . . . . . . . . . 13 2o ∈ On
109elexi 3459 . . . . . . . . . . . 12 2o ∈ V
1110prid2 4713 . . . . . . . . . . 11 2o ∈ {1o, 2o}
1211nosgnn0i 27598 . . . . . . . . . 10 ∅ ≠ 2o
13 neeq1 2990 . . . . . . . . . 10 ((𝑈‘dom 𝑆) = ∅ → ((𝑈‘dom 𝑆) ≠ 2o ↔ ∅ ≠ 2o))
1412, 13mpbiri 258 . . . . . . . . 9 ((𝑈‘dom 𝑆) = ∅ → (𝑈‘dom 𝑆) ≠ 2o)
1514neneqd 2933 . . . . . . . 8 ((𝑈‘dom 𝑆) = ∅ → ¬ (𝑈‘dom 𝑆) = 2o)
168, 15syl 17 . . . . . . 7 (¬ dom 𝑆 ∈ dom 𝑈 → ¬ (𝑈‘dom 𝑆) = 2o)
1716con4i 114 . . . . . 6 ((𝑈‘dom 𝑆) = 2o → dom 𝑆 ∈ dom 𝑈)
1817adantl 481 . . . . 5 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 2o) → dom 𝑆 ∈ dom 𝑈)
19 simpl2l 1227 . . . . . . . . . 10 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 2o) → 𝐴 No )
2019adantr 480 . . . . . . . . 9 ((((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 2o) ∧ (𝑞𝐴 ∧ ¬ 𝑞 <s 𝑈)) → 𝐴 No )
217adantr 480 . . . . . . . . 9 ((((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 2o) ∧ (𝑞𝐴 ∧ ¬ 𝑞 <s 𝑈)) → 𝑈𝐴)
2220, 21sseldd 3930 . . . . . . . 8 ((((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 2o) ∧ (𝑞𝐴 ∧ ¬ 𝑞 <s 𝑈)) → 𝑈 No )
23 simprl 770 . . . . . . . . 9 ((((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 2o) ∧ (𝑞𝐴 ∧ ¬ 𝑞 <s 𝑈)) → 𝑞𝐴)
2420, 23sseldd 3930 . . . . . . . 8 ((((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 2o) ∧ (𝑞𝐴 ∧ ¬ 𝑞 <s 𝑈)) → 𝑞 No )
253adantr 480 . . . . . . . . . 10 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 2o) → 𝑆 No )
2625adantr 480 . . . . . . . . 9 ((((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 2o) ∧ (𝑞𝐴 ∧ ¬ 𝑞 <s 𝑈)) → 𝑆 No )
27 nodmon 27589 . . . . . . . . 9 (𝑆 No → dom 𝑆 ∈ On)
2826, 27syl 17 . . . . . . . 8 ((((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 2o) ∧ (𝑞𝐴 ∧ ¬ 𝑞 <s 𝑈)) → dom 𝑆 ∈ On)
29 simpl3r 1230 . . . . . . . . . 10 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 2o) → (𝑈 ↾ dom 𝑆) = 𝑆)
3029adantr 480 . . . . . . . . 9 ((((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 2o) ∧ (𝑞𝐴 ∧ ¬ 𝑞 <s 𝑈)) → (𝑈 ↾ dom 𝑆) = 𝑆)
31 simpll1 1213 . . . . . . . . . 10 ((((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 2o) ∧ (𝑞𝐴 ∧ ¬ 𝑞 <s 𝑈)) → ¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)
32 simpll2 1214 . . . . . . . . . 10 ((((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 2o) ∧ (𝑞𝐴 ∧ ¬ 𝑞 <s 𝑈)) → (𝐴 No 𝐴 ∈ V))
33 simpll3 1215 . . . . . . . . . 10 ((((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 2o) ∧ (𝑞𝐴 ∧ ¬ 𝑞 <s 𝑈)) → (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆))
34 simpr 484 . . . . . . . . . 10 ((((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 2o) ∧ (𝑞𝐴 ∧ ¬ 𝑞 <s 𝑈)) → (𝑞𝐴 ∧ ¬ 𝑞 <s 𝑈))
351nosupbnd1lem2 27648 . . . . . . . . . 10 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ ((𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆) ∧ (𝑞𝐴 ∧ ¬ 𝑞 <s 𝑈))) → (𝑞 ↾ dom 𝑆) = 𝑆)
3631, 32, 33, 34, 35syl112anc 1376 . . . . . . . . 9 ((((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 2o) ∧ (𝑞𝐴 ∧ ¬ 𝑞 <s 𝑈)) → (𝑞 ↾ dom 𝑆) = 𝑆)
3730, 36eqtr4d 2769 . . . . . . . 8 ((((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 2o) ∧ (𝑞𝐴 ∧ ¬ 𝑞 <s 𝑈)) → (𝑈 ↾ dom 𝑆) = (𝑞 ↾ dom 𝑆))
38 simplr 768 . . . . . . . 8 ((((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 2o) ∧ (𝑞𝐴 ∧ ¬ 𝑞 <s 𝑈)) → (𝑈‘dom 𝑆) = 2o)
39 simprr 772 . . . . . . . 8 ((((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 2o) ∧ (𝑞𝐴 ∧ ¬ 𝑞 <s 𝑈)) → ¬ 𝑞 <s 𝑈)
40 nolesgn2ores 27611 . . . . . . . 8 (((𝑈 No 𝑞 No ∧ dom 𝑆 ∈ On) ∧ ((𝑈 ↾ dom 𝑆) = (𝑞 ↾ dom 𝑆) ∧ (𝑈‘dom 𝑆) = 2o) ∧ ¬ 𝑞 <s 𝑈) → (𝑈 ↾ suc dom 𝑆) = (𝑞 ↾ suc dom 𝑆))
4122, 24, 28, 37, 38, 39, 40syl321anc 1394 . . . . . . 7 ((((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 2o) ∧ (𝑞𝐴 ∧ ¬ 𝑞 <s 𝑈)) → (𝑈 ↾ suc dom 𝑆) = (𝑞 ↾ suc dom 𝑆))
4241expr 456 . . . . . 6 ((((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 2o) ∧ 𝑞𝐴) → (¬ 𝑞 <s 𝑈 → (𝑈 ↾ suc dom 𝑆) = (𝑞 ↾ suc dom 𝑆)))
4342ralrimiva 3124 . . . . 5 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 2o) → ∀𝑞𝐴𝑞 <s 𝑈 → (𝑈 ↾ suc dom 𝑆) = (𝑞 ↾ suc dom 𝑆)))
44 dmeq 5842 . . . . . . . 8 (𝑝 = 𝑈 → dom 𝑝 = dom 𝑈)
4544eleq2d 2817 . . . . . . 7 (𝑝 = 𝑈 → (dom 𝑆 ∈ dom 𝑝 ↔ dom 𝑆 ∈ dom 𝑈))
46 breq2 5093 . . . . . . . . . 10 (𝑝 = 𝑈 → (𝑞 <s 𝑝𝑞 <s 𝑈))
4746notbid 318 . . . . . . . . 9 (𝑝 = 𝑈 → (¬ 𝑞 <s 𝑝 ↔ ¬ 𝑞 <s 𝑈))
48 reseq1 5921 . . . . . . . . . 10 (𝑝 = 𝑈 → (𝑝 ↾ suc dom 𝑆) = (𝑈 ↾ suc dom 𝑆))
4948eqeq1d 2733 . . . . . . . . 9 (𝑝 = 𝑈 → ((𝑝 ↾ suc dom 𝑆) = (𝑞 ↾ suc dom 𝑆) ↔ (𝑈 ↾ suc dom 𝑆) = (𝑞 ↾ suc dom 𝑆)))
5047, 49imbi12d 344 . . . . . . . 8 (𝑝 = 𝑈 → ((¬ 𝑞 <s 𝑝 → (𝑝 ↾ suc dom 𝑆) = (𝑞 ↾ suc dom 𝑆)) ↔ (¬ 𝑞 <s 𝑈 → (𝑈 ↾ suc dom 𝑆) = (𝑞 ↾ suc dom 𝑆))))
5150ralbidv 3155 . . . . . . 7 (𝑝 = 𝑈 → (∀𝑞𝐴𝑞 <s 𝑝 → (𝑝 ↾ suc dom 𝑆) = (𝑞 ↾ suc dom 𝑆)) ↔ ∀𝑞𝐴𝑞 <s 𝑈 → (𝑈 ↾ suc dom 𝑆) = (𝑞 ↾ suc dom 𝑆))))
5245, 51anbi12d 632 . . . . . 6 (𝑝 = 𝑈 → ((dom 𝑆 ∈ dom 𝑝 ∧ ∀𝑞𝐴𝑞 <s 𝑝 → (𝑝 ↾ suc dom 𝑆) = (𝑞 ↾ suc dom 𝑆))) ↔ (dom 𝑆 ∈ dom 𝑈 ∧ ∀𝑞𝐴𝑞 <s 𝑈 → (𝑈 ↾ suc dom 𝑆) = (𝑞 ↾ suc dom 𝑆)))))
5352rspcev 3572 . . . . 5 ((𝑈𝐴 ∧ (dom 𝑆 ∈ dom 𝑈 ∧ ∀𝑞𝐴𝑞 <s 𝑈 → (𝑈 ↾ suc dom 𝑆) = (𝑞 ↾ suc dom 𝑆)))) → ∃𝑝𝐴 (dom 𝑆 ∈ dom 𝑝 ∧ ∀𝑞𝐴𝑞 <s 𝑝 → (𝑝 ↾ suc dom 𝑆) = (𝑞 ↾ suc dom 𝑆))))
547, 18, 43, 53syl12anc 836 . . . 4 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 2o) → ∃𝑝𝐴 (dom 𝑆 ∈ dom 𝑝 ∧ ∀𝑞𝐴𝑞 <s 𝑝 → (𝑝 ↾ suc dom 𝑆) = (𝑞 ↾ suc dom 𝑆))))
551nosupdm 27643 . . . . . . . 8 (¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 → dom 𝑆 = {𝑧 ∣ ∃𝑝𝐴 (𝑧 ∈ dom 𝑝 ∧ ∀𝑞𝐴𝑞 <s 𝑝 → (𝑝 ↾ suc 𝑧) = (𝑞 ↾ suc 𝑧)))})
5655eleq2d 2817 . . . . . . 7 (¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 → (dom 𝑆 ∈ dom 𝑆 ↔ dom 𝑆 ∈ {𝑧 ∣ ∃𝑝𝐴 (𝑧 ∈ dom 𝑝 ∧ ∀𝑞𝐴𝑞 <s 𝑝 → (𝑝 ↾ suc 𝑧) = (𝑞 ↾ suc 𝑧)))}))
57563ad2ant1 1133 . . . . . 6 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) → (dom 𝑆 ∈ dom 𝑆 ↔ dom 𝑆 ∈ {𝑧 ∣ ∃𝑝𝐴 (𝑧 ∈ dom 𝑝 ∧ ∀𝑞𝐴𝑞 <s 𝑝 → (𝑝 ↾ suc 𝑧) = (𝑞 ↾ suc 𝑧)))}))
58 eleq1 2819 . . . . . . . . . 10 (𝑧 = dom 𝑆 → (𝑧 ∈ dom 𝑝 ↔ dom 𝑆 ∈ dom 𝑝))
59 suceq 6374 . . . . . . . . . . . . . 14 (𝑧 = dom 𝑆 → suc 𝑧 = suc dom 𝑆)
6059reseq2d 5927 . . . . . . . . . . . . 13 (𝑧 = dom 𝑆 → (𝑝 ↾ suc 𝑧) = (𝑝 ↾ suc dom 𝑆))
6159reseq2d 5927 . . . . . . . . . . . . 13 (𝑧 = dom 𝑆 → (𝑞 ↾ suc 𝑧) = (𝑞 ↾ suc dom 𝑆))
6260, 61eqeq12d 2747 . . . . . . . . . . . 12 (𝑧 = dom 𝑆 → ((𝑝 ↾ suc 𝑧) = (𝑞 ↾ suc 𝑧) ↔ (𝑝 ↾ suc dom 𝑆) = (𝑞 ↾ suc dom 𝑆)))
6362imbi2d 340 . . . . . . . . . . 11 (𝑧 = dom 𝑆 → ((¬ 𝑞 <s 𝑝 → (𝑝 ↾ suc 𝑧) = (𝑞 ↾ suc 𝑧)) ↔ (¬ 𝑞 <s 𝑝 → (𝑝 ↾ suc dom 𝑆) = (𝑞 ↾ suc dom 𝑆))))
6463ralbidv 3155 . . . . . . . . . 10 (𝑧 = dom 𝑆 → (∀𝑞𝐴𝑞 <s 𝑝 → (𝑝 ↾ suc 𝑧) = (𝑞 ↾ suc 𝑧)) ↔ ∀𝑞𝐴𝑞 <s 𝑝 → (𝑝 ↾ suc dom 𝑆) = (𝑞 ↾ suc dom 𝑆))))
6558, 64anbi12d 632 . . . . . . . . 9 (𝑧 = dom 𝑆 → ((𝑧 ∈ dom 𝑝 ∧ ∀𝑞𝐴𝑞 <s 𝑝 → (𝑝 ↾ suc 𝑧) = (𝑞 ↾ suc 𝑧))) ↔ (dom 𝑆 ∈ dom 𝑝 ∧ ∀𝑞𝐴𝑞 <s 𝑝 → (𝑝 ↾ suc dom 𝑆) = (𝑞 ↾ suc dom 𝑆)))))
6665rexbidv 3156 . . . . . . . 8 (𝑧 = dom 𝑆 → (∃𝑝𝐴 (𝑧 ∈ dom 𝑝 ∧ ∀𝑞𝐴𝑞 <s 𝑝 → (𝑝 ↾ suc 𝑧) = (𝑞 ↾ suc 𝑧))) ↔ ∃𝑝𝐴 (dom 𝑆 ∈ dom 𝑝 ∧ ∀𝑞𝐴𝑞 <s 𝑝 → (𝑝 ↾ suc dom 𝑆) = (𝑞 ↾ suc dom 𝑆)))))
6766elabg 3627 . . . . . . 7 (dom 𝑆 ∈ On → (dom 𝑆 ∈ {𝑧 ∣ ∃𝑝𝐴 (𝑧 ∈ dom 𝑝 ∧ ∀𝑞𝐴𝑞 <s 𝑝 → (𝑝 ↾ suc 𝑧) = (𝑞 ↾ suc 𝑧)))} ↔ ∃𝑝𝐴 (dom 𝑆 ∈ dom 𝑝 ∧ ∀𝑞𝐴𝑞 <s 𝑝 → (𝑝 ↾ suc dom 𝑆) = (𝑞 ↾ suc dom 𝑆)))))
683, 27, 673syl 18 . . . . . 6 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) → (dom 𝑆 ∈ {𝑧 ∣ ∃𝑝𝐴 (𝑧 ∈ dom 𝑝 ∧ ∀𝑞𝐴𝑞 <s 𝑝 → (𝑝 ↾ suc 𝑧) = (𝑞 ↾ suc 𝑧)))} ↔ ∃𝑝𝐴 (dom 𝑆 ∈ dom 𝑝 ∧ ∀𝑞𝐴𝑞 <s 𝑝 → (𝑝 ↾ suc dom 𝑆) = (𝑞 ↾ suc dom 𝑆)))))
6957, 68bitrd 279 . . . . 5 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) → (dom 𝑆 ∈ dom 𝑆 ↔ ∃𝑝𝐴 (dom 𝑆 ∈ dom 𝑝 ∧ ∀𝑞𝐴𝑞 <s 𝑝 → (𝑝 ↾ suc dom 𝑆) = (𝑞 ↾ suc dom 𝑆)))))
7069adantr 480 . . . 4 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 2o) → (dom 𝑆 ∈ dom 𝑆 ↔ ∃𝑝𝐴 (dom 𝑆 ∈ dom 𝑝 ∧ ∀𝑞𝐴𝑞 <s 𝑝 → (𝑝 ↾ suc dom 𝑆) = (𝑞 ↾ suc dom 𝑆)))))
7154, 70mpbird 257 . . 3 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 2o) → dom 𝑆 ∈ dom 𝑆)
726, 71mtand 815 . 2 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) → ¬ (𝑈‘dom 𝑆) = 2o)
7372neqned 2935 1 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) → (𝑈‘dom 𝑆) ≠ 2o)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  {cab 2709  wne 2928  wral 3047  wrex 3056  Vcvv 3436  cun 3895  wss 3897  c0 4280  ifcif 4472  {csn 4573  cop 4579   class class class wbr 5089  cmpt 5170  dom cdm 5614  cres 5616  Ord word 6305  Oncon0 6306  suc csuc 6308  cio 6435  cfv 6481  crio 7302  1oc1o 8378  2oc2o 8379   No csur 27578   <s cslt 27579
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-uni 4857  df-int 4896  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-ord 6309  df-on 6310  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-fo 6487  df-fv 6489  df-riota 7303  df-1o 8385  df-2o 8386  df-no 27581  df-slt 27582  df-bday 27583
This theorem is referenced by:  nosupbnd1lem4  27650  nosupbnd1lem5  27651  nosupbnd1lem6  27652
  Copyright terms: Public domain W3C validator