Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  llnmod2i2 Structured version   Visualization version   GIF version

Theorem llnmod2i2 40035
Description: Version of modular law pmod1i 40020 that holds in a Hilbert lattice, when one element is a lattice line (expressed as the join 𝑃 𝑄). (Contributed by NM, 16-Sep-2012.) (Revised by Mario Carneiro, 10-May-2013.)
Hypotheses
Ref Expression
atmod.b 𝐵 = (Base‘𝐾)
atmod.l = (le‘𝐾)
atmod.j = (join‘𝐾)
atmod.m = (meet‘𝐾)
atmod.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
llnmod2i2 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑃𝐴𝑄𝐴) ∧ 𝑌 𝑋) → ((𝑋 (𝑃 𝑄)) 𝑌) = (𝑋 ((𝑃 𝑄) 𝑌)))

Proof of Theorem llnmod2i2
StepHypRef Expression
1 simp11 1204 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑃𝐴𝑄𝐴) ∧ 𝑌 𝑋) → 𝐾 ∈ HL)
21hllatd 39536 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑃𝐴𝑄𝐴) ∧ 𝑌 𝑋) → 𝐾 ∈ Lat)
3 simp13 1206 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑃𝐴𝑄𝐴) ∧ 𝑌 𝑋) → 𝑌𝐵)
4 simp2l 1200 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑃𝐴𝑄𝐴) ∧ 𝑌 𝑋) → 𝑃𝐴)
5 simp2r 1201 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑃𝐴𝑄𝐴) ∧ 𝑌 𝑋) → 𝑄𝐴)
6 atmod.b . . . . . 6 𝐵 = (Base‘𝐾)
7 atmod.j . . . . . 6 = (join‘𝐾)
8 atmod.a . . . . . 6 𝐴 = (Atoms‘𝐾)
96, 7, 8hlatjcl 39539 . . . . 5 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → (𝑃 𝑄) ∈ 𝐵)
101, 4, 5, 9syl3anc 1373 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑃𝐴𝑄𝐴) ∧ 𝑌 𝑋) → (𝑃 𝑄) ∈ 𝐵)
11 simp12 1205 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑃𝐴𝑄𝐴) ∧ 𝑌 𝑋) → 𝑋𝐵)
12 atmod.m . . . . 5 = (meet‘𝐾)
136, 12latmcl 18354 . . . 4 ((𝐾 ∈ Lat ∧ (𝑃 𝑄) ∈ 𝐵𝑋𝐵) → ((𝑃 𝑄) 𝑋) ∈ 𝐵)
142, 10, 11, 13syl3anc 1373 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑃𝐴𝑄𝐴) ∧ 𝑌 𝑋) → ((𝑃 𝑄) 𝑋) ∈ 𝐵)
156, 7latjcom 18361 . . 3 ((𝐾 ∈ Lat ∧ 𝑌𝐵 ∧ ((𝑃 𝑄) 𝑋) ∈ 𝐵) → (𝑌 ((𝑃 𝑄) 𝑋)) = (((𝑃 𝑄) 𝑋) 𝑌))
162, 3, 14, 15syl3anc 1373 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑃𝐴𝑄𝐴) ∧ 𝑌 𝑋) → (𝑌 ((𝑃 𝑄) 𝑋)) = (((𝑃 𝑄) 𝑋) 𝑌))
176, 7latjcl 18353 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑌𝐵 ∧ (𝑃 𝑄) ∈ 𝐵) → (𝑌 (𝑃 𝑄)) ∈ 𝐵)
182, 3, 10, 17syl3anc 1373 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑃𝐴𝑄𝐴) ∧ 𝑌 𝑋) → (𝑌 (𝑃 𝑄)) ∈ 𝐵)
196, 12latmcom 18377 . . . 4 ((𝐾 ∈ Lat ∧ 𝑋𝐵 ∧ (𝑌 (𝑃 𝑄)) ∈ 𝐵) → (𝑋 (𝑌 (𝑃 𝑄))) = ((𝑌 (𝑃 𝑄)) 𝑋))
202, 11, 18, 19syl3anc 1373 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑃𝐴𝑄𝐴) ∧ 𝑌 𝑋) → (𝑋 (𝑌 (𝑃 𝑄))) = ((𝑌 (𝑃 𝑄)) 𝑋))
216, 7latjcom 18361 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑃 𝑄) ∈ 𝐵𝑌𝐵) → ((𝑃 𝑄) 𝑌) = (𝑌 (𝑃 𝑄)))
222, 10, 3, 21syl3anc 1373 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑃𝐴𝑄𝐴) ∧ 𝑌 𝑋) → ((𝑃 𝑄) 𝑌) = (𝑌 (𝑃 𝑄)))
2322oveq2d 7371 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑃𝐴𝑄𝐴) ∧ 𝑌 𝑋) → (𝑋 ((𝑃 𝑄) 𝑌)) = (𝑋 (𝑌 (𝑃 𝑄))))
24 simp3 1138 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑃𝐴𝑄𝐴) ∧ 𝑌 𝑋) → 𝑌 𝑋)
25 atmod.l . . . . 5 = (le‘𝐾)
266, 25, 7, 12, 8llnmod1i2 40032 . . . 4 (((𝐾 ∈ HL ∧ 𝑌𝐵𝑋𝐵) ∧ (𝑃𝐴𝑄𝐴) ∧ 𝑌 𝑋) → (𝑌 ((𝑃 𝑄) 𝑋)) = ((𝑌 (𝑃 𝑄)) 𝑋))
271, 3, 11, 4, 5, 24, 26syl321anc 1394 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑃𝐴𝑄𝐴) ∧ 𝑌 𝑋) → (𝑌 ((𝑃 𝑄) 𝑋)) = ((𝑌 (𝑃 𝑄)) 𝑋))
2820, 23, 273eqtr4d 2778 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑃𝐴𝑄𝐴) ∧ 𝑌 𝑋) → (𝑋 ((𝑃 𝑄) 𝑌)) = (𝑌 ((𝑃 𝑄) 𝑋)))
296, 12latmcom 18377 . . . 4 ((𝐾 ∈ Lat ∧ 𝑋𝐵 ∧ (𝑃 𝑄) ∈ 𝐵) → (𝑋 (𝑃 𝑄)) = ((𝑃 𝑄) 𝑋))
302, 11, 10, 29syl3anc 1373 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑃𝐴𝑄𝐴) ∧ 𝑌 𝑋) → (𝑋 (𝑃 𝑄)) = ((𝑃 𝑄) 𝑋))
3130oveq1d 7370 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑃𝐴𝑄𝐴) ∧ 𝑌 𝑋) → ((𝑋 (𝑃 𝑄)) 𝑌) = (((𝑃 𝑄) 𝑋) 𝑌))
3216, 28, 313eqtr4rd 2779 1 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑃𝐴𝑄𝐴) ∧ 𝑌 𝑋) → ((𝑋 (𝑃 𝑄)) 𝑌) = (𝑋 ((𝑃 𝑄) 𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2113   class class class wbr 5095  cfv 6489  (class class class)co 7355  Basecbs 17127  lecple 17175  joincjn 18225  meetcmee 18226  Latclat 18345  Atomscatm 39435  HLchlt 39522
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-iin 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-1st 7930  df-2nd 7931  df-proset 18208  df-poset 18227  df-plt 18242  df-lub 18258  df-glb 18259  df-join 18260  df-meet 18261  df-p0 18337  df-lat 18346  df-clat 18413  df-oposet 39348  df-ol 39350  df-oml 39351  df-covers 39438  df-ats 39439  df-atl 39470  df-cvlat 39494  df-hlat 39523  df-psubsp 39675  df-pmap 39676  df-padd 39968
This theorem is referenced by:  dalawlem11  40053
  Copyright terms: Public domain W3C validator