Proof of Theorem llnmod2i2
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | simp11 1204 | . . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑌 ≤ 𝑋) → 𝐾 ∈ HL) | 
| 2 | 1 | hllatd 39365 | . . 3
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑌 ≤ 𝑋) → 𝐾 ∈ Lat) | 
| 3 |  | simp13 1206 | . . 3
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑌 ≤ 𝑋) → 𝑌 ∈ 𝐵) | 
| 4 |  | simp2l 1200 | . . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑌 ≤ 𝑋) → 𝑃 ∈ 𝐴) | 
| 5 |  | simp2r 1201 | . . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑌 ≤ 𝑋) → 𝑄 ∈ 𝐴) | 
| 6 |  | atmod.b | . . . . . 6
⊢ 𝐵 = (Base‘𝐾) | 
| 7 |  | atmod.j | . . . . . 6
⊢  ∨ =
(join‘𝐾) | 
| 8 |  | atmod.a | . . . . . 6
⊢ 𝐴 = (Atoms‘𝐾) | 
| 9 | 6, 7, 8 | hlatjcl 39368 | . . . . 5
⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (𝑃 ∨ 𝑄) ∈ 𝐵) | 
| 10 | 1, 4, 5, 9 | syl3anc 1373 | . . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑌 ≤ 𝑋) → (𝑃 ∨ 𝑄) ∈ 𝐵) | 
| 11 |  | simp12 1205 | . . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑌 ≤ 𝑋) → 𝑋 ∈ 𝐵) | 
| 12 |  | atmod.m | . . . . 5
⊢  ∧ =
(meet‘𝐾) | 
| 13 | 6, 12 | latmcl 18485 | . . . 4
⊢ ((𝐾 ∈ Lat ∧ (𝑃 ∨ 𝑄) ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → ((𝑃 ∨ 𝑄) ∧ 𝑋) ∈ 𝐵) | 
| 14 | 2, 10, 11, 13 | syl3anc 1373 | . . 3
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑌 ≤ 𝑋) → ((𝑃 ∨ 𝑄) ∧ 𝑋) ∈ 𝐵) | 
| 15 | 6, 7 | latjcom 18492 | . . 3
⊢ ((𝐾 ∈ Lat ∧ 𝑌 ∈ 𝐵 ∧ ((𝑃 ∨ 𝑄) ∧ 𝑋) ∈ 𝐵) → (𝑌 ∨ ((𝑃 ∨ 𝑄) ∧ 𝑋)) = (((𝑃 ∨ 𝑄) ∧ 𝑋) ∨ 𝑌)) | 
| 16 | 2, 3, 14, 15 | syl3anc 1373 | . 2
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑌 ≤ 𝑋) → (𝑌 ∨ ((𝑃 ∨ 𝑄) ∧ 𝑋)) = (((𝑃 ∨ 𝑄) ∧ 𝑋) ∨ 𝑌)) | 
| 17 | 6, 7 | latjcl 18484 | . . . . 5
⊢ ((𝐾 ∈ Lat ∧ 𝑌 ∈ 𝐵 ∧ (𝑃 ∨ 𝑄) ∈ 𝐵) → (𝑌 ∨ (𝑃 ∨ 𝑄)) ∈ 𝐵) | 
| 18 | 2, 3, 10, 17 | syl3anc 1373 | . . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑌 ≤ 𝑋) → (𝑌 ∨ (𝑃 ∨ 𝑄)) ∈ 𝐵) | 
| 19 | 6, 12 | latmcom 18508 | . . . 4
⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ (𝑌 ∨ (𝑃 ∨ 𝑄)) ∈ 𝐵) → (𝑋 ∧ (𝑌 ∨ (𝑃 ∨ 𝑄))) = ((𝑌 ∨ (𝑃 ∨ 𝑄)) ∧ 𝑋)) | 
| 20 | 2, 11, 18, 19 | syl3anc 1373 | . . 3
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑌 ≤ 𝑋) → (𝑋 ∧ (𝑌 ∨ (𝑃 ∨ 𝑄))) = ((𝑌 ∨ (𝑃 ∨ 𝑄)) ∧ 𝑋)) | 
| 21 | 6, 7 | latjcom 18492 | . . . . 5
⊢ ((𝐾 ∈ Lat ∧ (𝑃 ∨ 𝑄) ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑃 ∨ 𝑄) ∨ 𝑌) = (𝑌 ∨ (𝑃 ∨ 𝑄))) | 
| 22 | 2, 10, 3, 21 | syl3anc 1373 | . . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑌 ≤ 𝑋) → ((𝑃 ∨ 𝑄) ∨ 𝑌) = (𝑌 ∨ (𝑃 ∨ 𝑄))) | 
| 23 | 22 | oveq2d 7447 | . . 3
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑌 ≤ 𝑋) → (𝑋 ∧ ((𝑃 ∨ 𝑄) ∨ 𝑌)) = (𝑋 ∧ (𝑌 ∨ (𝑃 ∨ 𝑄)))) | 
| 24 |  | simp3 1139 | . . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑌 ≤ 𝑋) → 𝑌 ≤ 𝑋) | 
| 25 |  | atmod.l | . . . . 5
⊢  ≤ =
(le‘𝐾) | 
| 26 | 6, 25, 7, 12, 8 | llnmod1i2 39862 | . . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑌 ≤ 𝑋) → (𝑌 ∨ ((𝑃 ∨ 𝑄) ∧ 𝑋)) = ((𝑌 ∨ (𝑃 ∨ 𝑄)) ∧ 𝑋)) | 
| 27 | 1, 3, 11, 4, 5, 24, 26 | syl321anc 1394 | . . 3
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑌 ≤ 𝑋) → (𝑌 ∨ ((𝑃 ∨ 𝑄) ∧ 𝑋)) = ((𝑌 ∨ (𝑃 ∨ 𝑄)) ∧ 𝑋)) | 
| 28 | 20, 23, 27 | 3eqtr4d 2787 | . 2
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑌 ≤ 𝑋) → (𝑋 ∧ ((𝑃 ∨ 𝑄) ∨ 𝑌)) = (𝑌 ∨ ((𝑃 ∨ 𝑄) ∧ 𝑋))) | 
| 29 | 6, 12 | latmcom 18508 | . . . 4
⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ (𝑃 ∨ 𝑄) ∈ 𝐵) → (𝑋 ∧ (𝑃 ∨ 𝑄)) = ((𝑃 ∨ 𝑄) ∧ 𝑋)) | 
| 30 | 2, 11, 10, 29 | syl3anc 1373 | . . 3
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑌 ≤ 𝑋) → (𝑋 ∧ (𝑃 ∨ 𝑄)) = ((𝑃 ∨ 𝑄) ∧ 𝑋)) | 
| 31 | 30 | oveq1d 7446 | . 2
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑌 ≤ 𝑋) → ((𝑋 ∧ (𝑃 ∨ 𝑄)) ∨ 𝑌) = (((𝑃 ∨ 𝑄) ∧ 𝑋) ∨ 𝑌)) | 
| 32 | 16, 28, 31 | 3eqtr4rd 2788 | 1
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑌 ≤ 𝑋) → ((𝑋 ∧ (𝑃 ∨ 𝑄)) ∨ 𝑌) = (𝑋 ∧ ((𝑃 ∨ 𝑄) ∨ 𝑌))) |