Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  llnmod2i2 Structured version   Visualization version   GIF version

Theorem llnmod2i2 39840
Description: Version of modular law pmod1i 39825 that holds in a Hilbert lattice, when one element is a lattice line (expressed as the join 𝑃 𝑄). (Contributed by NM, 16-Sep-2012.) (Revised by Mario Carneiro, 10-May-2013.)
Hypotheses
Ref Expression
atmod.b 𝐵 = (Base‘𝐾)
atmod.l = (le‘𝐾)
atmod.j = (join‘𝐾)
atmod.m = (meet‘𝐾)
atmod.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
llnmod2i2 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑃𝐴𝑄𝐴) ∧ 𝑌 𝑋) → ((𝑋 (𝑃 𝑄)) 𝑌) = (𝑋 ((𝑃 𝑄) 𝑌)))

Proof of Theorem llnmod2i2
StepHypRef Expression
1 simp11 1203 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑃𝐴𝑄𝐴) ∧ 𝑌 𝑋) → 𝐾 ∈ HL)
21hllatd 39340 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑃𝐴𝑄𝐴) ∧ 𝑌 𝑋) → 𝐾 ∈ Lat)
3 simp13 1205 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑃𝐴𝑄𝐴) ∧ 𝑌 𝑋) → 𝑌𝐵)
4 simp2l 1199 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑃𝐴𝑄𝐴) ∧ 𝑌 𝑋) → 𝑃𝐴)
5 simp2r 1200 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑃𝐴𝑄𝐴) ∧ 𝑌 𝑋) → 𝑄𝐴)
6 atmod.b . . . . . 6 𝐵 = (Base‘𝐾)
7 atmod.j . . . . . 6 = (join‘𝐾)
8 atmod.a . . . . . 6 𝐴 = (Atoms‘𝐾)
96, 7, 8hlatjcl 39343 . . . . 5 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → (𝑃 𝑄) ∈ 𝐵)
101, 4, 5, 9syl3anc 1372 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑃𝐴𝑄𝐴) ∧ 𝑌 𝑋) → (𝑃 𝑄) ∈ 𝐵)
11 simp12 1204 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑃𝐴𝑄𝐴) ∧ 𝑌 𝑋) → 𝑋𝐵)
12 atmod.m . . . . 5 = (meet‘𝐾)
136, 12latmcl 18455 . . . 4 ((𝐾 ∈ Lat ∧ (𝑃 𝑄) ∈ 𝐵𝑋𝐵) → ((𝑃 𝑄) 𝑋) ∈ 𝐵)
142, 10, 11, 13syl3anc 1372 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑃𝐴𝑄𝐴) ∧ 𝑌 𝑋) → ((𝑃 𝑄) 𝑋) ∈ 𝐵)
156, 7latjcom 18462 . . 3 ((𝐾 ∈ Lat ∧ 𝑌𝐵 ∧ ((𝑃 𝑄) 𝑋) ∈ 𝐵) → (𝑌 ((𝑃 𝑄) 𝑋)) = (((𝑃 𝑄) 𝑋) 𝑌))
162, 3, 14, 15syl3anc 1372 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑃𝐴𝑄𝐴) ∧ 𝑌 𝑋) → (𝑌 ((𝑃 𝑄) 𝑋)) = (((𝑃 𝑄) 𝑋) 𝑌))
176, 7latjcl 18454 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑌𝐵 ∧ (𝑃 𝑄) ∈ 𝐵) → (𝑌 (𝑃 𝑄)) ∈ 𝐵)
182, 3, 10, 17syl3anc 1372 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑃𝐴𝑄𝐴) ∧ 𝑌 𝑋) → (𝑌 (𝑃 𝑄)) ∈ 𝐵)
196, 12latmcom 18478 . . . 4 ((𝐾 ∈ Lat ∧ 𝑋𝐵 ∧ (𝑌 (𝑃 𝑄)) ∈ 𝐵) → (𝑋 (𝑌 (𝑃 𝑄))) = ((𝑌 (𝑃 𝑄)) 𝑋))
202, 11, 18, 19syl3anc 1372 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑃𝐴𝑄𝐴) ∧ 𝑌 𝑋) → (𝑋 (𝑌 (𝑃 𝑄))) = ((𝑌 (𝑃 𝑄)) 𝑋))
216, 7latjcom 18462 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑃 𝑄) ∈ 𝐵𝑌𝐵) → ((𝑃 𝑄) 𝑌) = (𝑌 (𝑃 𝑄)))
222, 10, 3, 21syl3anc 1372 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑃𝐴𝑄𝐴) ∧ 𝑌 𝑋) → ((𝑃 𝑄) 𝑌) = (𝑌 (𝑃 𝑄)))
2322oveq2d 7429 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑃𝐴𝑄𝐴) ∧ 𝑌 𝑋) → (𝑋 ((𝑃 𝑄) 𝑌)) = (𝑋 (𝑌 (𝑃 𝑄))))
24 simp3 1138 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑃𝐴𝑄𝐴) ∧ 𝑌 𝑋) → 𝑌 𝑋)
25 atmod.l . . . . 5 = (le‘𝐾)
266, 25, 7, 12, 8llnmod1i2 39837 . . . 4 (((𝐾 ∈ HL ∧ 𝑌𝐵𝑋𝐵) ∧ (𝑃𝐴𝑄𝐴) ∧ 𝑌 𝑋) → (𝑌 ((𝑃 𝑄) 𝑋)) = ((𝑌 (𝑃 𝑄)) 𝑋))
271, 3, 11, 4, 5, 24, 26syl321anc 1393 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑃𝐴𝑄𝐴) ∧ 𝑌 𝑋) → (𝑌 ((𝑃 𝑄) 𝑋)) = ((𝑌 (𝑃 𝑄)) 𝑋))
2820, 23, 273eqtr4d 2779 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑃𝐴𝑄𝐴) ∧ 𝑌 𝑋) → (𝑋 ((𝑃 𝑄) 𝑌)) = (𝑌 ((𝑃 𝑄) 𝑋)))
296, 12latmcom 18478 . . . 4 ((𝐾 ∈ Lat ∧ 𝑋𝐵 ∧ (𝑃 𝑄) ∈ 𝐵) → (𝑋 (𝑃 𝑄)) = ((𝑃 𝑄) 𝑋))
302, 11, 10, 29syl3anc 1372 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑃𝐴𝑄𝐴) ∧ 𝑌 𝑋) → (𝑋 (𝑃 𝑄)) = ((𝑃 𝑄) 𝑋))
3130oveq1d 7428 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑃𝐴𝑄𝐴) ∧ 𝑌 𝑋) → ((𝑋 (𝑃 𝑄)) 𝑌) = (((𝑃 𝑄) 𝑋) 𝑌))
3216, 28, 313eqtr4rd 2780 1 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑃𝐴𝑄𝐴) ∧ 𝑌 𝑋) → ((𝑋 (𝑃 𝑄)) 𝑌) = (𝑋 ((𝑃 𝑄) 𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1539  wcel 2107   class class class wbr 5123  cfv 6541  (class class class)co 7413  Basecbs 17230  lecple 17281  joincjn 18328  meetcmee 18329  Latclat 18446  Atomscatm 39239  HLchlt 39326
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-iun 4973  df-iin 4974  df-br 5124  df-opab 5186  df-mpt 5206  df-id 5558  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-riota 7370  df-ov 7416  df-oprab 7417  df-mpo 7418  df-1st 7996  df-2nd 7997  df-proset 18311  df-poset 18330  df-plt 18345  df-lub 18361  df-glb 18362  df-join 18363  df-meet 18364  df-p0 18440  df-lat 18447  df-clat 18514  df-oposet 39152  df-ol 39154  df-oml 39155  df-covers 39242  df-ats 39243  df-atl 39274  df-cvlat 39298  df-hlat 39327  df-psubsp 39480  df-pmap 39481  df-padd 39773
This theorem is referenced by:  dalawlem11  39858
  Copyright terms: Public domain W3C validator