Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dalawlem12 Structured version   Visualization version   GIF version

Theorem dalawlem12 37012
Description: Lemma for dalaw 37016. Second part of dalawlem13 37013. (Contributed by NM, 17-Sep-2012.)
Hypotheses
Ref Expression
dalawlem.l = (le‘𝐾)
dalawlem.j = (join‘𝐾)
dalawlem.m = (meet‘𝐾)
dalawlem.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
dalawlem12 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑃 𝑄) (𝑆 𝑇)) (((𝑄 𝑅) (𝑇 𝑈)) ((𝑅 𝑃) (𝑈 𝑆))))

Proof of Theorem dalawlem12
StepHypRef Expression
1 eqid 2821 . . . 4 (Base‘𝐾) = (Base‘𝐾)
2 dalawlem.l . . . 4 = (le‘𝐾)
3 simp11 1199 . . . . 5 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → 𝐾 ∈ HL)
43hllatd 36494 . . . 4 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → 𝐾 ∈ Lat)
5 simp21 1202 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → 𝑃𝐴)
6 simp22 1203 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → 𝑄𝐴)
7 dalawlem.j . . . . . . 7 = (join‘𝐾)
8 dalawlem.a . . . . . . 7 𝐴 = (Atoms‘𝐾)
91, 7, 8hlatjcl 36497 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → (𝑃 𝑄) ∈ (Base‘𝐾))
103, 5, 6, 9syl3anc 1367 . . . . 5 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (𝑃 𝑄) ∈ (Base‘𝐾))
11 simp31 1205 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → 𝑆𝐴)
12 simp32 1206 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → 𝑇𝐴)
131, 7, 8hlatjcl 36497 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → (𝑆 𝑇) ∈ (Base‘𝐾))
143, 11, 12, 13syl3anc 1367 . . . . 5 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (𝑆 𝑇) ∈ (Base‘𝐾))
15 dalawlem.m . . . . . 6 = (meet‘𝐾)
161, 15latmcl 17656 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑃 𝑄) ∈ (Base‘𝐾) ∧ (𝑆 𝑇) ∈ (Base‘𝐾)) → ((𝑃 𝑄) (𝑆 𝑇)) ∈ (Base‘𝐾))
174, 10, 14, 16syl3anc 1367 . . . 4 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑃 𝑄) (𝑆 𝑇)) ∈ (Base‘𝐾))
181, 8atbase 36419 . . . . . . . 8 (𝑆𝐴𝑆 ∈ (Base‘𝐾))
1911, 18syl 17 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → 𝑆 ∈ (Base‘𝐾))
201, 7latjcl 17655 . . . . . . 7 ((𝐾 ∈ Lat ∧ (𝑃 𝑄) ∈ (Base‘𝐾) ∧ 𝑆 ∈ (Base‘𝐾)) → ((𝑃 𝑄) 𝑆) ∈ (Base‘𝐾))
214, 10, 19, 20syl3anc 1367 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑃 𝑄) 𝑆) ∈ (Base‘𝐾))
221, 8atbase 36419 . . . . . . 7 (𝑇𝐴𝑇 ∈ (Base‘𝐾))
2312, 22syl 17 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → 𝑇 ∈ (Base‘𝐾))
241, 15latmcl 17656 . . . . . 6 ((𝐾 ∈ Lat ∧ ((𝑃 𝑄) 𝑆) ∈ (Base‘𝐾) ∧ 𝑇 ∈ (Base‘𝐾)) → (((𝑃 𝑄) 𝑆) 𝑇) ∈ (Base‘𝐾))
254, 21, 23, 24syl3anc 1367 . . . . 5 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (((𝑃 𝑄) 𝑆) 𝑇) ∈ (Base‘𝐾))
261, 7latjcl 17655 . . . . 5 ((𝐾 ∈ Lat ∧ (((𝑃 𝑄) 𝑆) 𝑇) ∈ (Base‘𝐾) ∧ 𝑆 ∈ (Base‘𝐾)) → ((((𝑃 𝑄) 𝑆) 𝑇) 𝑆) ∈ (Base‘𝐾))
274, 25, 19, 26syl3anc 1367 . . . 4 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((((𝑃 𝑄) 𝑆) 𝑇) 𝑆) ∈ (Base‘𝐾))
281, 8atbase 36419 . . . . . . 7 (𝑄𝐴𝑄 ∈ (Base‘𝐾))
296, 28syl 17 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → 𝑄 ∈ (Base‘𝐾))
30 simp33 1207 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → 𝑈𝐴)
311, 7, 8hlatjcl 36497 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑇𝐴𝑈𝐴) → (𝑇 𝑈) ∈ (Base‘𝐾))
323, 12, 30, 31syl3anc 1367 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (𝑇 𝑈) ∈ (Base‘𝐾))
331, 15latmcl 17656 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑄 ∈ (Base‘𝐾) ∧ (𝑇 𝑈) ∈ (Base‘𝐾)) → (𝑄 (𝑇 𝑈)) ∈ (Base‘𝐾))
344, 29, 32, 33syl3anc 1367 . . . . 5 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (𝑄 (𝑇 𝑈)) ∈ (Base‘𝐾))
351, 7, 8hlatjcl 36497 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑈𝐴𝑆𝐴) → (𝑈 𝑆) ∈ (Base‘𝐾))
363, 30, 11, 35syl3anc 1367 . . . . 5 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (𝑈 𝑆) ∈ (Base‘𝐾))
371, 7latjcl 17655 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑄 (𝑇 𝑈)) ∈ (Base‘𝐾) ∧ (𝑈 𝑆) ∈ (Base‘𝐾)) → ((𝑄 (𝑇 𝑈)) (𝑈 𝑆)) ∈ (Base‘𝐾))
384, 34, 36, 37syl3anc 1367 . . . 4 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑄 (𝑇 𝑈)) (𝑈 𝑆)) ∈ (Base‘𝐾))
391, 2, 7latlej1 17664 . . . . . . 7 ((𝐾 ∈ Lat ∧ (𝑃 𝑄) ∈ (Base‘𝐾) ∧ 𝑆 ∈ (Base‘𝐾)) → (𝑃 𝑄) ((𝑃 𝑄) 𝑆))
404, 10, 19, 39syl3anc 1367 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (𝑃 𝑄) ((𝑃 𝑄) 𝑆))
411, 7, 8hlatjcl 36497 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑇𝐴𝑆𝐴) → (𝑇 𝑆) ∈ (Base‘𝐾))
423, 12, 11, 41syl3anc 1367 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (𝑇 𝑆) ∈ (Base‘𝐾))
431, 2, 15latmlem1 17685 . . . . . . 7 ((𝐾 ∈ Lat ∧ ((𝑃 𝑄) ∈ (Base‘𝐾) ∧ ((𝑃 𝑄) 𝑆) ∈ (Base‘𝐾) ∧ (𝑇 𝑆) ∈ (Base‘𝐾))) → ((𝑃 𝑄) ((𝑃 𝑄) 𝑆) → ((𝑃 𝑄) (𝑇 𝑆)) (((𝑃 𝑄) 𝑆) (𝑇 𝑆))))
444, 10, 21, 42, 43syl13anc 1368 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑃 𝑄) ((𝑃 𝑄) 𝑆) → ((𝑃 𝑄) (𝑇 𝑆)) (((𝑃 𝑄) 𝑆) (𝑇 𝑆))))
4540, 44mpd 15 . . . . 5 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑃 𝑄) (𝑇 𝑆)) (((𝑃 𝑄) 𝑆) (𝑇 𝑆)))
467, 8hlatjcom 36498 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → (𝑆 𝑇) = (𝑇 𝑆))
473, 11, 12, 46syl3anc 1367 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (𝑆 𝑇) = (𝑇 𝑆))
4847oveq2d 7166 . . . . 5 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑃 𝑄) (𝑆 𝑇)) = ((𝑃 𝑄) (𝑇 𝑆)))
491, 2, 7latlej2 17665 . . . . . . 7 ((𝐾 ∈ Lat ∧ (𝑃 𝑄) ∈ (Base‘𝐾) ∧ 𝑆 ∈ (Base‘𝐾)) → 𝑆 ((𝑃 𝑄) 𝑆))
504, 10, 19, 49syl3anc 1367 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → 𝑆 ((𝑃 𝑄) 𝑆))
511, 2, 7, 15, 8atmod2i2 36992 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑇𝐴 ∧ ((𝑃 𝑄) 𝑆) ∈ (Base‘𝐾) ∧ 𝑆 ∈ (Base‘𝐾)) ∧ 𝑆 ((𝑃 𝑄) 𝑆)) → ((((𝑃 𝑄) 𝑆) 𝑇) 𝑆) = (((𝑃 𝑄) 𝑆) (𝑇 𝑆)))
523, 12, 21, 19, 50, 51syl131anc 1379 . . . . 5 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((((𝑃 𝑄) 𝑆) 𝑇) 𝑆) = (((𝑃 𝑄) 𝑆) (𝑇 𝑆)))
5345, 48, 523brtr4d 5090 . . . 4 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑃 𝑄) (𝑆 𝑇)) ((((𝑃 𝑄) 𝑆) 𝑇) 𝑆))
54 hlol 36491 . . . . . . . . . . 11 (𝐾 ∈ HL → 𝐾 ∈ OL)
553, 54syl 17 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → 𝐾 ∈ OL)
561, 7, 8hlatjcl 36497 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑆𝐴) → (𝑃 𝑆) ∈ (Base‘𝐾))
573, 5, 11, 56syl3anc 1367 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (𝑃 𝑆) ∈ (Base‘𝐾))
581, 7latjcl 17655 . . . . . . . . . . 11 ((𝐾 ∈ Lat ∧ 𝑄 ∈ (Base‘𝐾) ∧ (𝑃 𝑆) ∈ (Base‘𝐾)) → (𝑄 (𝑃 𝑆)) ∈ (Base‘𝐾))
594, 29, 57, 58syl3anc 1367 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (𝑄 (𝑃 𝑆)) ∈ (Base‘𝐾))
601, 7, 8hlatjcl 36497 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ 𝑄𝐴𝑇𝐴) → (𝑄 𝑇) ∈ (Base‘𝐾))
613, 6, 12, 60syl3anc 1367 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (𝑄 𝑇) ∈ (Base‘𝐾))
621, 15latmassOLD 36359 . . . . . . . . . 10 ((𝐾 ∈ OL ∧ ((𝑄 (𝑃 𝑆)) ∈ (Base‘𝐾) ∧ (𝑄 𝑇) ∈ (Base‘𝐾) ∧ 𝑇 ∈ (Base‘𝐾))) → (((𝑄 (𝑃 𝑆)) (𝑄 𝑇)) 𝑇) = ((𝑄 (𝑃 𝑆)) ((𝑄 𝑇) 𝑇)))
6355, 59, 61, 23, 62syl13anc 1368 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (((𝑄 (𝑃 𝑆)) (𝑄 𝑇)) 𝑇) = ((𝑄 (𝑃 𝑆)) ((𝑄 𝑇) 𝑇)))
647, 8hlatjass 36500 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑆𝐴)) → ((𝑃 𝑄) 𝑆) = (𝑃 (𝑄 𝑆)))
653, 5, 6, 11, 64syl13anc 1368 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑃 𝑄) 𝑆) = (𝑃 (𝑄 𝑆)))
667, 8hlatj12 36501 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑆𝐴)) → (𝑃 (𝑄 𝑆)) = (𝑄 (𝑃 𝑆)))
673, 5, 6, 11, 66syl13anc 1368 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (𝑃 (𝑄 𝑆)) = (𝑄 (𝑃 𝑆)))
6865, 67eqtr2d 2857 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (𝑄 (𝑃 𝑆)) = ((𝑃 𝑄) 𝑆))
692, 7, 8hlatlej2 36506 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ 𝑄𝐴𝑇𝐴) → 𝑇 (𝑄 𝑇))
703, 6, 12, 69syl3anc 1367 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → 𝑇 (𝑄 𝑇))
711, 2, 15latleeqm2 17684 . . . . . . . . . . . 12 ((𝐾 ∈ Lat ∧ 𝑇 ∈ (Base‘𝐾) ∧ (𝑄 𝑇) ∈ (Base‘𝐾)) → (𝑇 (𝑄 𝑇) ↔ ((𝑄 𝑇) 𝑇) = 𝑇))
724, 23, 61, 71syl3anc 1367 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (𝑇 (𝑄 𝑇) ↔ ((𝑄 𝑇) 𝑇) = 𝑇))
7370, 72mpbid 234 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑄 𝑇) 𝑇) = 𝑇)
7468, 73oveq12d 7168 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑄 (𝑃 𝑆)) ((𝑄 𝑇) 𝑇)) = (((𝑃 𝑄) 𝑆) 𝑇))
7563, 74eqtr2d 2857 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (((𝑃 𝑄) 𝑆) 𝑇) = (((𝑄 (𝑃 𝑆)) (𝑄 𝑇)) 𝑇))
762, 7, 8hlatlej1 36505 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ 𝑄𝐴𝑇𝐴) → 𝑄 (𝑄 𝑇))
773, 6, 12, 76syl3anc 1367 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → 𝑄 (𝑄 𝑇))
781, 2, 7, 15, 8atmod1i1 36987 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ (𝑄𝐴 ∧ (𝑃 𝑆) ∈ (Base‘𝐾) ∧ (𝑄 𝑇) ∈ (Base‘𝐾)) ∧ 𝑄 (𝑄 𝑇)) → (𝑄 ((𝑃 𝑆) (𝑄 𝑇))) = ((𝑄 (𝑃 𝑆)) (𝑄 𝑇)))
793, 6, 57, 61, 77, 78syl131anc 1379 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (𝑄 ((𝑃 𝑆) (𝑄 𝑇))) = ((𝑄 (𝑃 𝑆)) (𝑄 𝑇)))
802, 7, 8hlatlej2 36506 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ 𝑈𝐴𝑄𝐴) → 𝑄 (𝑈 𝑄))
813, 30, 6, 80syl3anc 1367 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → 𝑄 (𝑈 𝑄))
82 simp13 1201 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈))
83 simp12 1200 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → 𝑄 = 𝑅)
8483oveq1d 7165 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (𝑄 𝑈) = (𝑅 𝑈))
857, 8hlatjcom 36498 . . . . . . . . . . . . . 14 ((𝐾 ∈ HL ∧ 𝑄𝐴𝑈𝐴) → (𝑄 𝑈) = (𝑈 𝑄))
863, 6, 30, 85syl3anc 1367 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (𝑄 𝑈) = (𝑈 𝑄))
8784, 86eqtr3d 2858 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (𝑅 𝑈) = (𝑈 𝑄))
8882, 87breqtrd 5084 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑃 𝑆) (𝑄 𝑇)) (𝑈 𝑄))
891, 15latmcl 17656 . . . . . . . . . . . . 13 ((𝐾 ∈ Lat ∧ (𝑃 𝑆) ∈ (Base‘𝐾) ∧ (𝑄 𝑇) ∈ (Base‘𝐾)) → ((𝑃 𝑆) (𝑄 𝑇)) ∈ (Base‘𝐾))
904, 57, 61, 89syl3anc 1367 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑃 𝑆) (𝑄 𝑇)) ∈ (Base‘𝐾))
911, 7, 8hlatjcl 36497 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ 𝑈𝐴𝑄𝐴) → (𝑈 𝑄) ∈ (Base‘𝐾))
923, 30, 6, 91syl3anc 1367 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (𝑈 𝑄) ∈ (Base‘𝐾))
931, 2, 7latjle12 17666 . . . . . . . . . . . 12 ((𝐾 ∈ Lat ∧ (𝑄 ∈ (Base‘𝐾) ∧ ((𝑃 𝑆) (𝑄 𝑇)) ∈ (Base‘𝐾) ∧ (𝑈 𝑄) ∈ (Base‘𝐾))) → ((𝑄 (𝑈 𝑄) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑈 𝑄)) ↔ (𝑄 ((𝑃 𝑆) (𝑄 𝑇))) (𝑈 𝑄)))
944, 29, 90, 92, 93syl13anc 1368 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑄 (𝑈 𝑄) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑈 𝑄)) ↔ (𝑄 ((𝑃 𝑆) (𝑄 𝑇))) (𝑈 𝑄)))
9581, 88, 94mpbi2and 710 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (𝑄 ((𝑃 𝑆) (𝑄 𝑇))) (𝑈 𝑄))
9679, 95eqbrtrrd 5082 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑄 (𝑃 𝑆)) (𝑄 𝑇)) (𝑈 𝑄))
972, 7, 8hlatlej1 36505 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ 𝑇𝐴𝑈𝐴) → 𝑇 (𝑇 𝑈))
983, 12, 30, 97syl3anc 1367 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → 𝑇 (𝑇 𝑈))
991, 15latmcl 17656 . . . . . . . . . . 11 ((𝐾 ∈ Lat ∧ (𝑄 (𝑃 𝑆)) ∈ (Base‘𝐾) ∧ (𝑄 𝑇) ∈ (Base‘𝐾)) → ((𝑄 (𝑃 𝑆)) (𝑄 𝑇)) ∈ (Base‘𝐾))
1004, 59, 61, 99syl3anc 1367 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑄 (𝑃 𝑆)) (𝑄 𝑇)) ∈ (Base‘𝐾))
1011, 2, 15latmlem12 17687 . . . . . . . . . 10 ((𝐾 ∈ Lat ∧ (((𝑄 (𝑃 𝑆)) (𝑄 𝑇)) ∈ (Base‘𝐾) ∧ (𝑈 𝑄) ∈ (Base‘𝐾)) ∧ (𝑇 ∈ (Base‘𝐾) ∧ (𝑇 𝑈) ∈ (Base‘𝐾))) → ((((𝑄 (𝑃 𝑆)) (𝑄 𝑇)) (𝑈 𝑄) ∧ 𝑇 (𝑇 𝑈)) → (((𝑄 (𝑃 𝑆)) (𝑄 𝑇)) 𝑇) ((𝑈 𝑄) (𝑇 𝑈))))
1024, 100, 92, 23, 32, 101syl122anc 1375 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((((𝑄 (𝑃 𝑆)) (𝑄 𝑇)) (𝑈 𝑄) ∧ 𝑇 (𝑇 𝑈)) → (((𝑄 (𝑃 𝑆)) (𝑄 𝑇)) 𝑇) ((𝑈 𝑄) (𝑇 𝑈))))
10396, 98, 102mp2and 697 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (((𝑄 (𝑃 𝑆)) (𝑄 𝑇)) 𝑇) ((𝑈 𝑄) (𝑇 𝑈)))
10475, 103eqbrtrd 5080 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (((𝑃 𝑄) 𝑆) 𝑇) ((𝑈 𝑄) (𝑇 𝑈)))
1052, 7, 8hlatlej2 36506 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ 𝑇𝐴𝑈𝐴) → 𝑈 (𝑇 𝑈))
1063, 12, 30, 105syl3anc 1367 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → 𝑈 (𝑇 𝑈))
1071, 2, 7, 15, 8atmod1i1 36987 . . . . . . . . 9 ((𝐾 ∈ HL ∧ (𝑈𝐴𝑄 ∈ (Base‘𝐾) ∧ (𝑇 𝑈) ∈ (Base‘𝐾)) ∧ 𝑈 (𝑇 𝑈)) → (𝑈 (𝑄 (𝑇 𝑈))) = ((𝑈 𝑄) (𝑇 𝑈)))
1083, 30, 29, 32, 106, 107syl131anc 1379 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (𝑈 (𝑄 (𝑇 𝑈))) = ((𝑈 𝑄) (𝑇 𝑈)))
1091, 8atbase 36419 . . . . . . . . . 10 (𝑈𝐴𝑈 ∈ (Base‘𝐾))
11030, 109syl 17 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → 𝑈 ∈ (Base‘𝐾))
1111, 7latjcom 17663 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ 𝑈 ∈ (Base‘𝐾) ∧ (𝑄 (𝑇 𝑈)) ∈ (Base‘𝐾)) → (𝑈 (𝑄 (𝑇 𝑈))) = ((𝑄 (𝑇 𝑈)) 𝑈))
1124, 110, 34, 111syl3anc 1367 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (𝑈 (𝑄 (𝑇 𝑈))) = ((𝑄 (𝑇 𝑈)) 𝑈))
113108, 112eqtr3d 2858 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑈 𝑄) (𝑇 𝑈)) = ((𝑄 (𝑇 𝑈)) 𝑈))
114104, 113breqtrd 5084 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (((𝑃 𝑄) 𝑆) 𝑇) ((𝑄 (𝑇 𝑈)) 𝑈))
1151, 7latjcl 17655 . . . . . . . 8 ((𝐾 ∈ Lat ∧ (𝑄 (𝑇 𝑈)) ∈ (Base‘𝐾) ∧ 𝑈 ∈ (Base‘𝐾)) → ((𝑄 (𝑇 𝑈)) 𝑈) ∈ (Base‘𝐾))
1164, 34, 110, 115syl3anc 1367 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑄 (𝑇 𝑈)) 𝑈) ∈ (Base‘𝐾))
1171, 2, 7latjlej1 17669 . . . . . . 7 ((𝐾 ∈ Lat ∧ ((((𝑃 𝑄) 𝑆) 𝑇) ∈ (Base‘𝐾) ∧ ((𝑄 (𝑇 𝑈)) 𝑈) ∈ (Base‘𝐾) ∧ 𝑆 ∈ (Base‘𝐾))) → ((((𝑃 𝑄) 𝑆) 𝑇) ((𝑄 (𝑇 𝑈)) 𝑈) → ((((𝑃 𝑄) 𝑆) 𝑇) 𝑆) (((𝑄 (𝑇 𝑈)) 𝑈) 𝑆)))
1184, 25, 116, 19, 117syl13anc 1368 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((((𝑃 𝑄) 𝑆) 𝑇) ((𝑄 (𝑇 𝑈)) 𝑈) → ((((𝑃 𝑄) 𝑆) 𝑇) 𝑆) (((𝑄 (𝑇 𝑈)) 𝑈) 𝑆)))
119114, 118mpd 15 . . . . 5 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((((𝑃 𝑄) 𝑆) 𝑇) 𝑆) (((𝑄 (𝑇 𝑈)) 𝑈) 𝑆))
1201, 7latjass 17699 . . . . . 6 ((𝐾 ∈ Lat ∧ ((𝑄 (𝑇 𝑈)) ∈ (Base‘𝐾) ∧ 𝑈 ∈ (Base‘𝐾) ∧ 𝑆 ∈ (Base‘𝐾))) → (((𝑄 (𝑇 𝑈)) 𝑈) 𝑆) = ((𝑄 (𝑇 𝑈)) (𝑈 𝑆)))
1214, 34, 110, 19, 120syl13anc 1368 . . . . 5 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (((𝑄 (𝑇 𝑈)) 𝑈) 𝑆) = ((𝑄 (𝑇 𝑈)) (𝑈 𝑆)))
122119, 121breqtrd 5084 . . . 4 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((((𝑃 𝑄) 𝑆) 𝑇) 𝑆) ((𝑄 (𝑇 𝑈)) (𝑈 𝑆)))
1231, 2, 4, 17, 27, 38, 53, 122lattrd 17662 . . 3 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑃 𝑄) (𝑆 𝑇)) ((𝑄 (𝑇 𝑈)) (𝑈 𝑆)))
1241, 2, 15latmle1 17680 . . . 4 ((𝐾 ∈ Lat ∧ (𝑃 𝑄) ∈ (Base‘𝐾) ∧ (𝑆 𝑇) ∈ (Base‘𝐾)) → ((𝑃 𝑄) (𝑆 𝑇)) (𝑃 𝑄))
1254, 10, 14, 124syl3anc 1367 . . 3 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑃 𝑄) (𝑆 𝑇)) (𝑃 𝑄))
1261, 2, 15latlem12 17682 . . . 4 ((𝐾 ∈ Lat ∧ (((𝑃 𝑄) (𝑆 𝑇)) ∈ (Base‘𝐾) ∧ ((𝑄 (𝑇 𝑈)) (𝑈 𝑆)) ∈ (Base‘𝐾) ∧ (𝑃 𝑄) ∈ (Base‘𝐾))) → ((((𝑃 𝑄) (𝑆 𝑇)) ((𝑄 (𝑇 𝑈)) (𝑈 𝑆)) ∧ ((𝑃 𝑄) (𝑆 𝑇)) (𝑃 𝑄)) ↔ ((𝑃 𝑄) (𝑆 𝑇)) (((𝑄 (𝑇 𝑈)) (𝑈 𝑆)) (𝑃 𝑄))))
1274, 17, 38, 10, 126syl13anc 1368 . . 3 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((((𝑃 𝑄) (𝑆 𝑇)) ((𝑄 (𝑇 𝑈)) (𝑈 𝑆)) ∧ ((𝑃 𝑄) (𝑆 𝑇)) (𝑃 𝑄)) ↔ ((𝑃 𝑄) (𝑆 𝑇)) (((𝑄 (𝑇 𝑈)) (𝑈 𝑆)) (𝑃 𝑄))))
128123, 125, 127mpbi2and 710 . 2 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑃 𝑄) (𝑆 𝑇)) (((𝑄 (𝑇 𝑈)) (𝑈 𝑆)) (𝑃 𝑄)))
1291, 8atbase 36419 . . . . . 6 (𝑃𝐴𝑃 ∈ (Base‘𝐾))
1305, 129syl 17 . . . . 5 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → 𝑃 ∈ (Base‘𝐾))
1311, 2, 7, 15latmlej12 17695 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑄 ∈ (Base‘𝐾) ∧ (𝑇 𝑈) ∈ (Base‘𝐾) ∧ 𝑃 ∈ (Base‘𝐾))) → (𝑄 (𝑇 𝑈)) (𝑃 𝑄))
1324, 29, 32, 130, 131syl13anc 1368 . . . 4 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (𝑄 (𝑇 𝑈)) (𝑃 𝑄))
1331, 2, 7, 15, 8llnmod1i2 36990 . . . 4 (((𝐾 ∈ HL ∧ (𝑄 (𝑇 𝑈)) ∈ (Base‘𝐾) ∧ (𝑃 𝑄) ∈ (Base‘𝐾)) ∧ (𝑈𝐴𝑆𝐴) ∧ (𝑄 (𝑇 𝑈)) (𝑃 𝑄)) → ((𝑄 (𝑇 𝑈)) ((𝑈 𝑆) (𝑃 𝑄))) = (((𝑄 (𝑇 𝑈)) (𝑈 𝑆)) (𝑃 𝑄)))
1343, 34, 10, 30, 11, 132, 133syl321anc 1388 . . 3 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑄 (𝑇 𝑈)) ((𝑈 𝑆) (𝑃 𝑄))) = (((𝑄 (𝑇 𝑈)) (𝑈 𝑆)) (𝑃 𝑄)))
1357, 8hlatjidm 36499 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑄𝐴) → (𝑄 𝑄) = 𝑄)
1363, 6, 135syl2anc 586 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (𝑄 𝑄) = 𝑄)
13783oveq2d 7166 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (𝑄 𝑄) = (𝑄 𝑅))
138136, 137eqtr3d 2858 . . . . 5 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → 𝑄 = (𝑄 𝑅))
139138oveq1d 7165 . . . 4 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (𝑄 (𝑇 𝑈)) = ((𝑄 𝑅) (𝑇 𝑈)))
1401, 15latmcom 17679 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝑈 𝑆) ∈ (Base‘𝐾) ∧ (𝑃 𝑄) ∈ (Base‘𝐾)) → ((𝑈 𝑆) (𝑃 𝑄)) = ((𝑃 𝑄) (𝑈 𝑆)))
1414, 36, 10, 140syl3anc 1367 . . . . 5 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑈 𝑆) (𝑃 𝑄)) = ((𝑃 𝑄) (𝑈 𝑆)))
1427, 8hlatjcom 36498 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → (𝑃 𝑄) = (𝑄 𝑃))
1433, 5, 6, 142syl3anc 1367 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (𝑃 𝑄) = (𝑄 𝑃))
14483oveq1d 7165 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (𝑄 𝑃) = (𝑅 𝑃))
145143, 144eqtrd 2856 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (𝑃 𝑄) = (𝑅 𝑃))
146145oveq1d 7165 . . . . 5 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑃 𝑄) (𝑈 𝑆)) = ((𝑅 𝑃) (𝑈 𝑆)))
147141, 146eqtrd 2856 . . . 4 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑈 𝑆) (𝑃 𝑄)) = ((𝑅 𝑃) (𝑈 𝑆)))
148139, 147oveq12d 7168 . . 3 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑄 (𝑇 𝑈)) ((𝑈 𝑆) (𝑃 𝑄))) = (((𝑄 𝑅) (𝑇 𝑈)) ((𝑅 𝑃) (𝑈 𝑆))))
149134, 148eqtr3d 2858 . 2 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (((𝑄 (𝑇 𝑈)) (𝑈 𝑆)) (𝑃 𝑄)) = (((𝑄 𝑅) (𝑇 𝑈)) ((𝑅 𝑃) (𝑈 𝑆))))
150128, 149breqtrd 5084 1 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑃 𝑄) (𝑆 𝑇)) (((𝑄 𝑅) (𝑇 𝑈)) ((𝑅 𝑃) (𝑈 𝑆))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1533  wcel 2110   class class class wbr 5058  cfv 6349  (class class class)co 7150  Basecbs 16477  lecple 16566  joincjn 17548  meetcmee 17549  Latclat 17649  OLcol 36304  Atomscatm 36393  HLchlt 36480
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-op 4567  df-uni 4832  df-iun 4913  df-iin 4914  df-br 5059  df-opab 5121  df-mpt 5139  df-id 5454  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-1st 7683  df-2nd 7684  df-proset 17532  df-poset 17550  df-plt 17562  df-lub 17578  df-glb 17579  df-join 17580  df-meet 17581  df-p0 17643  df-lat 17650  df-clat 17712  df-oposet 36306  df-ol 36308  df-oml 36309  df-covers 36396  df-ats 36397  df-atl 36428  df-cvlat 36452  df-hlat 36481  df-psubsp 36633  df-pmap 36634  df-padd 36926
This theorem is referenced by:  dalawlem13  37013
  Copyright terms: Public domain W3C validator