Proof of Theorem llnmod2i2
Step | Hyp | Ref
| Expression |
1 | | simp11 1201 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑌 ≤ 𝑋) → 𝐾 ∈ HL) |
2 | 1 | hllatd 37305 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑌 ≤ 𝑋) → 𝐾 ∈ Lat) |
3 | | simp13 1203 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑌 ≤ 𝑋) → 𝑌 ∈ 𝐵) |
4 | | simp2l 1197 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑌 ≤ 𝑋) → 𝑃 ∈ 𝐴) |
5 | | simp2r 1198 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑌 ≤ 𝑋) → 𝑄 ∈ 𝐴) |
6 | | atmod.b |
. . . . . 6
⊢ 𝐵 = (Base‘𝐾) |
7 | | atmod.j |
. . . . . 6
⊢ ∨ =
(join‘𝐾) |
8 | | atmod.a |
. . . . . 6
⊢ 𝐴 = (Atoms‘𝐾) |
9 | 6, 7, 8 | hlatjcl 37308 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (𝑃 ∨ 𝑄) ∈ 𝐵) |
10 | 1, 4, 5, 9 | syl3anc 1369 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑌 ≤ 𝑋) → (𝑃 ∨ 𝑄) ∈ 𝐵) |
11 | | simp12 1202 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑌 ≤ 𝑋) → 𝑋 ∈ 𝐵) |
12 | | atmod.m |
. . . . 5
⊢ ∧ =
(meet‘𝐾) |
13 | 6, 12 | latmcl 18073 |
. . . 4
⊢ ((𝐾 ∈ Lat ∧ (𝑃 ∨ 𝑄) ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → ((𝑃 ∨ 𝑄) ∧ 𝑋) ∈ 𝐵) |
14 | 2, 10, 11, 13 | syl3anc 1369 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑌 ≤ 𝑋) → ((𝑃 ∨ 𝑄) ∧ 𝑋) ∈ 𝐵) |
15 | 6, 7 | latjcom 18080 |
. . 3
⊢ ((𝐾 ∈ Lat ∧ 𝑌 ∈ 𝐵 ∧ ((𝑃 ∨ 𝑄) ∧ 𝑋) ∈ 𝐵) → (𝑌 ∨ ((𝑃 ∨ 𝑄) ∧ 𝑋)) = (((𝑃 ∨ 𝑄) ∧ 𝑋) ∨ 𝑌)) |
16 | 2, 3, 14, 15 | syl3anc 1369 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑌 ≤ 𝑋) → (𝑌 ∨ ((𝑃 ∨ 𝑄) ∧ 𝑋)) = (((𝑃 ∨ 𝑄) ∧ 𝑋) ∨ 𝑌)) |
17 | 6, 7 | latjcl 18072 |
. . . . 5
⊢ ((𝐾 ∈ Lat ∧ 𝑌 ∈ 𝐵 ∧ (𝑃 ∨ 𝑄) ∈ 𝐵) → (𝑌 ∨ (𝑃 ∨ 𝑄)) ∈ 𝐵) |
18 | 2, 3, 10, 17 | syl3anc 1369 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑌 ≤ 𝑋) → (𝑌 ∨ (𝑃 ∨ 𝑄)) ∈ 𝐵) |
19 | 6, 12 | latmcom 18096 |
. . . 4
⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ (𝑌 ∨ (𝑃 ∨ 𝑄)) ∈ 𝐵) → (𝑋 ∧ (𝑌 ∨ (𝑃 ∨ 𝑄))) = ((𝑌 ∨ (𝑃 ∨ 𝑄)) ∧ 𝑋)) |
20 | 2, 11, 18, 19 | syl3anc 1369 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑌 ≤ 𝑋) → (𝑋 ∧ (𝑌 ∨ (𝑃 ∨ 𝑄))) = ((𝑌 ∨ (𝑃 ∨ 𝑄)) ∧ 𝑋)) |
21 | 6, 7 | latjcom 18080 |
. . . . 5
⊢ ((𝐾 ∈ Lat ∧ (𝑃 ∨ 𝑄) ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑃 ∨ 𝑄) ∨ 𝑌) = (𝑌 ∨ (𝑃 ∨ 𝑄))) |
22 | 2, 10, 3, 21 | syl3anc 1369 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑌 ≤ 𝑋) → ((𝑃 ∨ 𝑄) ∨ 𝑌) = (𝑌 ∨ (𝑃 ∨ 𝑄))) |
23 | 22 | oveq2d 7271 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑌 ≤ 𝑋) → (𝑋 ∧ ((𝑃 ∨ 𝑄) ∨ 𝑌)) = (𝑋 ∧ (𝑌 ∨ (𝑃 ∨ 𝑄)))) |
24 | | simp3 1136 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑌 ≤ 𝑋) → 𝑌 ≤ 𝑋) |
25 | | atmod.l |
. . . . 5
⊢ ≤ =
(le‘𝐾) |
26 | 6, 25, 7, 12, 8 | llnmod1i2 37801 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑌 ≤ 𝑋) → (𝑌 ∨ ((𝑃 ∨ 𝑄) ∧ 𝑋)) = ((𝑌 ∨ (𝑃 ∨ 𝑄)) ∧ 𝑋)) |
27 | 1, 3, 11, 4, 5, 24, 26 | syl321anc 1390 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑌 ≤ 𝑋) → (𝑌 ∨ ((𝑃 ∨ 𝑄) ∧ 𝑋)) = ((𝑌 ∨ (𝑃 ∨ 𝑄)) ∧ 𝑋)) |
28 | 20, 23, 27 | 3eqtr4d 2788 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑌 ≤ 𝑋) → (𝑋 ∧ ((𝑃 ∨ 𝑄) ∨ 𝑌)) = (𝑌 ∨ ((𝑃 ∨ 𝑄) ∧ 𝑋))) |
29 | 6, 12 | latmcom 18096 |
. . . 4
⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ (𝑃 ∨ 𝑄) ∈ 𝐵) → (𝑋 ∧ (𝑃 ∨ 𝑄)) = ((𝑃 ∨ 𝑄) ∧ 𝑋)) |
30 | 2, 11, 10, 29 | syl3anc 1369 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑌 ≤ 𝑋) → (𝑋 ∧ (𝑃 ∨ 𝑄)) = ((𝑃 ∨ 𝑄) ∧ 𝑋)) |
31 | 30 | oveq1d 7270 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑌 ≤ 𝑋) → ((𝑋 ∧ (𝑃 ∨ 𝑄)) ∨ 𝑌) = (((𝑃 ∨ 𝑄) ∧ 𝑋) ∨ 𝑌)) |
32 | 16, 28, 31 | 3eqtr4rd 2789 |
1
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑌 ≤ 𝑋) → ((𝑋 ∧ (𝑃 ∨ 𝑄)) ∨ 𝑌) = (𝑋 ∧ ((𝑃 ∨ 𝑄) ∨ 𝑌))) |