MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nosupbnd1lem3 Structured version   Visualization version   GIF version

Theorem nosupbnd1lem3 27629
Description: Lemma for nosupbnd1 27633. If 𝑈 is a prolongment of 𝑆 and in 𝐴, then (𝑈‘dom 𝑆) is not 2o. (Contributed by Scott Fenton, 6-Dec-2021.)
Hypothesis
Ref Expression
nosupbnd1.1 𝑆 = if(∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦, ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
Assertion
Ref Expression
nosupbnd1lem3 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) → (𝑈‘dom 𝑆) ≠ 2o)
Distinct variable group:   𝐴,𝑔,𝑢,𝑣,𝑥,𝑦
Allowed substitution hints:   𝑆(𝑥,𝑦,𝑣,𝑢,𝑔)   𝑈(𝑥,𝑦,𝑣,𝑢,𝑔)

Proof of Theorem nosupbnd1lem3
Dummy variables 𝑝 𝑞 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nosupbnd1.1 . . . . . 6 𝑆 = if(∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦, ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
21nosupno 27622 . . . . 5 ((𝐴 No 𝐴 ∈ V) → 𝑆 No )
323ad2ant2 1134 . . . 4 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) → 𝑆 No )
4 nodmord 27572 . . . 4 (𝑆 No → Ord dom 𝑆)
5 ordirr 6353 . . . 4 (Ord dom 𝑆 → ¬ dom 𝑆 ∈ dom 𝑆)
63, 4, 53syl 18 . . 3 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) → ¬ dom 𝑆 ∈ dom 𝑆)
7 simpl3l 1229 . . . . 5 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 2o) → 𝑈𝐴)
8 ndmfv 6896 . . . . . . . 8 (¬ dom 𝑆 ∈ dom 𝑈 → (𝑈‘dom 𝑆) = ∅)
9 2on 8450 . . . . . . . . . . . . 13 2o ∈ On
109elexi 3473 . . . . . . . . . . . 12 2o ∈ V
1110prid2 4730 . . . . . . . . . . 11 2o ∈ {1o, 2o}
1211nosgnn0i 27578 . . . . . . . . . 10 ∅ ≠ 2o
13 neeq1 2988 . . . . . . . . . 10 ((𝑈‘dom 𝑆) = ∅ → ((𝑈‘dom 𝑆) ≠ 2o ↔ ∅ ≠ 2o))
1412, 13mpbiri 258 . . . . . . . . 9 ((𝑈‘dom 𝑆) = ∅ → (𝑈‘dom 𝑆) ≠ 2o)
1514neneqd 2931 . . . . . . . 8 ((𝑈‘dom 𝑆) = ∅ → ¬ (𝑈‘dom 𝑆) = 2o)
168, 15syl 17 . . . . . . 7 (¬ dom 𝑆 ∈ dom 𝑈 → ¬ (𝑈‘dom 𝑆) = 2o)
1716con4i 114 . . . . . 6 ((𝑈‘dom 𝑆) = 2o → dom 𝑆 ∈ dom 𝑈)
1817adantl 481 . . . . 5 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 2o) → dom 𝑆 ∈ dom 𝑈)
19 simpl2l 1227 . . . . . . . . . 10 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 2o) → 𝐴 No )
2019adantr 480 . . . . . . . . 9 ((((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 2o) ∧ (𝑞𝐴 ∧ ¬ 𝑞 <s 𝑈)) → 𝐴 No )
217adantr 480 . . . . . . . . 9 ((((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 2o) ∧ (𝑞𝐴 ∧ ¬ 𝑞 <s 𝑈)) → 𝑈𝐴)
2220, 21sseldd 3950 . . . . . . . 8 ((((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 2o) ∧ (𝑞𝐴 ∧ ¬ 𝑞 <s 𝑈)) → 𝑈 No )
23 simprl 770 . . . . . . . . 9 ((((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 2o) ∧ (𝑞𝐴 ∧ ¬ 𝑞 <s 𝑈)) → 𝑞𝐴)
2420, 23sseldd 3950 . . . . . . . 8 ((((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 2o) ∧ (𝑞𝐴 ∧ ¬ 𝑞 <s 𝑈)) → 𝑞 No )
253adantr 480 . . . . . . . . . 10 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 2o) → 𝑆 No )
2625adantr 480 . . . . . . . . 9 ((((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 2o) ∧ (𝑞𝐴 ∧ ¬ 𝑞 <s 𝑈)) → 𝑆 No )
27 nodmon 27569 . . . . . . . . 9 (𝑆 No → dom 𝑆 ∈ On)
2826, 27syl 17 . . . . . . . 8 ((((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 2o) ∧ (𝑞𝐴 ∧ ¬ 𝑞 <s 𝑈)) → dom 𝑆 ∈ On)
29 simpl3r 1230 . . . . . . . . . 10 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 2o) → (𝑈 ↾ dom 𝑆) = 𝑆)
3029adantr 480 . . . . . . . . 9 ((((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 2o) ∧ (𝑞𝐴 ∧ ¬ 𝑞 <s 𝑈)) → (𝑈 ↾ dom 𝑆) = 𝑆)
31 simpll1 1213 . . . . . . . . . 10 ((((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 2o) ∧ (𝑞𝐴 ∧ ¬ 𝑞 <s 𝑈)) → ¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)
32 simpll2 1214 . . . . . . . . . 10 ((((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 2o) ∧ (𝑞𝐴 ∧ ¬ 𝑞 <s 𝑈)) → (𝐴 No 𝐴 ∈ V))
33 simpll3 1215 . . . . . . . . . 10 ((((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 2o) ∧ (𝑞𝐴 ∧ ¬ 𝑞 <s 𝑈)) → (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆))
34 simpr 484 . . . . . . . . . 10 ((((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 2o) ∧ (𝑞𝐴 ∧ ¬ 𝑞 <s 𝑈)) → (𝑞𝐴 ∧ ¬ 𝑞 <s 𝑈))
351nosupbnd1lem2 27628 . . . . . . . . . 10 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ ((𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆) ∧ (𝑞𝐴 ∧ ¬ 𝑞 <s 𝑈))) → (𝑞 ↾ dom 𝑆) = 𝑆)
3631, 32, 33, 34, 35syl112anc 1376 . . . . . . . . 9 ((((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 2o) ∧ (𝑞𝐴 ∧ ¬ 𝑞 <s 𝑈)) → (𝑞 ↾ dom 𝑆) = 𝑆)
3730, 36eqtr4d 2768 . . . . . . . 8 ((((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 2o) ∧ (𝑞𝐴 ∧ ¬ 𝑞 <s 𝑈)) → (𝑈 ↾ dom 𝑆) = (𝑞 ↾ dom 𝑆))
38 simplr 768 . . . . . . . 8 ((((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 2o) ∧ (𝑞𝐴 ∧ ¬ 𝑞 <s 𝑈)) → (𝑈‘dom 𝑆) = 2o)
39 simprr 772 . . . . . . . 8 ((((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 2o) ∧ (𝑞𝐴 ∧ ¬ 𝑞 <s 𝑈)) → ¬ 𝑞 <s 𝑈)
40 nolesgn2ores 27591 . . . . . . . 8 (((𝑈 No 𝑞 No ∧ dom 𝑆 ∈ On) ∧ ((𝑈 ↾ dom 𝑆) = (𝑞 ↾ dom 𝑆) ∧ (𝑈‘dom 𝑆) = 2o) ∧ ¬ 𝑞 <s 𝑈) → (𝑈 ↾ suc dom 𝑆) = (𝑞 ↾ suc dom 𝑆))
4122, 24, 28, 37, 38, 39, 40syl321anc 1394 . . . . . . 7 ((((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 2o) ∧ (𝑞𝐴 ∧ ¬ 𝑞 <s 𝑈)) → (𝑈 ↾ suc dom 𝑆) = (𝑞 ↾ suc dom 𝑆))
4241expr 456 . . . . . 6 ((((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 2o) ∧ 𝑞𝐴) → (¬ 𝑞 <s 𝑈 → (𝑈 ↾ suc dom 𝑆) = (𝑞 ↾ suc dom 𝑆)))
4342ralrimiva 3126 . . . . 5 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 2o) → ∀𝑞𝐴𝑞 <s 𝑈 → (𝑈 ↾ suc dom 𝑆) = (𝑞 ↾ suc dom 𝑆)))
44 dmeq 5870 . . . . . . . 8 (𝑝 = 𝑈 → dom 𝑝 = dom 𝑈)
4544eleq2d 2815 . . . . . . 7 (𝑝 = 𝑈 → (dom 𝑆 ∈ dom 𝑝 ↔ dom 𝑆 ∈ dom 𝑈))
46 breq2 5114 . . . . . . . . . 10 (𝑝 = 𝑈 → (𝑞 <s 𝑝𝑞 <s 𝑈))
4746notbid 318 . . . . . . . . 9 (𝑝 = 𝑈 → (¬ 𝑞 <s 𝑝 ↔ ¬ 𝑞 <s 𝑈))
48 reseq1 5947 . . . . . . . . . 10 (𝑝 = 𝑈 → (𝑝 ↾ suc dom 𝑆) = (𝑈 ↾ suc dom 𝑆))
4948eqeq1d 2732 . . . . . . . . 9 (𝑝 = 𝑈 → ((𝑝 ↾ suc dom 𝑆) = (𝑞 ↾ suc dom 𝑆) ↔ (𝑈 ↾ suc dom 𝑆) = (𝑞 ↾ suc dom 𝑆)))
5047, 49imbi12d 344 . . . . . . . 8 (𝑝 = 𝑈 → ((¬ 𝑞 <s 𝑝 → (𝑝 ↾ suc dom 𝑆) = (𝑞 ↾ suc dom 𝑆)) ↔ (¬ 𝑞 <s 𝑈 → (𝑈 ↾ suc dom 𝑆) = (𝑞 ↾ suc dom 𝑆))))
5150ralbidv 3157 . . . . . . 7 (𝑝 = 𝑈 → (∀𝑞𝐴𝑞 <s 𝑝 → (𝑝 ↾ suc dom 𝑆) = (𝑞 ↾ suc dom 𝑆)) ↔ ∀𝑞𝐴𝑞 <s 𝑈 → (𝑈 ↾ suc dom 𝑆) = (𝑞 ↾ suc dom 𝑆))))
5245, 51anbi12d 632 . . . . . 6 (𝑝 = 𝑈 → ((dom 𝑆 ∈ dom 𝑝 ∧ ∀𝑞𝐴𝑞 <s 𝑝 → (𝑝 ↾ suc dom 𝑆) = (𝑞 ↾ suc dom 𝑆))) ↔ (dom 𝑆 ∈ dom 𝑈 ∧ ∀𝑞𝐴𝑞 <s 𝑈 → (𝑈 ↾ suc dom 𝑆) = (𝑞 ↾ suc dom 𝑆)))))
5352rspcev 3591 . . . . 5 ((𝑈𝐴 ∧ (dom 𝑆 ∈ dom 𝑈 ∧ ∀𝑞𝐴𝑞 <s 𝑈 → (𝑈 ↾ suc dom 𝑆) = (𝑞 ↾ suc dom 𝑆)))) → ∃𝑝𝐴 (dom 𝑆 ∈ dom 𝑝 ∧ ∀𝑞𝐴𝑞 <s 𝑝 → (𝑝 ↾ suc dom 𝑆) = (𝑞 ↾ suc dom 𝑆))))
547, 18, 43, 53syl12anc 836 . . . 4 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 2o) → ∃𝑝𝐴 (dom 𝑆 ∈ dom 𝑝 ∧ ∀𝑞𝐴𝑞 <s 𝑝 → (𝑝 ↾ suc dom 𝑆) = (𝑞 ↾ suc dom 𝑆))))
551nosupdm 27623 . . . . . . . 8 (¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 → dom 𝑆 = {𝑧 ∣ ∃𝑝𝐴 (𝑧 ∈ dom 𝑝 ∧ ∀𝑞𝐴𝑞 <s 𝑝 → (𝑝 ↾ suc 𝑧) = (𝑞 ↾ suc 𝑧)))})
5655eleq2d 2815 . . . . . . 7 (¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 → (dom 𝑆 ∈ dom 𝑆 ↔ dom 𝑆 ∈ {𝑧 ∣ ∃𝑝𝐴 (𝑧 ∈ dom 𝑝 ∧ ∀𝑞𝐴𝑞 <s 𝑝 → (𝑝 ↾ suc 𝑧) = (𝑞 ↾ suc 𝑧)))}))
57563ad2ant1 1133 . . . . . 6 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) → (dom 𝑆 ∈ dom 𝑆 ↔ dom 𝑆 ∈ {𝑧 ∣ ∃𝑝𝐴 (𝑧 ∈ dom 𝑝 ∧ ∀𝑞𝐴𝑞 <s 𝑝 → (𝑝 ↾ suc 𝑧) = (𝑞 ↾ suc 𝑧)))}))
58 eleq1 2817 . . . . . . . . . 10 (𝑧 = dom 𝑆 → (𝑧 ∈ dom 𝑝 ↔ dom 𝑆 ∈ dom 𝑝))
59 suceq 6403 . . . . . . . . . . . . . 14 (𝑧 = dom 𝑆 → suc 𝑧 = suc dom 𝑆)
6059reseq2d 5953 . . . . . . . . . . . . 13 (𝑧 = dom 𝑆 → (𝑝 ↾ suc 𝑧) = (𝑝 ↾ suc dom 𝑆))
6159reseq2d 5953 . . . . . . . . . . . . 13 (𝑧 = dom 𝑆 → (𝑞 ↾ suc 𝑧) = (𝑞 ↾ suc dom 𝑆))
6260, 61eqeq12d 2746 . . . . . . . . . . . 12 (𝑧 = dom 𝑆 → ((𝑝 ↾ suc 𝑧) = (𝑞 ↾ suc 𝑧) ↔ (𝑝 ↾ suc dom 𝑆) = (𝑞 ↾ suc dom 𝑆)))
6362imbi2d 340 . . . . . . . . . . 11 (𝑧 = dom 𝑆 → ((¬ 𝑞 <s 𝑝 → (𝑝 ↾ suc 𝑧) = (𝑞 ↾ suc 𝑧)) ↔ (¬ 𝑞 <s 𝑝 → (𝑝 ↾ suc dom 𝑆) = (𝑞 ↾ suc dom 𝑆))))
6463ralbidv 3157 . . . . . . . . . 10 (𝑧 = dom 𝑆 → (∀𝑞𝐴𝑞 <s 𝑝 → (𝑝 ↾ suc 𝑧) = (𝑞 ↾ suc 𝑧)) ↔ ∀𝑞𝐴𝑞 <s 𝑝 → (𝑝 ↾ suc dom 𝑆) = (𝑞 ↾ suc dom 𝑆))))
6558, 64anbi12d 632 . . . . . . . . 9 (𝑧 = dom 𝑆 → ((𝑧 ∈ dom 𝑝 ∧ ∀𝑞𝐴𝑞 <s 𝑝 → (𝑝 ↾ suc 𝑧) = (𝑞 ↾ suc 𝑧))) ↔ (dom 𝑆 ∈ dom 𝑝 ∧ ∀𝑞𝐴𝑞 <s 𝑝 → (𝑝 ↾ suc dom 𝑆) = (𝑞 ↾ suc dom 𝑆)))))
6665rexbidv 3158 . . . . . . . 8 (𝑧 = dom 𝑆 → (∃𝑝𝐴 (𝑧 ∈ dom 𝑝 ∧ ∀𝑞𝐴𝑞 <s 𝑝 → (𝑝 ↾ suc 𝑧) = (𝑞 ↾ suc 𝑧))) ↔ ∃𝑝𝐴 (dom 𝑆 ∈ dom 𝑝 ∧ ∀𝑞𝐴𝑞 <s 𝑝 → (𝑝 ↾ suc dom 𝑆) = (𝑞 ↾ suc dom 𝑆)))))
6766elabg 3646 . . . . . . 7 (dom 𝑆 ∈ On → (dom 𝑆 ∈ {𝑧 ∣ ∃𝑝𝐴 (𝑧 ∈ dom 𝑝 ∧ ∀𝑞𝐴𝑞 <s 𝑝 → (𝑝 ↾ suc 𝑧) = (𝑞 ↾ suc 𝑧)))} ↔ ∃𝑝𝐴 (dom 𝑆 ∈ dom 𝑝 ∧ ∀𝑞𝐴𝑞 <s 𝑝 → (𝑝 ↾ suc dom 𝑆) = (𝑞 ↾ suc dom 𝑆)))))
683, 27, 673syl 18 . . . . . 6 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) → (dom 𝑆 ∈ {𝑧 ∣ ∃𝑝𝐴 (𝑧 ∈ dom 𝑝 ∧ ∀𝑞𝐴𝑞 <s 𝑝 → (𝑝 ↾ suc 𝑧) = (𝑞 ↾ suc 𝑧)))} ↔ ∃𝑝𝐴 (dom 𝑆 ∈ dom 𝑝 ∧ ∀𝑞𝐴𝑞 <s 𝑝 → (𝑝 ↾ suc dom 𝑆) = (𝑞 ↾ suc dom 𝑆)))))
6957, 68bitrd 279 . . . . 5 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) → (dom 𝑆 ∈ dom 𝑆 ↔ ∃𝑝𝐴 (dom 𝑆 ∈ dom 𝑝 ∧ ∀𝑞𝐴𝑞 <s 𝑝 → (𝑝 ↾ suc dom 𝑆) = (𝑞 ↾ suc dom 𝑆)))))
7069adantr 480 . . . 4 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 2o) → (dom 𝑆 ∈ dom 𝑆 ↔ ∃𝑝𝐴 (dom 𝑆 ∈ dom 𝑝 ∧ ∀𝑞𝐴𝑞 <s 𝑝 → (𝑝 ↾ suc dom 𝑆) = (𝑞 ↾ suc dom 𝑆)))))
7154, 70mpbird 257 . . 3 (((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 2o) → dom 𝑆 ∈ dom 𝑆)
726, 71mtand 815 . 2 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) → ¬ (𝑈‘dom 𝑆) = 2o)
7372neqned 2933 1 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ (𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) → (𝑈‘dom 𝑆) ≠ 2o)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  {cab 2708  wne 2926  wral 3045  wrex 3054  Vcvv 3450  cun 3915  wss 3917  c0 4299  ifcif 4491  {csn 4592  cop 4598   class class class wbr 5110  cmpt 5191  dom cdm 5641  cres 5643  Ord word 6334  Oncon0 6335  suc csuc 6337  cio 6465  cfv 6514  crio 7346  1oc1o 8430  2oc2o 8431   No csur 27558   <s cslt 27559
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-ord 6338  df-on 6339  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-fo 6520  df-fv 6522  df-riota 7347  df-1o 8437  df-2o 8438  df-no 27561  df-slt 27562  df-bday 27563
This theorem is referenced by:  nosupbnd1lem4  27630  nosupbnd1lem5  27631  nosupbnd1lem6  27632
  Copyright terms: Public domain W3C validator