Proof of Theorem dalawlem12
| Step | Hyp | Ref
| Expression |
| 1 | | eqid 2737 |
. . . 4
⊢
(Base‘𝐾) =
(Base‘𝐾) |
| 2 | | dalawlem.l |
. . . 4
⊢ ≤ =
(le‘𝐾) |
| 3 | | simp11 1204 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → 𝐾 ∈ HL) |
| 4 | 3 | hllatd 39365 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → 𝐾 ∈ Lat) |
| 5 | | simp21 1207 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → 𝑃 ∈ 𝐴) |
| 6 | | simp22 1208 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → 𝑄 ∈ 𝐴) |
| 7 | | dalawlem.j |
. . . . . . 7
⊢ ∨ =
(join‘𝐾) |
| 8 | | dalawlem.a |
. . . . . . 7
⊢ 𝐴 = (Atoms‘𝐾) |
| 9 | 1, 7, 8 | hlatjcl 39368 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (𝑃 ∨ 𝑄) ∈ (Base‘𝐾)) |
| 10 | 3, 5, 6, 9 | syl3anc 1373 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → (𝑃 ∨ 𝑄) ∈ (Base‘𝐾)) |
| 11 | | simp31 1210 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → 𝑆 ∈ 𝐴) |
| 12 | | simp32 1211 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → 𝑇 ∈ 𝐴) |
| 13 | 1, 7, 8 | hlatjcl 39368 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) → (𝑆 ∨ 𝑇) ∈ (Base‘𝐾)) |
| 14 | 3, 11, 12, 13 | syl3anc 1373 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → (𝑆 ∨ 𝑇) ∈ (Base‘𝐾)) |
| 15 | | dalawlem.m |
. . . . . 6
⊢ ∧ =
(meet‘𝐾) |
| 16 | 1, 15 | latmcl 18485 |
. . . . 5
⊢ ((𝐾 ∈ Lat ∧ (𝑃 ∨ 𝑄) ∈ (Base‘𝐾) ∧ (𝑆 ∨ 𝑇) ∈ (Base‘𝐾)) → ((𝑃 ∨ 𝑄) ∧ (𝑆 ∨ 𝑇)) ∈ (Base‘𝐾)) |
| 17 | 4, 10, 14, 16 | syl3anc 1373 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → ((𝑃 ∨ 𝑄) ∧ (𝑆 ∨ 𝑇)) ∈ (Base‘𝐾)) |
| 18 | 1, 8 | atbase 39290 |
. . . . . . . 8
⊢ (𝑆 ∈ 𝐴 → 𝑆 ∈ (Base‘𝐾)) |
| 19 | 11, 18 | syl 17 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → 𝑆 ∈ (Base‘𝐾)) |
| 20 | 1, 7 | latjcl 18484 |
. . . . . . 7
⊢ ((𝐾 ∈ Lat ∧ (𝑃 ∨ 𝑄) ∈ (Base‘𝐾) ∧ 𝑆 ∈ (Base‘𝐾)) → ((𝑃 ∨ 𝑄) ∨ 𝑆) ∈ (Base‘𝐾)) |
| 21 | 4, 10, 19, 20 | syl3anc 1373 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → ((𝑃 ∨ 𝑄) ∨ 𝑆) ∈ (Base‘𝐾)) |
| 22 | 1, 8 | atbase 39290 |
. . . . . . 7
⊢ (𝑇 ∈ 𝐴 → 𝑇 ∈ (Base‘𝐾)) |
| 23 | 12, 22 | syl 17 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → 𝑇 ∈ (Base‘𝐾)) |
| 24 | 1, 15 | latmcl 18485 |
. . . . . 6
⊢ ((𝐾 ∈ Lat ∧ ((𝑃 ∨ 𝑄) ∨ 𝑆) ∈ (Base‘𝐾) ∧ 𝑇 ∈ (Base‘𝐾)) → (((𝑃 ∨ 𝑄) ∨ 𝑆) ∧ 𝑇) ∈ (Base‘𝐾)) |
| 25 | 4, 21, 23, 24 | syl3anc 1373 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → (((𝑃 ∨ 𝑄) ∨ 𝑆) ∧ 𝑇) ∈ (Base‘𝐾)) |
| 26 | 1, 7 | latjcl 18484 |
. . . . 5
⊢ ((𝐾 ∈ Lat ∧ (((𝑃 ∨ 𝑄) ∨ 𝑆) ∧ 𝑇) ∈ (Base‘𝐾) ∧ 𝑆 ∈ (Base‘𝐾)) → ((((𝑃 ∨ 𝑄) ∨ 𝑆) ∧ 𝑇) ∨ 𝑆) ∈ (Base‘𝐾)) |
| 27 | 4, 25, 19, 26 | syl3anc 1373 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → ((((𝑃 ∨ 𝑄) ∨ 𝑆) ∧ 𝑇) ∨ 𝑆) ∈ (Base‘𝐾)) |
| 28 | 1, 8 | atbase 39290 |
. . . . . . 7
⊢ (𝑄 ∈ 𝐴 → 𝑄 ∈ (Base‘𝐾)) |
| 29 | 6, 28 | syl 17 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → 𝑄 ∈ (Base‘𝐾)) |
| 30 | | simp33 1212 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → 𝑈 ∈ 𝐴) |
| 31 | 1, 7, 8 | hlatjcl 39368 |
. . . . . . 7
⊢ ((𝐾 ∈ HL ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴) → (𝑇 ∨ 𝑈) ∈ (Base‘𝐾)) |
| 32 | 3, 12, 30, 31 | syl3anc 1373 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → (𝑇 ∨ 𝑈) ∈ (Base‘𝐾)) |
| 33 | 1, 15 | latmcl 18485 |
. . . . . 6
⊢ ((𝐾 ∈ Lat ∧ 𝑄 ∈ (Base‘𝐾) ∧ (𝑇 ∨ 𝑈) ∈ (Base‘𝐾)) → (𝑄 ∧ (𝑇 ∨ 𝑈)) ∈ (Base‘𝐾)) |
| 34 | 4, 29, 32, 33 | syl3anc 1373 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → (𝑄 ∧ (𝑇 ∨ 𝑈)) ∈ (Base‘𝐾)) |
| 35 | 1, 7, 8 | hlatjcl 39368 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧ 𝑈 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) → (𝑈 ∨ 𝑆) ∈ (Base‘𝐾)) |
| 36 | 3, 30, 11, 35 | syl3anc 1373 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → (𝑈 ∨ 𝑆) ∈ (Base‘𝐾)) |
| 37 | 1, 7 | latjcl 18484 |
. . . . 5
⊢ ((𝐾 ∈ Lat ∧ (𝑄 ∧ (𝑇 ∨ 𝑈)) ∈ (Base‘𝐾) ∧ (𝑈 ∨ 𝑆) ∈ (Base‘𝐾)) → ((𝑄 ∧ (𝑇 ∨ 𝑈)) ∨ (𝑈 ∨ 𝑆)) ∈ (Base‘𝐾)) |
| 38 | 4, 34, 36, 37 | syl3anc 1373 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → ((𝑄 ∧ (𝑇 ∨ 𝑈)) ∨ (𝑈 ∨ 𝑆)) ∈ (Base‘𝐾)) |
| 39 | 1, 2, 7 | latlej1 18493 |
. . . . . . 7
⊢ ((𝐾 ∈ Lat ∧ (𝑃 ∨ 𝑄) ∈ (Base‘𝐾) ∧ 𝑆 ∈ (Base‘𝐾)) → (𝑃 ∨ 𝑄) ≤ ((𝑃 ∨ 𝑄) ∨ 𝑆)) |
| 40 | 4, 10, 19, 39 | syl3anc 1373 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → (𝑃 ∨ 𝑄) ≤ ((𝑃 ∨ 𝑄) ∨ 𝑆)) |
| 41 | 1, 7, 8 | hlatjcl 39368 |
. . . . . . . 8
⊢ ((𝐾 ∈ HL ∧ 𝑇 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) → (𝑇 ∨ 𝑆) ∈ (Base‘𝐾)) |
| 42 | 3, 12, 11, 41 | syl3anc 1373 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → (𝑇 ∨ 𝑆) ∈ (Base‘𝐾)) |
| 43 | 1, 2, 15 | latmlem1 18514 |
. . . . . . 7
⊢ ((𝐾 ∈ Lat ∧ ((𝑃 ∨ 𝑄) ∈ (Base‘𝐾) ∧ ((𝑃 ∨ 𝑄) ∨ 𝑆) ∈ (Base‘𝐾) ∧ (𝑇 ∨ 𝑆) ∈ (Base‘𝐾))) → ((𝑃 ∨ 𝑄) ≤ ((𝑃 ∨ 𝑄) ∨ 𝑆) → ((𝑃 ∨ 𝑄) ∧ (𝑇 ∨ 𝑆)) ≤ (((𝑃 ∨ 𝑄) ∨ 𝑆) ∧ (𝑇 ∨ 𝑆)))) |
| 44 | 4, 10, 21, 42, 43 | syl13anc 1374 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → ((𝑃 ∨ 𝑄) ≤ ((𝑃 ∨ 𝑄) ∨ 𝑆) → ((𝑃 ∨ 𝑄) ∧ (𝑇 ∨ 𝑆)) ≤ (((𝑃 ∨ 𝑄) ∨ 𝑆) ∧ (𝑇 ∨ 𝑆)))) |
| 45 | 40, 44 | mpd 15 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → ((𝑃 ∨ 𝑄) ∧ (𝑇 ∨ 𝑆)) ≤ (((𝑃 ∨ 𝑄) ∨ 𝑆) ∧ (𝑇 ∨ 𝑆))) |
| 46 | 7, 8 | hlatjcom 39369 |
. . . . . . 7
⊢ ((𝐾 ∈ HL ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) → (𝑆 ∨ 𝑇) = (𝑇 ∨ 𝑆)) |
| 47 | 3, 11, 12, 46 | syl3anc 1373 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → (𝑆 ∨ 𝑇) = (𝑇 ∨ 𝑆)) |
| 48 | 47 | oveq2d 7447 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → ((𝑃 ∨ 𝑄) ∧ (𝑆 ∨ 𝑇)) = ((𝑃 ∨ 𝑄) ∧ (𝑇 ∨ 𝑆))) |
| 49 | 1, 2, 7 | latlej2 18494 |
. . . . . . 7
⊢ ((𝐾 ∈ Lat ∧ (𝑃 ∨ 𝑄) ∈ (Base‘𝐾) ∧ 𝑆 ∈ (Base‘𝐾)) → 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑆)) |
| 50 | 4, 10, 19, 49 | syl3anc 1373 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑆)) |
| 51 | 1, 2, 7, 15, 8 | atmod2i2 39864 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧ (𝑇 ∈ 𝐴 ∧ ((𝑃 ∨ 𝑄) ∨ 𝑆) ∈ (Base‘𝐾) ∧ 𝑆 ∈ (Base‘𝐾)) ∧ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑆)) → ((((𝑃 ∨ 𝑄) ∨ 𝑆) ∧ 𝑇) ∨ 𝑆) = (((𝑃 ∨ 𝑄) ∨ 𝑆) ∧ (𝑇 ∨ 𝑆))) |
| 52 | 3, 12, 21, 19, 50, 51 | syl131anc 1385 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → ((((𝑃 ∨ 𝑄) ∨ 𝑆) ∧ 𝑇) ∨ 𝑆) = (((𝑃 ∨ 𝑄) ∨ 𝑆) ∧ (𝑇 ∨ 𝑆))) |
| 53 | 45, 48, 52 | 3brtr4d 5175 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → ((𝑃 ∨ 𝑄) ∧ (𝑆 ∨ 𝑇)) ≤ ((((𝑃 ∨ 𝑄) ∨ 𝑆) ∧ 𝑇) ∨ 𝑆)) |
| 54 | | hlol 39362 |
. . . . . . . . . . 11
⊢ (𝐾 ∈ HL → 𝐾 ∈ OL) |
| 55 | 3, 54 | syl 17 |
. . . . . . . . . 10
⊢ (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → 𝐾 ∈ OL) |
| 56 | 1, 7, 8 | hlatjcl 39368 |
. . . . . . . . . . . 12
⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) → (𝑃 ∨ 𝑆) ∈ (Base‘𝐾)) |
| 57 | 3, 5, 11, 56 | syl3anc 1373 |
. . . . . . . . . . 11
⊢ (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → (𝑃 ∨ 𝑆) ∈ (Base‘𝐾)) |
| 58 | 1, 7 | latjcl 18484 |
. . . . . . . . . . 11
⊢ ((𝐾 ∈ Lat ∧ 𝑄 ∈ (Base‘𝐾) ∧ (𝑃 ∨ 𝑆) ∈ (Base‘𝐾)) → (𝑄 ∨ (𝑃 ∨ 𝑆)) ∈ (Base‘𝐾)) |
| 59 | 4, 29, 57, 58 | syl3anc 1373 |
. . . . . . . . . 10
⊢ (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → (𝑄 ∨ (𝑃 ∨ 𝑆)) ∈ (Base‘𝐾)) |
| 60 | 1, 7, 8 | hlatjcl 39368 |
. . . . . . . . . . 11
⊢ ((𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) → (𝑄 ∨ 𝑇) ∈ (Base‘𝐾)) |
| 61 | 3, 6, 12, 60 | syl3anc 1373 |
. . . . . . . . . 10
⊢ (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → (𝑄 ∨ 𝑇) ∈ (Base‘𝐾)) |
| 62 | 1, 15 | latmassOLD 39230 |
. . . . . . . . . 10
⊢ ((𝐾 ∈ OL ∧ ((𝑄 ∨ (𝑃 ∨ 𝑆)) ∈ (Base‘𝐾) ∧ (𝑄 ∨ 𝑇) ∈ (Base‘𝐾) ∧ 𝑇 ∈ (Base‘𝐾))) → (((𝑄 ∨ (𝑃 ∨ 𝑆)) ∧ (𝑄 ∨ 𝑇)) ∧ 𝑇) = ((𝑄 ∨ (𝑃 ∨ 𝑆)) ∧ ((𝑄 ∨ 𝑇) ∧ 𝑇))) |
| 63 | 55, 59, 61, 23, 62 | syl13anc 1374 |
. . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → (((𝑄 ∨ (𝑃 ∨ 𝑆)) ∧ (𝑄 ∨ 𝑇)) ∧ 𝑇) = ((𝑄 ∨ (𝑃 ∨ 𝑆)) ∧ ((𝑄 ∨ 𝑇) ∧ 𝑇))) |
| 64 | 7, 8 | hlatjass 39371 |
. . . . . . . . . . . 12
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) → ((𝑃 ∨ 𝑄) ∨ 𝑆) = (𝑃 ∨ (𝑄 ∨ 𝑆))) |
| 65 | 3, 5, 6, 11, 64 | syl13anc 1374 |
. . . . . . . . . . 11
⊢ (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → ((𝑃 ∨ 𝑄) ∨ 𝑆) = (𝑃 ∨ (𝑄 ∨ 𝑆))) |
| 66 | 7, 8 | hlatj12 39372 |
. . . . . . . . . . . 12
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) → (𝑃 ∨ (𝑄 ∨ 𝑆)) = (𝑄 ∨ (𝑃 ∨ 𝑆))) |
| 67 | 3, 5, 6, 11, 66 | syl13anc 1374 |
. . . . . . . . . . 11
⊢ (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → (𝑃 ∨ (𝑄 ∨ 𝑆)) = (𝑄 ∨ (𝑃 ∨ 𝑆))) |
| 68 | 65, 67 | eqtr2d 2778 |
. . . . . . . . . 10
⊢ (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → (𝑄 ∨ (𝑃 ∨ 𝑆)) = ((𝑃 ∨ 𝑄) ∨ 𝑆)) |
| 69 | 2, 7, 8 | hlatlej2 39377 |
. . . . . . . . . . . 12
⊢ ((𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) → 𝑇 ≤ (𝑄 ∨ 𝑇)) |
| 70 | 3, 6, 12, 69 | syl3anc 1373 |
. . . . . . . . . . 11
⊢ (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → 𝑇 ≤ (𝑄 ∨ 𝑇)) |
| 71 | 1, 2, 15 | latleeqm2 18513 |
. . . . . . . . . . . 12
⊢ ((𝐾 ∈ Lat ∧ 𝑇 ∈ (Base‘𝐾) ∧ (𝑄 ∨ 𝑇) ∈ (Base‘𝐾)) → (𝑇 ≤ (𝑄 ∨ 𝑇) ↔ ((𝑄 ∨ 𝑇) ∧ 𝑇) = 𝑇)) |
| 72 | 4, 23, 61, 71 | syl3anc 1373 |
. . . . . . . . . . 11
⊢ (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → (𝑇 ≤ (𝑄 ∨ 𝑇) ↔ ((𝑄 ∨ 𝑇) ∧ 𝑇) = 𝑇)) |
| 73 | 70, 72 | mpbid 232 |
. . . . . . . . . 10
⊢ (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → ((𝑄 ∨ 𝑇) ∧ 𝑇) = 𝑇) |
| 74 | 68, 73 | oveq12d 7449 |
. . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → ((𝑄 ∨ (𝑃 ∨ 𝑆)) ∧ ((𝑄 ∨ 𝑇) ∧ 𝑇)) = (((𝑃 ∨ 𝑄) ∨ 𝑆) ∧ 𝑇)) |
| 75 | 63, 74 | eqtr2d 2778 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → (((𝑃 ∨ 𝑄) ∨ 𝑆) ∧ 𝑇) = (((𝑄 ∨ (𝑃 ∨ 𝑆)) ∧ (𝑄 ∨ 𝑇)) ∧ 𝑇)) |
| 76 | 2, 7, 8 | hlatlej1 39376 |
. . . . . . . . . . . 12
⊢ ((𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) → 𝑄 ≤ (𝑄 ∨ 𝑇)) |
| 77 | 3, 6, 12, 76 | syl3anc 1373 |
. . . . . . . . . . 11
⊢ (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → 𝑄 ≤ (𝑄 ∨ 𝑇)) |
| 78 | 1, 2, 7, 15, 8 | atmod1i1 39859 |
. . . . . . . . . . 11
⊢ ((𝐾 ∈ HL ∧ (𝑄 ∈ 𝐴 ∧ (𝑃 ∨ 𝑆) ∈ (Base‘𝐾) ∧ (𝑄 ∨ 𝑇) ∈ (Base‘𝐾)) ∧ 𝑄 ≤ (𝑄 ∨ 𝑇)) → (𝑄 ∨ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇))) = ((𝑄 ∨ (𝑃 ∨ 𝑆)) ∧ (𝑄 ∨ 𝑇))) |
| 79 | 3, 6, 57, 61, 77, 78 | syl131anc 1385 |
. . . . . . . . . 10
⊢ (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → (𝑄 ∨ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇))) = ((𝑄 ∨ (𝑃 ∨ 𝑆)) ∧ (𝑄 ∨ 𝑇))) |
| 80 | 2, 7, 8 | hlatlej2 39377 |
. . . . . . . . . . . 12
⊢ ((𝐾 ∈ HL ∧ 𝑈 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → 𝑄 ≤ (𝑈 ∨ 𝑄)) |
| 81 | 3, 30, 6, 80 | syl3anc 1373 |
. . . . . . . . . . 11
⊢ (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → 𝑄 ≤ (𝑈 ∨ 𝑄)) |
| 82 | | simp13 1206 |
. . . . . . . . . . . 12
⊢ (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) |
| 83 | | simp12 1205 |
. . . . . . . . . . . . . 14
⊢ (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → 𝑄 = 𝑅) |
| 84 | 83 | oveq1d 7446 |
. . . . . . . . . . . . 13
⊢ (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → (𝑄 ∨ 𝑈) = (𝑅 ∨ 𝑈)) |
| 85 | 7, 8 | hlatjcom 39369 |
. . . . . . . . . . . . . 14
⊢ ((𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴) → (𝑄 ∨ 𝑈) = (𝑈 ∨ 𝑄)) |
| 86 | 3, 6, 30, 85 | syl3anc 1373 |
. . . . . . . . . . . . 13
⊢ (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → (𝑄 ∨ 𝑈) = (𝑈 ∨ 𝑄)) |
| 87 | 84, 86 | eqtr3d 2779 |
. . . . . . . . . . . 12
⊢ (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → (𝑅 ∨ 𝑈) = (𝑈 ∨ 𝑄)) |
| 88 | 82, 87 | breqtrd 5169 |
. . . . . . . . . . 11
⊢ (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑈 ∨ 𝑄)) |
| 89 | 1, 15 | latmcl 18485 |
. . . . . . . . . . . . 13
⊢ ((𝐾 ∈ Lat ∧ (𝑃 ∨ 𝑆) ∈ (Base‘𝐾) ∧ (𝑄 ∨ 𝑇) ∈ (Base‘𝐾)) → ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ∈ (Base‘𝐾)) |
| 90 | 4, 57, 61, 89 | syl3anc 1373 |
. . . . . . . . . . . 12
⊢ (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ∈ (Base‘𝐾)) |
| 91 | 1, 7, 8 | hlatjcl 39368 |
. . . . . . . . . . . . 13
⊢ ((𝐾 ∈ HL ∧ 𝑈 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (𝑈 ∨ 𝑄) ∈ (Base‘𝐾)) |
| 92 | 3, 30, 6, 91 | syl3anc 1373 |
. . . . . . . . . . . 12
⊢ (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → (𝑈 ∨ 𝑄) ∈ (Base‘𝐾)) |
| 93 | 1, 2, 7 | latjle12 18495 |
. . . . . . . . . . . 12
⊢ ((𝐾 ∈ Lat ∧ (𝑄 ∈ (Base‘𝐾) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ∈ (Base‘𝐾) ∧ (𝑈 ∨ 𝑄) ∈ (Base‘𝐾))) → ((𝑄 ≤ (𝑈 ∨ 𝑄) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑈 ∨ 𝑄)) ↔ (𝑄 ∨ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇))) ≤ (𝑈 ∨ 𝑄))) |
| 94 | 4, 29, 90, 92, 93 | syl13anc 1374 |
. . . . . . . . . . 11
⊢ (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → ((𝑄 ≤ (𝑈 ∨ 𝑄) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑈 ∨ 𝑄)) ↔ (𝑄 ∨ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇))) ≤ (𝑈 ∨ 𝑄))) |
| 95 | 81, 88, 94 | mpbi2and 712 |
. . . . . . . . . 10
⊢ (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → (𝑄 ∨ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇))) ≤ (𝑈 ∨ 𝑄)) |
| 96 | 79, 95 | eqbrtrrd 5167 |
. . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → ((𝑄 ∨ (𝑃 ∨ 𝑆)) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑈 ∨ 𝑄)) |
| 97 | 2, 7, 8 | hlatlej1 39376 |
. . . . . . . . . 10
⊢ ((𝐾 ∈ HL ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴) → 𝑇 ≤ (𝑇 ∨ 𝑈)) |
| 98 | 3, 12, 30, 97 | syl3anc 1373 |
. . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → 𝑇 ≤ (𝑇 ∨ 𝑈)) |
| 99 | 1, 15 | latmcl 18485 |
. . . . . . . . . . 11
⊢ ((𝐾 ∈ Lat ∧ (𝑄 ∨ (𝑃 ∨ 𝑆)) ∈ (Base‘𝐾) ∧ (𝑄 ∨ 𝑇) ∈ (Base‘𝐾)) → ((𝑄 ∨ (𝑃 ∨ 𝑆)) ∧ (𝑄 ∨ 𝑇)) ∈ (Base‘𝐾)) |
| 100 | 4, 59, 61, 99 | syl3anc 1373 |
. . . . . . . . . 10
⊢ (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → ((𝑄 ∨ (𝑃 ∨ 𝑆)) ∧ (𝑄 ∨ 𝑇)) ∈ (Base‘𝐾)) |
| 101 | 1, 2, 15 | latmlem12 18516 |
. . . . . . . . . 10
⊢ ((𝐾 ∈ Lat ∧ (((𝑄 ∨ (𝑃 ∨ 𝑆)) ∧ (𝑄 ∨ 𝑇)) ∈ (Base‘𝐾) ∧ (𝑈 ∨ 𝑄) ∈ (Base‘𝐾)) ∧ (𝑇 ∈ (Base‘𝐾) ∧ (𝑇 ∨ 𝑈) ∈ (Base‘𝐾))) → ((((𝑄 ∨ (𝑃 ∨ 𝑆)) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑈 ∨ 𝑄) ∧ 𝑇 ≤ (𝑇 ∨ 𝑈)) → (((𝑄 ∨ (𝑃 ∨ 𝑆)) ∧ (𝑄 ∨ 𝑇)) ∧ 𝑇) ≤ ((𝑈 ∨ 𝑄) ∧ (𝑇 ∨ 𝑈)))) |
| 102 | 4, 100, 92, 23, 32, 101 | syl122anc 1381 |
. . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → ((((𝑄 ∨ (𝑃 ∨ 𝑆)) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑈 ∨ 𝑄) ∧ 𝑇 ≤ (𝑇 ∨ 𝑈)) → (((𝑄 ∨ (𝑃 ∨ 𝑆)) ∧ (𝑄 ∨ 𝑇)) ∧ 𝑇) ≤ ((𝑈 ∨ 𝑄) ∧ (𝑇 ∨ 𝑈)))) |
| 103 | 96, 98, 102 | mp2and 699 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → (((𝑄 ∨ (𝑃 ∨ 𝑆)) ∧ (𝑄 ∨ 𝑇)) ∧ 𝑇) ≤ ((𝑈 ∨ 𝑄) ∧ (𝑇 ∨ 𝑈))) |
| 104 | 75, 103 | eqbrtrd 5165 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → (((𝑃 ∨ 𝑄) ∨ 𝑆) ∧ 𝑇) ≤ ((𝑈 ∨ 𝑄) ∧ (𝑇 ∨ 𝑈))) |
| 105 | 2, 7, 8 | hlatlej2 39377 |
. . . . . . . . . 10
⊢ ((𝐾 ∈ HL ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴) → 𝑈 ≤ (𝑇 ∨ 𝑈)) |
| 106 | 3, 12, 30, 105 | syl3anc 1373 |
. . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → 𝑈 ≤ (𝑇 ∨ 𝑈)) |
| 107 | 1, 2, 7, 15, 8 | atmod1i1 39859 |
. . . . . . . . 9
⊢ ((𝐾 ∈ HL ∧ (𝑈 ∈ 𝐴 ∧ 𝑄 ∈ (Base‘𝐾) ∧ (𝑇 ∨ 𝑈) ∈ (Base‘𝐾)) ∧ 𝑈 ≤ (𝑇 ∨ 𝑈)) → (𝑈 ∨ (𝑄 ∧ (𝑇 ∨ 𝑈))) = ((𝑈 ∨ 𝑄) ∧ (𝑇 ∨ 𝑈))) |
| 108 | 3, 30, 29, 32, 106, 107 | syl131anc 1385 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → (𝑈 ∨ (𝑄 ∧ (𝑇 ∨ 𝑈))) = ((𝑈 ∨ 𝑄) ∧ (𝑇 ∨ 𝑈))) |
| 109 | 1, 8 | atbase 39290 |
. . . . . . . . . 10
⊢ (𝑈 ∈ 𝐴 → 𝑈 ∈ (Base‘𝐾)) |
| 110 | 30, 109 | syl 17 |
. . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → 𝑈 ∈ (Base‘𝐾)) |
| 111 | 1, 7 | latjcom 18492 |
. . . . . . . . 9
⊢ ((𝐾 ∈ Lat ∧ 𝑈 ∈ (Base‘𝐾) ∧ (𝑄 ∧ (𝑇 ∨ 𝑈)) ∈ (Base‘𝐾)) → (𝑈 ∨ (𝑄 ∧ (𝑇 ∨ 𝑈))) = ((𝑄 ∧ (𝑇 ∨ 𝑈)) ∨ 𝑈)) |
| 112 | 4, 110, 34, 111 | syl3anc 1373 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → (𝑈 ∨ (𝑄 ∧ (𝑇 ∨ 𝑈))) = ((𝑄 ∧ (𝑇 ∨ 𝑈)) ∨ 𝑈)) |
| 113 | 108, 112 | eqtr3d 2779 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → ((𝑈 ∨ 𝑄) ∧ (𝑇 ∨ 𝑈)) = ((𝑄 ∧ (𝑇 ∨ 𝑈)) ∨ 𝑈)) |
| 114 | 104, 113 | breqtrd 5169 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → (((𝑃 ∨ 𝑄) ∨ 𝑆) ∧ 𝑇) ≤ ((𝑄 ∧ (𝑇 ∨ 𝑈)) ∨ 𝑈)) |
| 115 | 1, 7 | latjcl 18484 |
. . . . . . . 8
⊢ ((𝐾 ∈ Lat ∧ (𝑄 ∧ (𝑇 ∨ 𝑈)) ∈ (Base‘𝐾) ∧ 𝑈 ∈ (Base‘𝐾)) → ((𝑄 ∧ (𝑇 ∨ 𝑈)) ∨ 𝑈) ∈ (Base‘𝐾)) |
| 116 | 4, 34, 110, 115 | syl3anc 1373 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → ((𝑄 ∧ (𝑇 ∨ 𝑈)) ∨ 𝑈) ∈ (Base‘𝐾)) |
| 117 | 1, 2, 7 | latjlej1 18498 |
. . . . . . 7
⊢ ((𝐾 ∈ Lat ∧ ((((𝑃 ∨ 𝑄) ∨ 𝑆) ∧ 𝑇) ∈ (Base‘𝐾) ∧ ((𝑄 ∧ (𝑇 ∨ 𝑈)) ∨ 𝑈) ∈ (Base‘𝐾) ∧ 𝑆 ∈ (Base‘𝐾))) → ((((𝑃 ∨ 𝑄) ∨ 𝑆) ∧ 𝑇) ≤ ((𝑄 ∧ (𝑇 ∨ 𝑈)) ∨ 𝑈) → ((((𝑃 ∨ 𝑄) ∨ 𝑆) ∧ 𝑇) ∨ 𝑆) ≤ (((𝑄 ∧ (𝑇 ∨ 𝑈)) ∨ 𝑈) ∨ 𝑆))) |
| 118 | 4, 25, 116, 19, 117 | syl13anc 1374 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → ((((𝑃 ∨ 𝑄) ∨ 𝑆) ∧ 𝑇) ≤ ((𝑄 ∧ (𝑇 ∨ 𝑈)) ∨ 𝑈) → ((((𝑃 ∨ 𝑄) ∨ 𝑆) ∧ 𝑇) ∨ 𝑆) ≤ (((𝑄 ∧ (𝑇 ∨ 𝑈)) ∨ 𝑈) ∨ 𝑆))) |
| 119 | 114, 118 | mpd 15 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → ((((𝑃 ∨ 𝑄) ∨ 𝑆) ∧ 𝑇) ∨ 𝑆) ≤ (((𝑄 ∧ (𝑇 ∨ 𝑈)) ∨ 𝑈) ∨ 𝑆)) |
| 120 | 1, 7 | latjass 18528 |
. . . . . 6
⊢ ((𝐾 ∈ Lat ∧ ((𝑄 ∧ (𝑇 ∨ 𝑈)) ∈ (Base‘𝐾) ∧ 𝑈 ∈ (Base‘𝐾) ∧ 𝑆 ∈ (Base‘𝐾))) → (((𝑄 ∧ (𝑇 ∨ 𝑈)) ∨ 𝑈) ∨ 𝑆) = ((𝑄 ∧ (𝑇 ∨ 𝑈)) ∨ (𝑈 ∨ 𝑆))) |
| 121 | 4, 34, 110, 19, 120 | syl13anc 1374 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → (((𝑄 ∧ (𝑇 ∨ 𝑈)) ∨ 𝑈) ∨ 𝑆) = ((𝑄 ∧ (𝑇 ∨ 𝑈)) ∨ (𝑈 ∨ 𝑆))) |
| 122 | 119, 121 | breqtrd 5169 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → ((((𝑃 ∨ 𝑄) ∨ 𝑆) ∧ 𝑇) ∨ 𝑆) ≤ ((𝑄 ∧ (𝑇 ∨ 𝑈)) ∨ (𝑈 ∨ 𝑆))) |
| 123 | 1, 2, 4, 17, 27, 38, 53, 122 | lattrd 18491 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → ((𝑃 ∨ 𝑄) ∧ (𝑆 ∨ 𝑇)) ≤ ((𝑄 ∧ (𝑇 ∨ 𝑈)) ∨ (𝑈 ∨ 𝑆))) |
| 124 | 1, 2, 15 | latmle1 18509 |
. . . 4
⊢ ((𝐾 ∈ Lat ∧ (𝑃 ∨ 𝑄) ∈ (Base‘𝐾) ∧ (𝑆 ∨ 𝑇) ∈ (Base‘𝐾)) → ((𝑃 ∨ 𝑄) ∧ (𝑆 ∨ 𝑇)) ≤ (𝑃 ∨ 𝑄)) |
| 125 | 4, 10, 14, 124 | syl3anc 1373 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → ((𝑃 ∨ 𝑄) ∧ (𝑆 ∨ 𝑇)) ≤ (𝑃 ∨ 𝑄)) |
| 126 | 1, 2, 15 | latlem12 18511 |
. . . 4
⊢ ((𝐾 ∈ Lat ∧ (((𝑃 ∨ 𝑄) ∧ (𝑆 ∨ 𝑇)) ∈ (Base‘𝐾) ∧ ((𝑄 ∧ (𝑇 ∨ 𝑈)) ∨ (𝑈 ∨ 𝑆)) ∈ (Base‘𝐾) ∧ (𝑃 ∨ 𝑄) ∈ (Base‘𝐾))) → ((((𝑃 ∨ 𝑄) ∧ (𝑆 ∨ 𝑇)) ≤ ((𝑄 ∧ (𝑇 ∨ 𝑈)) ∨ (𝑈 ∨ 𝑆)) ∧ ((𝑃 ∨ 𝑄) ∧ (𝑆 ∨ 𝑇)) ≤ (𝑃 ∨ 𝑄)) ↔ ((𝑃 ∨ 𝑄) ∧ (𝑆 ∨ 𝑇)) ≤ (((𝑄 ∧ (𝑇 ∨ 𝑈)) ∨ (𝑈 ∨ 𝑆)) ∧ (𝑃 ∨ 𝑄)))) |
| 127 | 4, 17, 38, 10, 126 | syl13anc 1374 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → ((((𝑃 ∨ 𝑄) ∧ (𝑆 ∨ 𝑇)) ≤ ((𝑄 ∧ (𝑇 ∨ 𝑈)) ∨ (𝑈 ∨ 𝑆)) ∧ ((𝑃 ∨ 𝑄) ∧ (𝑆 ∨ 𝑇)) ≤ (𝑃 ∨ 𝑄)) ↔ ((𝑃 ∨ 𝑄) ∧ (𝑆 ∨ 𝑇)) ≤ (((𝑄 ∧ (𝑇 ∨ 𝑈)) ∨ (𝑈 ∨ 𝑆)) ∧ (𝑃 ∨ 𝑄)))) |
| 128 | 123, 125,
127 | mpbi2and 712 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → ((𝑃 ∨ 𝑄) ∧ (𝑆 ∨ 𝑇)) ≤ (((𝑄 ∧ (𝑇 ∨ 𝑈)) ∨ (𝑈 ∨ 𝑆)) ∧ (𝑃 ∨ 𝑄))) |
| 129 | 1, 8 | atbase 39290 |
. . . . . 6
⊢ (𝑃 ∈ 𝐴 → 𝑃 ∈ (Base‘𝐾)) |
| 130 | 5, 129 | syl 17 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → 𝑃 ∈ (Base‘𝐾)) |
| 131 | 1, 2, 7, 15 | latmlej12 18524 |
. . . . 5
⊢ ((𝐾 ∈ Lat ∧ (𝑄 ∈ (Base‘𝐾) ∧ (𝑇 ∨ 𝑈) ∈ (Base‘𝐾) ∧ 𝑃 ∈ (Base‘𝐾))) → (𝑄 ∧ (𝑇 ∨ 𝑈)) ≤ (𝑃 ∨ 𝑄)) |
| 132 | 4, 29, 32, 130, 131 | syl13anc 1374 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → (𝑄 ∧ (𝑇 ∨ 𝑈)) ≤ (𝑃 ∨ 𝑄)) |
| 133 | 1, 2, 7, 15, 8 | llnmod1i2 39862 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ (𝑄 ∧ (𝑇 ∨ 𝑈)) ∈ (Base‘𝐾) ∧ (𝑃 ∨ 𝑄) ∈ (Base‘𝐾)) ∧ (𝑈 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑄 ∧ (𝑇 ∨ 𝑈)) ≤ (𝑃 ∨ 𝑄)) → ((𝑄 ∧ (𝑇 ∨ 𝑈)) ∨ ((𝑈 ∨ 𝑆) ∧ (𝑃 ∨ 𝑄))) = (((𝑄 ∧ (𝑇 ∨ 𝑈)) ∨ (𝑈 ∨ 𝑆)) ∧ (𝑃 ∨ 𝑄))) |
| 134 | 3, 34, 10, 30, 11, 132, 133 | syl321anc 1394 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → ((𝑄 ∧ (𝑇 ∨ 𝑈)) ∨ ((𝑈 ∨ 𝑆) ∧ (𝑃 ∨ 𝑄))) = (((𝑄 ∧ (𝑇 ∨ 𝑈)) ∨ (𝑈 ∨ 𝑆)) ∧ (𝑃 ∨ 𝑄))) |
| 135 | 7, 8 | hlatjidm 39370 |
. . . . . . 7
⊢ ((𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴) → (𝑄 ∨ 𝑄) = 𝑄) |
| 136 | 3, 6, 135 | syl2anc 584 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → (𝑄 ∨ 𝑄) = 𝑄) |
| 137 | 83 | oveq2d 7447 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → (𝑄 ∨ 𝑄) = (𝑄 ∨ 𝑅)) |
| 138 | 136, 137 | eqtr3d 2779 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → 𝑄 = (𝑄 ∨ 𝑅)) |
| 139 | 138 | oveq1d 7446 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → (𝑄 ∧ (𝑇 ∨ 𝑈)) = ((𝑄 ∨ 𝑅) ∧ (𝑇 ∨ 𝑈))) |
| 140 | 1, 15 | latmcom 18508 |
. . . . . 6
⊢ ((𝐾 ∈ Lat ∧ (𝑈 ∨ 𝑆) ∈ (Base‘𝐾) ∧ (𝑃 ∨ 𝑄) ∈ (Base‘𝐾)) → ((𝑈 ∨ 𝑆) ∧ (𝑃 ∨ 𝑄)) = ((𝑃 ∨ 𝑄) ∧ (𝑈 ∨ 𝑆))) |
| 141 | 4, 36, 10, 140 | syl3anc 1373 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → ((𝑈 ∨ 𝑆) ∧ (𝑃 ∨ 𝑄)) = ((𝑃 ∨ 𝑄) ∧ (𝑈 ∨ 𝑆))) |
| 142 | 7, 8 | hlatjcom 39369 |
. . . . . . . 8
⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (𝑃 ∨ 𝑄) = (𝑄 ∨ 𝑃)) |
| 143 | 3, 5, 6, 142 | syl3anc 1373 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → (𝑃 ∨ 𝑄) = (𝑄 ∨ 𝑃)) |
| 144 | 83 | oveq1d 7446 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → (𝑄 ∨ 𝑃) = (𝑅 ∨ 𝑃)) |
| 145 | 143, 144 | eqtrd 2777 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → (𝑃 ∨ 𝑄) = (𝑅 ∨ 𝑃)) |
| 146 | 145 | oveq1d 7446 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → ((𝑃 ∨ 𝑄) ∧ (𝑈 ∨ 𝑆)) = ((𝑅 ∨ 𝑃) ∧ (𝑈 ∨ 𝑆))) |
| 147 | 141, 146 | eqtrd 2777 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → ((𝑈 ∨ 𝑆) ∧ (𝑃 ∨ 𝑄)) = ((𝑅 ∨ 𝑃) ∧ (𝑈 ∨ 𝑆))) |
| 148 | 139, 147 | oveq12d 7449 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → ((𝑄 ∧ (𝑇 ∨ 𝑈)) ∨ ((𝑈 ∨ 𝑆) ∧ (𝑃 ∨ 𝑄))) = (((𝑄 ∨ 𝑅) ∧ (𝑇 ∨ 𝑈)) ∨ ((𝑅 ∨ 𝑃) ∧ (𝑈 ∨ 𝑆)))) |
| 149 | 134, 148 | eqtr3d 2779 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → (((𝑄 ∧ (𝑇 ∨ 𝑈)) ∨ (𝑈 ∨ 𝑆)) ∧ (𝑃 ∨ 𝑄)) = (((𝑄 ∨ 𝑅) ∧ (𝑇 ∨ 𝑈)) ∨ ((𝑅 ∨ 𝑃) ∧ (𝑈 ∨ 𝑆)))) |
| 150 | 128, 149 | breqtrd 5169 |
1
⊢ (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → ((𝑃 ∨ 𝑄) ∧ (𝑆 ∨ 𝑇)) ≤ (((𝑄 ∨ 𝑅) ∧ (𝑇 ∨ 𝑈)) ∨ ((𝑅 ∨ 𝑃) ∧ (𝑈 ∨ 𝑆)))) |