Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dalawlem12 Structured version   Visualization version   GIF version

Theorem dalawlem12 39991
Description: Lemma for dalaw 39995. Second part of dalawlem13 39992. (Contributed by NM, 17-Sep-2012.)
Hypotheses
Ref Expression
dalawlem.l = (le‘𝐾)
dalawlem.j = (join‘𝐾)
dalawlem.m = (meet‘𝐾)
dalawlem.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
dalawlem12 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑃 𝑄) (𝑆 𝑇)) (((𝑄 𝑅) (𝑇 𝑈)) ((𝑅 𝑃) (𝑈 𝑆))))

Proof of Theorem dalawlem12
StepHypRef Expression
1 eqid 2731 . . . 4 (Base‘𝐾) = (Base‘𝐾)
2 dalawlem.l . . . 4 = (le‘𝐾)
3 simp11 1204 . . . . 5 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → 𝐾 ∈ HL)
43hllatd 39473 . . . 4 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → 𝐾 ∈ Lat)
5 simp21 1207 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → 𝑃𝐴)
6 simp22 1208 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → 𝑄𝐴)
7 dalawlem.j . . . . . . 7 = (join‘𝐾)
8 dalawlem.a . . . . . . 7 𝐴 = (Atoms‘𝐾)
91, 7, 8hlatjcl 39476 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → (𝑃 𝑄) ∈ (Base‘𝐾))
103, 5, 6, 9syl3anc 1373 . . . . 5 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (𝑃 𝑄) ∈ (Base‘𝐾))
11 simp31 1210 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → 𝑆𝐴)
12 simp32 1211 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → 𝑇𝐴)
131, 7, 8hlatjcl 39476 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → (𝑆 𝑇) ∈ (Base‘𝐾))
143, 11, 12, 13syl3anc 1373 . . . . 5 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (𝑆 𝑇) ∈ (Base‘𝐾))
15 dalawlem.m . . . . . 6 = (meet‘𝐾)
161, 15latmcl 18346 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑃 𝑄) ∈ (Base‘𝐾) ∧ (𝑆 𝑇) ∈ (Base‘𝐾)) → ((𝑃 𝑄) (𝑆 𝑇)) ∈ (Base‘𝐾))
174, 10, 14, 16syl3anc 1373 . . . 4 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑃 𝑄) (𝑆 𝑇)) ∈ (Base‘𝐾))
181, 8atbase 39398 . . . . . . . 8 (𝑆𝐴𝑆 ∈ (Base‘𝐾))
1911, 18syl 17 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → 𝑆 ∈ (Base‘𝐾))
201, 7latjcl 18345 . . . . . . 7 ((𝐾 ∈ Lat ∧ (𝑃 𝑄) ∈ (Base‘𝐾) ∧ 𝑆 ∈ (Base‘𝐾)) → ((𝑃 𝑄) 𝑆) ∈ (Base‘𝐾))
214, 10, 19, 20syl3anc 1373 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑃 𝑄) 𝑆) ∈ (Base‘𝐾))
221, 8atbase 39398 . . . . . . 7 (𝑇𝐴𝑇 ∈ (Base‘𝐾))
2312, 22syl 17 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → 𝑇 ∈ (Base‘𝐾))
241, 15latmcl 18346 . . . . . 6 ((𝐾 ∈ Lat ∧ ((𝑃 𝑄) 𝑆) ∈ (Base‘𝐾) ∧ 𝑇 ∈ (Base‘𝐾)) → (((𝑃 𝑄) 𝑆) 𝑇) ∈ (Base‘𝐾))
254, 21, 23, 24syl3anc 1373 . . . . 5 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (((𝑃 𝑄) 𝑆) 𝑇) ∈ (Base‘𝐾))
261, 7latjcl 18345 . . . . 5 ((𝐾 ∈ Lat ∧ (((𝑃 𝑄) 𝑆) 𝑇) ∈ (Base‘𝐾) ∧ 𝑆 ∈ (Base‘𝐾)) → ((((𝑃 𝑄) 𝑆) 𝑇) 𝑆) ∈ (Base‘𝐾))
274, 25, 19, 26syl3anc 1373 . . . 4 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((((𝑃 𝑄) 𝑆) 𝑇) 𝑆) ∈ (Base‘𝐾))
281, 8atbase 39398 . . . . . . 7 (𝑄𝐴𝑄 ∈ (Base‘𝐾))
296, 28syl 17 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → 𝑄 ∈ (Base‘𝐾))
30 simp33 1212 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → 𝑈𝐴)
311, 7, 8hlatjcl 39476 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑇𝐴𝑈𝐴) → (𝑇 𝑈) ∈ (Base‘𝐾))
323, 12, 30, 31syl3anc 1373 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (𝑇 𝑈) ∈ (Base‘𝐾))
331, 15latmcl 18346 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑄 ∈ (Base‘𝐾) ∧ (𝑇 𝑈) ∈ (Base‘𝐾)) → (𝑄 (𝑇 𝑈)) ∈ (Base‘𝐾))
344, 29, 32, 33syl3anc 1373 . . . . 5 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (𝑄 (𝑇 𝑈)) ∈ (Base‘𝐾))
351, 7, 8hlatjcl 39476 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑈𝐴𝑆𝐴) → (𝑈 𝑆) ∈ (Base‘𝐾))
363, 30, 11, 35syl3anc 1373 . . . . 5 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (𝑈 𝑆) ∈ (Base‘𝐾))
371, 7latjcl 18345 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑄 (𝑇 𝑈)) ∈ (Base‘𝐾) ∧ (𝑈 𝑆) ∈ (Base‘𝐾)) → ((𝑄 (𝑇 𝑈)) (𝑈 𝑆)) ∈ (Base‘𝐾))
384, 34, 36, 37syl3anc 1373 . . . 4 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑄 (𝑇 𝑈)) (𝑈 𝑆)) ∈ (Base‘𝐾))
391, 2, 7latlej1 18354 . . . . . . 7 ((𝐾 ∈ Lat ∧ (𝑃 𝑄) ∈ (Base‘𝐾) ∧ 𝑆 ∈ (Base‘𝐾)) → (𝑃 𝑄) ((𝑃 𝑄) 𝑆))
404, 10, 19, 39syl3anc 1373 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (𝑃 𝑄) ((𝑃 𝑄) 𝑆))
411, 7, 8hlatjcl 39476 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑇𝐴𝑆𝐴) → (𝑇 𝑆) ∈ (Base‘𝐾))
423, 12, 11, 41syl3anc 1373 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (𝑇 𝑆) ∈ (Base‘𝐾))
431, 2, 15latmlem1 18375 . . . . . . 7 ((𝐾 ∈ Lat ∧ ((𝑃 𝑄) ∈ (Base‘𝐾) ∧ ((𝑃 𝑄) 𝑆) ∈ (Base‘𝐾) ∧ (𝑇 𝑆) ∈ (Base‘𝐾))) → ((𝑃 𝑄) ((𝑃 𝑄) 𝑆) → ((𝑃 𝑄) (𝑇 𝑆)) (((𝑃 𝑄) 𝑆) (𝑇 𝑆))))
444, 10, 21, 42, 43syl13anc 1374 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑃 𝑄) ((𝑃 𝑄) 𝑆) → ((𝑃 𝑄) (𝑇 𝑆)) (((𝑃 𝑄) 𝑆) (𝑇 𝑆))))
4540, 44mpd 15 . . . . 5 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑃 𝑄) (𝑇 𝑆)) (((𝑃 𝑄) 𝑆) (𝑇 𝑆)))
467, 8hlatjcom 39477 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → (𝑆 𝑇) = (𝑇 𝑆))
473, 11, 12, 46syl3anc 1373 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (𝑆 𝑇) = (𝑇 𝑆))
4847oveq2d 7362 . . . . 5 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑃 𝑄) (𝑆 𝑇)) = ((𝑃 𝑄) (𝑇 𝑆)))
491, 2, 7latlej2 18355 . . . . . . 7 ((𝐾 ∈ Lat ∧ (𝑃 𝑄) ∈ (Base‘𝐾) ∧ 𝑆 ∈ (Base‘𝐾)) → 𝑆 ((𝑃 𝑄) 𝑆))
504, 10, 19, 49syl3anc 1373 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → 𝑆 ((𝑃 𝑄) 𝑆))
511, 2, 7, 15, 8atmod2i2 39971 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑇𝐴 ∧ ((𝑃 𝑄) 𝑆) ∈ (Base‘𝐾) ∧ 𝑆 ∈ (Base‘𝐾)) ∧ 𝑆 ((𝑃 𝑄) 𝑆)) → ((((𝑃 𝑄) 𝑆) 𝑇) 𝑆) = (((𝑃 𝑄) 𝑆) (𝑇 𝑆)))
523, 12, 21, 19, 50, 51syl131anc 1385 . . . . 5 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((((𝑃 𝑄) 𝑆) 𝑇) 𝑆) = (((𝑃 𝑄) 𝑆) (𝑇 𝑆)))
5345, 48, 523brtr4d 5121 . . . 4 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑃 𝑄) (𝑆 𝑇)) ((((𝑃 𝑄) 𝑆) 𝑇) 𝑆))
54 hlol 39470 . . . . . . . . . . 11 (𝐾 ∈ HL → 𝐾 ∈ OL)
553, 54syl 17 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → 𝐾 ∈ OL)
561, 7, 8hlatjcl 39476 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑆𝐴) → (𝑃 𝑆) ∈ (Base‘𝐾))
573, 5, 11, 56syl3anc 1373 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (𝑃 𝑆) ∈ (Base‘𝐾))
581, 7latjcl 18345 . . . . . . . . . . 11 ((𝐾 ∈ Lat ∧ 𝑄 ∈ (Base‘𝐾) ∧ (𝑃 𝑆) ∈ (Base‘𝐾)) → (𝑄 (𝑃 𝑆)) ∈ (Base‘𝐾))
594, 29, 57, 58syl3anc 1373 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (𝑄 (𝑃 𝑆)) ∈ (Base‘𝐾))
601, 7, 8hlatjcl 39476 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ 𝑄𝐴𝑇𝐴) → (𝑄 𝑇) ∈ (Base‘𝐾))
613, 6, 12, 60syl3anc 1373 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (𝑄 𝑇) ∈ (Base‘𝐾))
621, 15latmassOLD 39338 . . . . . . . . . 10 ((𝐾 ∈ OL ∧ ((𝑄 (𝑃 𝑆)) ∈ (Base‘𝐾) ∧ (𝑄 𝑇) ∈ (Base‘𝐾) ∧ 𝑇 ∈ (Base‘𝐾))) → (((𝑄 (𝑃 𝑆)) (𝑄 𝑇)) 𝑇) = ((𝑄 (𝑃 𝑆)) ((𝑄 𝑇) 𝑇)))
6355, 59, 61, 23, 62syl13anc 1374 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (((𝑄 (𝑃 𝑆)) (𝑄 𝑇)) 𝑇) = ((𝑄 (𝑃 𝑆)) ((𝑄 𝑇) 𝑇)))
647, 8hlatjass 39479 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑆𝐴)) → ((𝑃 𝑄) 𝑆) = (𝑃 (𝑄 𝑆)))
653, 5, 6, 11, 64syl13anc 1374 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑃 𝑄) 𝑆) = (𝑃 (𝑄 𝑆)))
667, 8hlatj12 39480 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑆𝐴)) → (𝑃 (𝑄 𝑆)) = (𝑄 (𝑃 𝑆)))
673, 5, 6, 11, 66syl13anc 1374 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (𝑃 (𝑄 𝑆)) = (𝑄 (𝑃 𝑆)))
6865, 67eqtr2d 2767 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (𝑄 (𝑃 𝑆)) = ((𝑃 𝑄) 𝑆))
692, 7, 8hlatlej2 39485 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ 𝑄𝐴𝑇𝐴) → 𝑇 (𝑄 𝑇))
703, 6, 12, 69syl3anc 1373 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → 𝑇 (𝑄 𝑇))
711, 2, 15latleeqm2 18374 . . . . . . . . . . . 12 ((𝐾 ∈ Lat ∧ 𝑇 ∈ (Base‘𝐾) ∧ (𝑄 𝑇) ∈ (Base‘𝐾)) → (𝑇 (𝑄 𝑇) ↔ ((𝑄 𝑇) 𝑇) = 𝑇))
724, 23, 61, 71syl3anc 1373 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (𝑇 (𝑄 𝑇) ↔ ((𝑄 𝑇) 𝑇) = 𝑇))
7370, 72mpbid 232 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑄 𝑇) 𝑇) = 𝑇)
7468, 73oveq12d 7364 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑄 (𝑃 𝑆)) ((𝑄 𝑇) 𝑇)) = (((𝑃 𝑄) 𝑆) 𝑇))
7563, 74eqtr2d 2767 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (((𝑃 𝑄) 𝑆) 𝑇) = (((𝑄 (𝑃 𝑆)) (𝑄 𝑇)) 𝑇))
762, 7, 8hlatlej1 39484 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ 𝑄𝐴𝑇𝐴) → 𝑄 (𝑄 𝑇))
773, 6, 12, 76syl3anc 1373 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → 𝑄 (𝑄 𝑇))
781, 2, 7, 15, 8atmod1i1 39966 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ (𝑄𝐴 ∧ (𝑃 𝑆) ∈ (Base‘𝐾) ∧ (𝑄 𝑇) ∈ (Base‘𝐾)) ∧ 𝑄 (𝑄 𝑇)) → (𝑄 ((𝑃 𝑆) (𝑄 𝑇))) = ((𝑄 (𝑃 𝑆)) (𝑄 𝑇)))
793, 6, 57, 61, 77, 78syl131anc 1385 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (𝑄 ((𝑃 𝑆) (𝑄 𝑇))) = ((𝑄 (𝑃 𝑆)) (𝑄 𝑇)))
802, 7, 8hlatlej2 39485 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ 𝑈𝐴𝑄𝐴) → 𝑄 (𝑈 𝑄))
813, 30, 6, 80syl3anc 1373 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → 𝑄 (𝑈 𝑄))
82 simp13 1206 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈))
83 simp12 1205 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → 𝑄 = 𝑅)
8483oveq1d 7361 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (𝑄 𝑈) = (𝑅 𝑈))
857, 8hlatjcom 39477 . . . . . . . . . . . . . 14 ((𝐾 ∈ HL ∧ 𝑄𝐴𝑈𝐴) → (𝑄 𝑈) = (𝑈 𝑄))
863, 6, 30, 85syl3anc 1373 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (𝑄 𝑈) = (𝑈 𝑄))
8784, 86eqtr3d 2768 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (𝑅 𝑈) = (𝑈 𝑄))
8882, 87breqtrd 5115 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑃 𝑆) (𝑄 𝑇)) (𝑈 𝑄))
891, 15latmcl 18346 . . . . . . . . . . . . 13 ((𝐾 ∈ Lat ∧ (𝑃 𝑆) ∈ (Base‘𝐾) ∧ (𝑄 𝑇) ∈ (Base‘𝐾)) → ((𝑃 𝑆) (𝑄 𝑇)) ∈ (Base‘𝐾))
904, 57, 61, 89syl3anc 1373 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑃 𝑆) (𝑄 𝑇)) ∈ (Base‘𝐾))
911, 7, 8hlatjcl 39476 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ 𝑈𝐴𝑄𝐴) → (𝑈 𝑄) ∈ (Base‘𝐾))
923, 30, 6, 91syl3anc 1373 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (𝑈 𝑄) ∈ (Base‘𝐾))
931, 2, 7latjle12 18356 . . . . . . . . . . . 12 ((𝐾 ∈ Lat ∧ (𝑄 ∈ (Base‘𝐾) ∧ ((𝑃 𝑆) (𝑄 𝑇)) ∈ (Base‘𝐾) ∧ (𝑈 𝑄) ∈ (Base‘𝐾))) → ((𝑄 (𝑈 𝑄) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑈 𝑄)) ↔ (𝑄 ((𝑃 𝑆) (𝑄 𝑇))) (𝑈 𝑄)))
944, 29, 90, 92, 93syl13anc 1374 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑄 (𝑈 𝑄) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑈 𝑄)) ↔ (𝑄 ((𝑃 𝑆) (𝑄 𝑇))) (𝑈 𝑄)))
9581, 88, 94mpbi2and 712 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (𝑄 ((𝑃 𝑆) (𝑄 𝑇))) (𝑈 𝑄))
9679, 95eqbrtrrd 5113 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑄 (𝑃 𝑆)) (𝑄 𝑇)) (𝑈 𝑄))
972, 7, 8hlatlej1 39484 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ 𝑇𝐴𝑈𝐴) → 𝑇 (𝑇 𝑈))
983, 12, 30, 97syl3anc 1373 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → 𝑇 (𝑇 𝑈))
991, 15latmcl 18346 . . . . . . . . . . 11 ((𝐾 ∈ Lat ∧ (𝑄 (𝑃 𝑆)) ∈ (Base‘𝐾) ∧ (𝑄 𝑇) ∈ (Base‘𝐾)) → ((𝑄 (𝑃 𝑆)) (𝑄 𝑇)) ∈ (Base‘𝐾))
1004, 59, 61, 99syl3anc 1373 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑄 (𝑃 𝑆)) (𝑄 𝑇)) ∈ (Base‘𝐾))
1011, 2, 15latmlem12 18377 . . . . . . . . . 10 ((𝐾 ∈ Lat ∧ (((𝑄 (𝑃 𝑆)) (𝑄 𝑇)) ∈ (Base‘𝐾) ∧ (𝑈 𝑄) ∈ (Base‘𝐾)) ∧ (𝑇 ∈ (Base‘𝐾) ∧ (𝑇 𝑈) ∈ (Base‘𝐾))) → ((((𝑄 (𝑃 𝑆)) (𝑄 𝑇)) (𝑈 𝑄) ∧ 𝑇 (𝑇 𝑈)) → (((𝑄 (𝑃 𝑆)) (𝑄 𝑇)) 𝑇) ((𝑈 𝑄) (𝑇 𝑈))))
1024, 100, 92, 23, 32, 101syl122anc 1381 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((((𝑄 (𝑃 𝑆)) (𝑄 𝑇)) (𝑈 𝑄) ∧ 𝑇 (𝑇 𝑈)) → (((𝑄 (𝑃 𝑆)) (𝑄 𝑇)) 𝑇) ((𝑈 𝑄) (𝑇 𝑈))))
10396, 98, 102mp2and 699 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (((𝑄 (𝑃 𝑆)) (𝑄 𝑇)) 𝑇) ((𝑈 𝑄) (𝑇 𝑈)))
10475, 103eqbrtrd 5111 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (((𝑃 𝑄) 𝑆) 𝑇) ((𝑈 𝑄) (𝑇 𝑈)))
1052, 7, 8hlatlej2 39485 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ 𝑇𝐴𝑈𝐴) → 𝑈 (𝑇 𝑈))
1063, 12, 30, 105syl3anc 1373 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → 𝑈 (𝑇 𝑈))
1071, 2, 7, 15, 8atmod1i1 39966 . . . . . . . . 9 ((𝐾 ∈ HL ∧ (𝑈𝐴𝑄 ∈ (Base‘𝐾) ∧ (𝑇 𝑈) ∈ (Base‘𝐾)) ∧ 𝑈 (𝑇 𝑈)) → (𝑈 (𝑄 (𝑇 𝑈))) = ((𝑈 𝑄) (𝑇 𝑈)))
1083, 30, 29, 32, 106, 107syl131anc 1385 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (𝑈 (𝑄 (𝑇 𝑈))) = ((𝑈 𝑄) (𝑇 𝑈)))
1091, 8atbase 39398 . . . . . . . . . 10 (𝑈𝐴𝑈 ∈ (Base‘𝐾))
11030, 109syl 17 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → 𝑈 ∈ (Base‘𝐾))
1111, 7latjcom 18353 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ 𝑈 ∈ (Base‘𝐾) ∧ (𝑄 (𝑇 𝑈)) ∈ (Base‘𝐾)) → (𝑈 (𝑄 (𝑇 𝑈))) = ((𝑄 (𝑇 𝑈)) 𝑈))
1124, 110, 34, 111syl3anc 1373 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (𝑈 (𝑄 (𝑇 𝑈))) = ((𝑄 (𝑇 𝑈)) 𝑈))
113108, 112eqtr3d 2768 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑈 𝑄) (𝑇 𝑈)) = ((𝑄 (𝑇 𝑈)) 𝑈))
114104, 113breqtrd 5115 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (((𝑃 𝑄) 𝑆) 𝑇) ((𝑄 (𝑇 𝑈)) 𝑈))
1151, 7latjcl 18345 . . . . . . . 8 ((𝐾 ∈ Lat ∧ (𝑄 (𝑇 𝑈)) ∈ (Base‘𝐾) ∧ 𝑈 ∈ (Base‘𝐾)) → ((𝑄 (𝑇 𝑈)) 𝑈) ∈ (Base‘𝐾))
1164, 34, 110, 115syl3anc 1373 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑄 (𝑇 𝑈)) 𝑈) ∈ (Base‘𝐾))
1171, 2, 7latjlej1 18359 . . . . . . 7 ((𝐾 ∈ Lat ∧ ((((𝑃 𝑄) 𝑆) 𝑇) ∈ (Base‘𝐾) ∧ ((𝑄 (𝑇 𝑈)) 𝑈) ∈ (Base‘𝐾) ∧ 𝑆 ∈ (Base‘𝐾))) → ((((𝑃 𝑄) 𝑆) 𝑇) ((𝑄 (𝑇 𝑈)) 𝑈) → ((((𝑃 𝑄) 𝑆) 𝑇) 𝑆) (((𝑄 (𝑇 𝑈)) 𝑈) 𝑆)))
1184, 25, 116, 19, 117syl13anc 1374 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((((𝑃 𝑄) 𝑆) 𝑇) ((𝑄 (𝑇 𝑈)) 𝑈) → ((((𝑃 𝑄) 𝑆) 𝑇) 𝑆) (((𝑄 (𝑇 𝑈)) 𝑈) 𝑆)))
119114, 118mpd 15 . . . . 5 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((((𝑃 𝑄) 𝑆) 𝑇) 𝑆) (((𝑄 (𝑇 𝑈)) 𝑈) 𝑆))
1201, 7latjass 18389 . . . . . 6 ((𝐾 ∈ Lat ∧ ((𝑄 (𝑇 𝑈)) ∈ (Base‘𝐾) ∧ 𝑈 ∈ (Base‘𝐾) ∧ 𝑆 ∈ (Base‘𝐾))) → (((𝑄 (𝑇 𝑈)) 𝑈) 𝑆) = ((𝑄 (𝑇 𝑈)) (𝑈 𝑆)))
1214, 34, 110, 19, 120syl13anc 1374 . . . . 5 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (((𝑄 (𝑇 𝑈)) 𝑈) 𝑆) = ((𝑄 (𝑇 𝑈)) (𝑈 𝑆)))
122119, 121breqtrd 5115 . . . 4 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((((𝑃 𝑄) 𝑆) 𝑇) 𝑆) ((𝑄 (𝑇 𝑈)) (𝑈 𝑆)))
1231, 2, 4, 17, 27, 38, 53, 122lattrd 18352 . . 3 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑃 𝑄) (𝑆 𝑇)) ((𝑄 (𝑇 𝑈)) (𝑈 𝑆)))
1241, 2, 15latmle1 18370 . . . 4 ((𝐾 ∈ Lat ∧ (𝑃 𝑄) ∈ (Base‘𝐾) ∧ (𝑆 𝑇) ∈ (Base‘𝐾)) → ((𝑃 𝑄) (𝑆 𝑇)) (𝑃 𝑄))
1254, 10, 14, 124syl3anc 1373 . . 3 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑃 𝑄) (𝑆 𝑇)) (𝑃 𝑄))
1261, 2, 15latlem12 18372 . . . 4 ((𝐾 ∈ Lat ∧ (((𝑃 𝑄) (𝑆 𝑇)) ∈ (Base‘𝐾) ∧ ((𝑄 (𝑇 𝑈)) (𝑈 𝑆)) ∈ (Base‘𝐾) ∧ (𝑃 𝑄) ∈ (Base‘𝐾))) → ((((𝑃 𝑄) (𝑆 𝑇)) ((𝑄 (𝑇 𝑈)) (𝑈 𝑆)) ∧ ((𝑃 𝑄) (𝑆 𝑇)) (𝑃 𝑄)) ↔ ((𝑃 𝑄) (𝑆 𝑇)) (((𝑄 (𝑇 𝑈)) (𝑈 𝑆)) (𝑃 𝑄))))
1274, 17, 38, 10, 126syl13anc 1374 . . 3 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((((𝑃 𝑄) (𝑆 𝑇)) ((𝑄 (𝑇 𝑈)) (𝑈 𝑆)) ∧ ((𝑃 𝑄) (𝑆 𝑇)) (𝑃 𝑄)) ↔ ((𝑃 𝑄) (𝑆 𝑇)) (((𝑄 (𝑇 𝑈)) (𝑈 𝑆)) (𝑃 𝑄))))
128123, 125, 127mpbi2and 712 . 2 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑃 𝑄) (𝑆 𝑇)) (((𝑄 (𝑇 𝑈)) (𝑈 𝑆)) (𝑃 𝑄)))
1291, 8atbase 39398 . . . . . 6 (𝑃𝐴𝑃 ∈ (Base‘𝐾))
1305, 129syl 17 . . . . 5 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → 𝑃 ∈ (Base‘𝐾))
1311, 2, 7, 15latmlej12 18385 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑄 ∈ (Base‘𝐾) ∧ (𝑇 𝑈) ∈ (Base‘𝐾) ∧ 𝑃 ∈ (Base‘𝐾))) → (𝑄 (𝑇 𝑈)) (𝑃 𝑄))
1324, 29, 32, 130, 131syl13anc 1374 . . . 4 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (𝑄 (𝑇 𝑈)) (𝑃 𝑄))
1331, 2, 7, 15, 8llnmod1i2 39969 . . . 4 (((𝐾 ∈ HL ∧ (𝑄 (𝑇 𝑈)) ∈ (Base‘𝐾) ∧ (𝑃 𝑄) ∈ (Base‘𝐾)) ∧ (𝑈𝐴𝑆𝐴) ∧ (𝑄 (𝑇 𝑈)) (𝑃 𝑄)) → ((𝑄 (𝑇 𝑈)) ((𝑈 𝑆) (𝑃 𝑄))) = (((𝑄 (𝑇 𝑈)) (𝑈 𝑆)) (𝑃 𝑄)))
1343, 34, 10, 30, 11, 132, 133syl321anc 1394 . . 3 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑄 (𝑇 𝑈)) ((𝑈 𝑆) (𝑃 𝑄))) = (((𝑄 (𝑇 𝑈)) (𝑈 𝑆)) (𝑃 𝑄)))
1357, 8hlatjidm 39478 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑄𝐴) → (𝑄 𝑄) = 𝑄)
1363, 6, 135syl2anc 584 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (𝑄 𝑄) = 𝑄)
13783oveq2d 7362 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (𝑄 𝑄) = (𝑄 𝑅))
138136, 137eqtr3d 2768 . . . . 5 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → 𝑄 = (𝑄 𝑅))
139138oveq1d 7361 . . . 4 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (𝑄 (𝑇 𝑈)) = ((𝑄 𝑅) (𝑇 𝑈)))
1401, 15latmcom 18369 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝑈 𝑆) ∈ (Base‘𝐾) ∧ (𝑃 𝑄) ∈ (Base‘𝐾)) → ((𝑈 𝑆) (𝑃 𝑄)) = ((𝑃 𝑄) (𝑈 𝑆)))
1414, 36, 10, 140syl3anc 1373 . . . . 5 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑈 𝑆) (𝑃 𝑄)) = ((𝑃 𝑄) (𝑈 𝑆)))
1427, 8hlatjcom 39477 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → (𝑃 𝑄) = (𝑄 𝑃))
1433, 5, 6, 142syl3anc 1373 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (𝑃 𝑄) = (𝑄 𝑃))
14483oveq1d 7361 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (𝑄 𝑃) = (𝑅 𝑃))
145143, 144eqtrd 2766 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (𝑃 𝑄) = (𝑅 𝑃))
146145oveq1d 7361 . . . . 5 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑃 𝑄) (𝑈 𝑆)) = ((𝑅 𝑃) (𝑈 𝑆)))
147141, 146eqtrd 2766 . . . 4 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑈 𝑆) (𝑃 𝑄)) = ((𝑅 𝑃) (𝑈 𝑆)))
148139, 147oveq12d 7364 . . 3 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑄 (𝑇 𝑈)) ((𝑈 𝑆) (𝑃 𝑄))) = (((𝑄 𝑅) (𝑇 𝑈)) ((𝑅 𝑃) (𝑈 𝑆))))
149134, 148eqtr3d 2768 . 2 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (((𝑄 (𝑇 𝑈)) (𝑈 𝑆)) (𝑃 𝑄)) = (((𝑄 𝑅) (𝑇 𝑈)) ((𝑅 𝑃) (𝑈 𝑆))))
150128, 149breqtrd 5115 1 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑃 𝑄) (𝑆 𝑇)) (((𝑄 𝑅) (𝑇 𝑈)) ((𝑅 𝑃) (𝑈 𝑆))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111   class class class wbr 5089  cfv 6481  (class class class)co 7346  Basecbs 17120  lecple 17168  joincjn 18217  meetcmee 18218  Latclat 18337  OLcol 39283  Atomscatm 39372  HLchlt 39459
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-iin 4942  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-1st 7921  df-2nd 7922  df-proset 18200  df-poset 18219  df-plt 18234  df-lub 18250  df-glb 18251  df-join 18252  df-meet 18253  df-p0 18329  df-lat 18338  df-clat 18405  df-oposet 39285  df-ol 39287  df-oml 39288  df-covers 39375  df-ats 39376  df-atl 39407  df-cvlat 39431  df-hlat 39460  df-psubsp 39612  df-pmap 39613  df-padd 39905
This theorem is referenced by:  dalawlem13  39992
  Copyright terms: Public domain W3C validator