Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dalawlem12 Structured version   Visualization version   GIF version

Theorem dalawlem12 39839
Description: Lemma for dalaw 39843. Second part of dalawlem13 39840. (Contributed by NM, 17-Sep-2012.)
Hypotheses
Ref Expression
dalawlem.l = (le‘𝐾)
dalawlem.j = (join‘𝐾)
dalawlem.m = (meet‘𝐾)
dalawlem.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
dalawlem12 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑃 𝑄) (𝑆 𝑇)) (((𝑄 𝑅) (𝑇 𝑈)) ((𝑅 𝑃) (𝑈 𝑆))))

Proof of Theorem dalawlem12
StepHypRef Expression
1 eqid 2740 . . . 4 (Base‘𝐾) = (Base‘𝐾)
2 dalawlem.l . . . 4 = (le‘𝐾)
3 simp11 1203 . . . . 5 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → 𝐾 ∈ HL)
43hllatd 39320 . . . 4 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → 𝐾 ∈ Lat)
5 simp21 1206 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → 𝑃𝐴)
6 simp22 1207 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → 𝑄𝐴)
7 dalawlem.j . . . . . . 7 = (join‘𝐾)
8 dalawlem.a . . . . . . 7 𝐴 = (Atoms‘𝐾)
91, 7, 8hlatjcl 39323 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → (𝑃 𝑄) ∈ (Base‘𝐾))
103, 5, 6, 9syl3anc 1371 . . . . 5 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (𝑃 𝑄) ∈ (Base‘𝐾))
11 simp31 1209 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → 𝑆𝐴)
12 simp32 1210 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → 𝑇𝐴)
131, 7, 8hlatjcl 39323 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → (𝑆 𝑇) ∈ (Base‘𝐾))
143, 11, 12, 13syl3anc 1371 . . . . 5 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (𝑆 𝑇) ∈ (Base‘𝐾))
15 dalawlem.m . . . . . 6 = (meet‘𝐾)
161, 15latmcl 18510 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑃 𝑄) ∈ (Base‘𝐾) ∧ (𝑆 𝑇) ∈ (Base‘𝐾)) → ((𝑃 𝑄) (𝑆 𝑇)) ∈ (Base‘𝐾))
174, 10, 14, 16syl3anc 1371 . . . 4 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑃 𝑄) (𝑆 𝑇)) ∈ (Base‘𝐾))
181, 8atbase 39245 . . . . . . . 8 (𝑆𝐴𝑆 ∈ (Base‘𝐾))
1911, 18syl 17 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → 𝑆 ∈ (Base‘𝐾))
201, 7latjcl 18509 . . . . . . 7 ((𝐾 ∈ Lat ∧ (𝑃 𝑄) ∈ (Base‘𝐾) ∧ 𝑆 ∈ (Base‘𝐾)) → ((𝑃 𝑄) 𝑆) ∈ (Base‘𝐾))
214, 10, 19, 20syl3anc 1371 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑃 𝑄) 𝑆) ∈ (Base‘𝐾))
221, 8atbase 39245 . . . . . . 7 (𝑇𝐴𝑇 ∈ (Base‘𝐾))
2312, 22syl 17 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → 𝑇 ∈ (Base‘𝐾))
241, 15latmcl 18510 . . . . . 6 ((𝐾 ∈ Lat ∧ ((𝑃 𝑄) 𝑆) ∈ (Base‘𝐾) ∧ 𝑇 ∈ (Base‘𝐾)) → (((𝑃 𝑄) 𝑆) 𝑇) ∈ (Base‘𝐾))
254, 21, 23, 24syl3anc 1371 . . . . 5 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (((𝑃 𝑄) 𝑆) 𝑇) ∈ (Base‘𝐾))
261, 7latjcl 18509 . . . . 5 ((𝐾 ∈ Lat ∧ (((𝑃 𝑄) 𝑆) 𝑇) ∈ (Base‘𝐾) ∧ 𝑆 ∈ (Base‘𝐾)) → ((((𝑃 𝑄) 𝑆) 𝑇) 𝑆) ∈ (Base‘𝐾))
274, 25, 19, 26syl3anc 1371 . . . 4 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((((𝑃 𝑄) 𝑆) 𝑇) 𝑆) ∈ (Base‘𝐾))
281, 8atbase 39245 . . . . . . 7 (𝑄𝐴𝑄 ∈ (Base‘𝐾))
296, 28syl 17 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → 𝑄 ∈ (Base‘𝐾))
30 simp33 1211 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → 𝑈𝐴)
311, 7, 8hlatjcl 39323 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑇𝐴𝑈𝐴) → (𝑇 𝑈) ∈ (Base‘𝐾))
323, 12, 30, 31syl3anc 1371 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (𝑇 𝑈) ∈ (Base‘𝐾))
331, 15latmcl 18510 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑄 ∈ (Base‘𝐾) ∧ (𝑇 𝑈) ∈ (Base‘𝐾)) → (𝑄 (𝑇 𝑈)) ∈ (Base‘𝐾))
344, 29, 32, 33syl3anc 1371 . . . . 5 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (𝑄 (𝑇 𝑈)) ∈ (Base‘𝐾))
351, 7, 8hlatjcl 39323 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑈𝐴𝑆𝐴) → (𝑈 𝑆) ∈ (Base‘𝐾))
363, 30, 11, 35syl3anc 1371 . . . . 5 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (𝑈 𝑆) ∈ (Base‘𝐾))
371, 7latjcl 18509 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑄 (𝑇 𝑈)) ∈ (Base‘𝐾) ∧ (𝑈 𝑆) ∈ (Base‘𝐾)) → ((𝑄 (𝑇 𝑈)) (𝑈 𝑆)) ∈ (Base‘𝐾))
384, 34, 36, 37syl3anc 1371 . . . 4 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑄 (𝑇 𝑈)) (𝑈 𝑆)) ∈ (Base‘𝐾))
391, 2, 7latlej1 18518 . . . . . . 7 ((𝐾 ∈ Lat ∧ (𝑃 𝑄) ∈ (Base‘𝐾) ∧ 𝑆 ∈ (Base‘𝐾)) → (𝑃 𝑄) ((𝑃 𝑄) 𝑆))
404, 10, 19, 39syl3anc 1371 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (𝑃 𝑄) ((𝑃 𝑄) 𝑆))
411, 7, 8hlatjcl 39323 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑇𝐴𝑆𝐴) → (𝑇 𝑆) ∈ (Base‘𝐾))
423, 12, 11, 41syl3anc 1371 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (𝑇 𝑆) ∈ (Base‘𝐾))
431, 2, 15latmlem1 18539 . . . . . . 7 ((𝐾 ∈ Lat ∧ ((𝑃 𝑄) ∈ (Base‘𝐾) ∧ ((𝑃 𝑄) 𝑆) ∈ (Base‘𝐾) ∧ (𝑇 𝑆) ∈ (Base‘𝐾))) → ((𝑃 𝑄) ((𝑃 𝑄) 𝑆) → ((𝑃 𝑄) (𝑇 𝑆)) (((𝑃 𝑄) 𝑆) (𝑇 𝑆))))
444, 10, 21, 42, 43syl13anc 1372 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑃 𝑄) ((𝑃 𝑄) 𝑆) → ((𝑃 𝑄) (𝑇 𝑆)) (((𝑃 𝑄) 𝑆) (𝑇 𝑆))))
4540, 44mpd 15 . . . . 5 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑃 𝑄) (𝑇 𝑆)) (((𝑃 𝑄) 𝑆) (𝑇 𝑆)))
467, 8hlatjcom 39324 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → (𝑆 𝑇) = (𝑇 𝑆))
473, 11, 12, 46syl3anc 1371 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (𝑆 𝑇) = (𝑇 𝑆))
4847oveq2d 7464 . . . . 5 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑃 𝑄) (𝑆 𝑇)) = ((𝑃 𝑄) (𝑇 𝑆)))
491, 2, 7latlej2 18519 . . . . . . 7 ((𝐾 ∈ Lat ∧ (𝑃 𝑄) ∈ (Base‘𝐾) ∧ 𝑆 ∈ (Base‘𝐾)) → 𝑆 ((𝑃 𝑄) 𝑆))
504, 10, 19, 49syl3anc 1371 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → 𝑆 ((𝑃 𝑄) 𝑆))
511, 2, 7, 15, 8atmod2i2 39819 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑇𝐴 ∧ ((𝑃 𝑄) 𝑆) ∈ (Base‘𝐾) ∧ 𝑆 ∈ (Base‘𝐾)) ∧ 𝑆 ((𝑃 𝑄) 𝑆)) → ((((𝑃 𝑄) 𝑆) 𝑇) 𝑆) = (((𝑃 𝑄) 𝑆) (𝑇 𝑆)))
523, 12, 21, 19, 50, 51syl131anc 1383 . . . . 5 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((((𝑃 𝑄) 𝑆) 𝑇) 𝑆) = (((𝑃 𝑄) 𝑆) (𝑇 𝑆)))
5345, 48, 523brtr4d 5198 . . . 4 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑃 𝑄) (𝑆 𝑇)) ((((𝑃 𝑄) 𝑆) 𝑇) 𝑆))
54 hlol 39317 . . . . . . . . . . 11 (𝐾 ∈ HL → 𝐾 ∈ OL)
553, 54syl 17 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → 𝐾 ∈ OL)
561, 7, 8hlatjcl 39323 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑆𝐴) → (𝑃 𝑆) ∈ (Base‘𝐾))
573, 5, 11, 56syl3anc 1371 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (𝑃 𝑆) ∈ (Base‘𝐾))
581, 7latjcl 18509 . . . . . . . . . . 11 ((𝐾 ∈ Lat ∧ 𝑄 ∈ (Base‘𝐾) ∧ (𝑃 𝑆) ∈ (Base‘𝐾)) → (𝑄 (𝑃 𝑆)) ∈ (Base‘𝐾))
594, 29, 57, 58syl3anc 1371 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (𝑄 (𝑃 𝑆)) ∈ (Base‘𝐾))
601, 7, 8hlatjcl 39323 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ 𝑄𝐴𝑇𝐴) → (𝑄 𝑇) ∈ (Base‘𝐾))
613, 6, 12, 60syl3anc 1371 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (𝑄 𝑇) ∈ (Base‘𝐾))
621, 15latmassOLD 39185 . . . . . . . . . 10 ((𝐾 ∈ OL ∧ ((𝑄 (𝑃 𝑆)) ∈ (Base‘𝐾) ∧ (𝑄 𝑇) ∈ (Base‘𝐾) ∧ 𝑇 ∈ (Base‘𝐾))) → (((𝑄 (𝑃 𝑆)) (𝑄 𝑇)) 𝑇) = ((𝑄 (𝑃 𝑆)) ((𝑄 𝑇) 𝑇)))
6355, 59, 61, 23, 62syl13anc 1372 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (((𝑄 (𝑃 𝑆)) (𝑄 𝑇)) 𝑇) = ((𝑄 (𝑃 𝑆)) ((𝑄 𝑇) 𝑇)))
647, 8hlatjass 39326 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑆𝐴)) → ((𝑃 𝑄) 𝑆) = (𝑃 (𝑄 𝑆)))
653, 5, 6, 11, 64syl13anc 1372 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑃 𝑄) 𝑆) = (𝑃 (𝑄 𝑆)))
667, 8hlatj12 39327 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑆𝐴)) → (𝑃 (𝑄 𝑆)) = (𝑄 (𝑃 𝑆)))
673, 5, 6, 11, 66syl13anc 1372 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (𝑃 (𝑄 𝑆)) = (𝑄 (𝑃 𝑆)))
6865, 67eqtr2d 2781 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (𝑄 (𝑃 𝑆)) = ((𝑃 𝑄) 𝑆))
692, 7, 8hlatlej2 39332 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ 𝑄𝐴𝑇𝐴) → 𝑇 (𝑄 𝑇))
703, 6, 12, 69syl3anc 1371 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → 𝑇 (𝑄 𝑇))
711, 2, 15latleeqm2 18538 . . . . . . . . . . . 12 ((𝐾 ∈ Lat ∧ 𝑇 ∈ (Base‘𝐾) ∧ (𝑄 𝑇) ∈ (Base‘𝐾)) → (𝑇 (𝑄 𝑇) ↔ ((𝑄 𝑇) 𝑇) = 𝑇))
724, 23, 61, 71syl3anc 1371 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (𝑇 (𝑄 𝑇) ↔ ((𝑄 𝑇) 𝑇) = 𝑇))
7370, 72mpbid 232 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑄 𝑇) 𝑇) = 𝑇)
7468, 73oveq12d 7466 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑄 (𝑃 𝑆)) ((𝑄 𝑇) 𝑇)) = (((𝑃 𝑄) 𝑆) 𝑇))
7563, 74eqtr2d 2781 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (((𝑃 𝑄) 𝑆) 𝑇) = (((𝑄 (𝑃 𝑆)) (𝑄 𝑇)) 𝑇))
762, 7, 8hlatlej1 39331 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ 𝑄𝐴𝑇𝐴) → 𝑄 (𝑄 𝑇))
773, 6, 12, 76syl3anc 1371 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → 𝑄 (𝑄 𝑇))
781, 2, 7, 15, 8atmod1i1 39814 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ (𝑄𝐴 ∧ (𝑃 𝑆) ∈ (Base‘𝐾) ∧ (𝑄 𝑇) ∈ (Base‘𝐾)) ∧ 𝑄 (𝑄 𝑇)) → (𝑄 ((𝑃 𝑆) (𝑄 𝑇))) = ((𝑄 (𝑃 𝑆)) (𝑄 𝑇)))
793, 6, 57, 61, 77, 78syl131anc 1383 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (𝑄 ((𝑃 𝑆) (𝑄 𝑇))) = ((𝑄 (𝑃 𝑆)) (𝑄 𝑇)))
802, 7, 8hlatlej2 39332 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ 𝑈𝐴𝑄𝐴) → 𝑄 (𝑈 𝑄))
813, 30, 6, 80syl3anc 1371 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → 𝑄 (𝑈 𝑄))
82 simp13 1205 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈))
83 simp12 1204 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → 𝑄 = 𝑅)
8483oveq1d 7463 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (𝑄 𝑈) = (𝑅 𝑈))
857, 8hlatjcom 39324 . . . . . . . . . . . . . 14 ((𝐾 ∈ HL ∧ 𝑄𝐴𝑈𝐴) → (𝑄 𝑈) = (𝑈 𝑄))
863, 6, 30, 85syl3anc 1371 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (𝑄 𝑈) = (𝑈 𝑄))
8784, 86eqtr3d 2782 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (𝑅 𝑈) = (𝑈 𝑄))
8882, 87breqtrd 5192 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑃 𝑆) (𝑄 𝑇)) (𝑈 𝑄))
891, 15latmcl 18510 . . . . . . . . . . . . 13 ((𝐾 ∈ Lat ∧ (𝑃 𝑆) ∈ (Base‘𝐾) ∧ (𝑄 𝑇) ∈ (Base‘𝐾)) → ((𝑃 𝑆) (𝑄 𝑇)) ∈ (Base‘𝐾))
904, 57, 61, 89syl3anc 1371 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑃 𝑆) (𝑄 𝑇)) ∈ (Base‘𝐾))
911, 7, 8hlatjcl 39323 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ 𝑈𝐴𝑄𝐴) → (𝑈 𝑄) ∈ (Base‘𝐾))
923, 30, 6, 91syl3anc 1371 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (𝑈 𝑄) ∈ (Base‘𝐾))
931, 2, 7latjle12 18520 . . . . . . . . . . . 12 ((𝐾 ∈ Lat ∧ (𝑄 ∈ (Base‘𝐾) ∧ ((𝑃 𝑆) (𝑄 𝑇)) ∈ (Base‘𝐾) ∧ (𝑈 𝑄) ∈ (Base‘𝐾))) → ((𝑄 (𝑈 𝑄) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑈 𝑄)) ↔ (𝑄 ((𝑃 𝑆) (𝑄 𝑇))) (𝑈 𝑄)))
944, 29, 90, 92, 93syl13anc 1372 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑄 (𝑈 𝑄) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑈 𝑄)) ↔ (𝑄 ((𝑃 𝑆) (𝑄 𝑇))) (𝑈 𝑄)))
9581, 88, 94mpbi2and 711 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (𝑄 ((𝑃 𝑆) (𝑄 𝑇))) (𝑈 𝑄))
9679, 95eqbrtrrd 5190 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑄 (𝑃 𝑆)) (𝑄 𝑇)) (𝑈 𝑄))
972, 7, 8hlatlej1 39331 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ 𝑇𝐴𝑈𝐴) → 𝑇 (𝑇 𝑈))
983, 12, 30, 97syl3anc 1371 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → 𝑇 (𝑇 𝑈))
991, 15latmcl 18510 . . . . . . . . . . 11 ((𝐾 ∈ Lat ∧ (𝑄 (𝑃 𝑆)) ∈ (Base‘𝐾) ∧ (𝑄 𝑇) ∈ (Base‘𝐾)) → ((𝑄 (𝑃 𝑆)) (𝑄 𝑇)) ∈ (Base‘𝐾))
1004, 59, 61, 99syl3anc 1371 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑄 (𝑃 𝑆)) (𝑄 𝑇)) ∈ (Base‘𝐾))
1011, 2, 15latmlem12 18541 . . . . . . . . . 10 ((𝐾 ∈ Lat ∧ (((𝑄 (𝑃 𝑆)) (𝑄 𝑇)) ∈ (Base‘𝐾) ∧ (𝑈 𝑄) ∈ (Base‘𝐾)) ∧ (𝑇 ∈ (Base‘𝐾) ∧ (𝑇 𝑈) ∈ (Base‘𝐾))) → ((((𝑄 (𝑃 𝑆)) (𝑄 𝑇)) (𝑈 𝑄) ∧ 𝑇 (𝑇 𝑈)) → (((𝑄 (𝑃 𝑆)) (𝑄 𝑇)) 𝑇) ((𝑈 𝑄) (𝑇 𝑈))))
1024, 100, 92, 23, 32, 101syl122anc 1379 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((((𝑄 (𝑃 𝑆)) (𝑄 𝑇)) (𝑈 𝑄) ∧ 𝑇 (𝑇 𝑈)) → (((𝑄 (𝑃 𝑆)) (𝑄 𝑇)) 𝑇) ((𝑈 𝑄) (𝑇 𝑈))))
10396, 98, 102mp2and 698 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (((𝑄 (𝑃 𝑆)) (𝑄 𝑇)) 𝑇) ((𝑈 𝑄) (𝑇 𝑈)))
10475, 103eqbrtrd 5188 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (((𝑃 𝑄) 𝑆) 𝑇) ((𝑈 𝑄) (𝑇 𝑈)))
1052, 7, 8hlatlej2 39332 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ 𝑇𝐴𝑈𝐴) → 𝑈 (𝑇 𝑈))
1063, 12, 30, 105syl3anc 1371 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → 𝑈 (𝑇 𝑈))
1071, 2, 7, 15, 8atmod1i1 39814 . . . . . . . . 9 ((𝐾 ∈ HL ∧ (𝑈𝐴𝑄 ∈ (Base‘𝐾) ∧ (𝑇 𝑈) ∈ (Base‘𝐾)) ∧ 𝑈 (𝑇 𝑈)) → (𝑈 (𝑄 (𝑇 𝑈))) = ((𝑈 𝑄) (𝑇 𝑈)))
1083, 30, 29, 32, 106, 107syl131anc 1383 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (𝑈 (𝑄 (𝑇 𝑈))) = ((𝑈 𝑄) (𝑇 𝑈)))
1091, 8atbase 39245 . . . . . . . . . 10 (𝑈𝐴𝑈 ∈ (Base‘𝐾))
11030, 109syl 17 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → 𝑈 ∈ (Base‘𝐾))
1111, 7latjcom 18517 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ 𝑈 ∈ (Base‘𝐾) ∧ (𝑄 (𝑇 𝑈)) ∈ (Base‘𝐾)) → (𝑈 (𝑄 (𝑇 𝑈))) = ((𝑄 (𝑇 𝑈)) 𝑈))
1124, 110, 34, 111syl3anc 1371 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (𝑈 (𝑄 (𝑇 𝑈))) = ((𝑄 (𝑇 𝑈)) 𝑈))
113108, 112eqtr3d 2782 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑈 𝑄) (𝑇 𝑈)) = ((𝑄 (𝑇 𝑈)) 𝑈))
114104, 113breqtrd 5192 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (((𝑃 𝑄) 𝑆) 𝑇) ((𝑄 (𝑇 𝑈)) 𝑈))
1151, 7latjcl 18509 . . . . . . . 8 ((𝐾 ∈ Lat ∧ (𝑄 (𝑇 𝑈)) ∈ (Base‘𝐾) ∧ 𝑈 ∈ (Base‘𝐾)) → ((𝑄 (𝑇 𝑈)) 𝑈) ∈ (Base‘𝐾))
1164, 34, 110, 115syl3anc 1371 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑄 (𝑇 𝑈)) 𝑈) ∈ (Base‘𝐾))
1171, 2, 7latjlej1 18523 . . . . . . 7 ((𝐾 ∈ Lat ∧ ((((𝑃 𝑄) 𝑆) 𝑇) ∈ (Base‘𝐾) ∧ ((𝑄 (𝑇 𝑈)) 𝑈) ∈ (Base‘𝐾) ∧ 𝑆 ∈ (Base‘𝐾))) → ((((𝑃 𝑄) 𝑆) 𝑇) ((𝑄 (𝑇 𝑈)) 𝑈) → ((((𝑃 𝑄) 𝑆) 𝑇) 𝑆) (((𝑄 (𝑇 𝑈)) 𝑈) 𝑆)))
1184, 25, 116, 19, 117syl13anc 1372 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((((𝑃 𝑄) 𝑆) 𝑇) ((𝑄 (𝑇 𝑈)) 𝑈) → ((((𝑃 𝑄) 𝑆) 𝑇) 𝑆) (((𝑄 (𝑇 𝑈)) 𝑈) 𝑆)))
119114, 118mpd 15 . . . . 5 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((((𝑃 𝑄) 𝑆) 𝑇) 𝑆) (((𝑄 (𝑇 𝑈)) 𝑈) 𝑆))
1201, 7latjass 18553 . . . . . 6 ((𝐾 ∈ Lat ∧ ((𝑄 (𝑇 𝑈)) ∈ (Base‘𝐾) ∧ 𝑈 ∈ (Base‘𝐾) ∧ 𝑆 ∈ (Base‘𝐾))) → (((𝑄 (𝑇 𝑈)) 𝑈) 𝑆) = ((𝑄 (𝑇 𝑈)) (𝑈 𝑆)))
1214, 34, 110, 19, 120syl13anc 1372 . . . . 5 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (((𝑄 (𝑇 𝑈)) 𝑈) 𝑆) = ((𝑄 (𝑇 𝑈)) (𝑈 𝑆)))
122119, 121breqtrd 5192 . . . 4 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((((𝑃 𝑄) 𝑆) 𝑇) 𝑆) ((𝑄 (𝑇 𝑈)) (𝑈 𝑆)))
1231, 2, 4, 17, 27, 38, 53, 122lattrd 18516 . . 3 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑃 𝑄) (𝑆 𝑇)) ((𝑄 (𝑇 𝑈)) (𝑈 𝑆)))
1241, 2, 15latmle1 18534 . . . 4 ((𝐾 ∈ Lat ∧ (𝑃 𝑄) ∈ (Base‘𝐾) ∧ (𝑆 𝑇) ∈ (Base‘𝐾)) → ((𝑃 𝑄) (𝑆 𝑇)) (𝑃 𝑄))
1254, 10, 14, 124syl3anc 1371 . . 3 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑃 𝑄) (𝑆 𝑇)) (𝑃 𝑄))
1261, 2, 15latlem12 18536 . . . 4 ((𝐾 ∈ Lat ∧ (((𝑃 𝑄) (𝑆 𝑇)) ∈ (Base‘𝐾) ∧ ((𝑄 (𝑇 𝑈)) (𝑈 𝑆)) ∈ (Base‘𝐾) ∧ (𝑃 𝑄) ∈ (Base‘𝐾))) → ((((𝑃 𝑄) (𝑆 𝑇)) ((𝑄 (𝑇 𝑈)) (𝑈 𝑆)) ∧ ((𝑃 𝑄) (𝑆 𝑇)) (𝑃 𝑄)) ↔ ((𝑃 𝑄) (𝑆 𝑇)) (((𝑄 (𝑇 𝑈)) (𝑈 𝑆)) (𝑃 𝑄))))
1274, 17, 38, 10, 126syl13anc 1372 . . 3 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((((𝑃 𝑄) (𝑆 𝑇)) ((𝑄 (𝑇 𝑈)) (𝑈 𝑆)) ∧ ((𝑃 𝑄) (𝑆 𝑇)) (𝑃 𝑄)) ↔ ((𝑃 𝑄) (𝑆 𝑇)) (((𝑄 (𝑇 𝑈)) (𝑈 𝑆)) (𝑃 𝑄))))
128123, 125, 127mpbi2and 711 . 2 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑃 𝑄) (𝑆 𝑇)) (((𝑄 (𝑇 𝑈)) (𝑈 𝑆)) (𝑃 𝑄)))
1291, 8atbase 39245 . . . . . 6 (𝑃𝐴𝑃 ∈ (Base‘𝐾))
1305, 129syl 17 . . . . 5 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → 𝑃 ∈ (Base‘𝐾))
1311, 2, 7, 15latmlej12 18549 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑄 ∈ (Base‘𝐾) ∧ (𝑇 𝑈) ∈ (Base‘𝐾) ∧ 𝑃 ∈ (Base‘𝐾))) → (𝑄 (𝑇 𝑈)) (𝑃 𝑄))
1324, 29, 32, 130, 131syl13anc 1372 . . . 4 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (𝑄 (𝑇 𝑈)) (𝑃 𝑄))
1331, 2, 7, 15, 8llnmod1i2 39817 . . . 4 (((𝐾 ∈ HL ∧ (𝑄 (𝑇 𝑈)) ∈ (Base‘𝐾) ∧ (𝑃 𝑄) ∈ (Base‘𝐾)) ∧ (𝑈𝐴𝑆𝐴) ∧ (𝑄 (𝑇 𝑈)) (𝑃 𝑄)) → ((𝑄 (𝑇 𝑈)) ((𝑈 𝑆) (𝑃 𝑄))) = (((𝑄 (𝑇 𝑈)) (𝑈 𝑆)) (𝑃 𝑄)))
1343, 34, 10, 30, 11, 132, 133syl321anc 1392 . . 3 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑄 (𝑇 𝑈)) ((𝑈 𝑆) (𝑃 𝑄))) = (((𝑄 (𝑇 𝑈)) (𝑈 𝑆)) (𝑃 𝑄)))
1357, 8hlatjidm 39325 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑄𝐴) → (𝑄 𝑄) = 𝑄)
1363, 6, 135syl2anc 583 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (𝑄 𝑄) = 𝑄)
13783oveq2d 7464 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (𝑄 𝑄) = (𝑄 𝑅))
138136, 137eqtr3d 2782 . . . . 5 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → 𝑄 = (𝑄 𝑅))
139138oveq1d 7463 . . . 4 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (𝑄 (𝑇 𝑈)) = ((𝑄 𝑅) (𝑇 𝑈)))
1401, 15latmcom 18533 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝑈 𝑆) ∈ (Base‘𝐾) ∧ (𝑃 𝑄) ∈ (Base‘𝐾)) → ((𝑈 𝑆) (𝑃 𝑄)) = ((𝑃 𝑄) (𝑈 𝑆)))
1414, 36, 10, 140syl3anc 1371 . . . . 5 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑈 𝑆) (𝑃 𝑄)) = ((𝑃 𝑄) (𝑈 𝑆)))
1427, 8hlatjcom 39324 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → (𝑃 𝑄) = (𝑄 𝑃))
1433, 5, 6, 142syl3anc 1371 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (𝑃 𝑄) = (𝑄 𝑃))
14483oveq1d 7463 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (𝑄 𝑃) = (𝑅 𝑃))
145143, 144eqtrd 2780 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (𝑃 𝑄) = (𝑅 𝑃))
146145oveq1d 7463 . . . . 5 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑃 𝑄) (𝑈 𝑆)) = ((𝑅 𝑃) (𝑈 𝑆)))
147141, 146eqtrd 2780 . . . 4 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑈 𝑆) (𝑃 𝑄)) = ((𝑅 𝑃) (𝑈 𝑆)))
148139, 147oveq12d 7466 . . 3 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑄 (𝑇 𝑈)) ((𝑈 𝑆) (𝑃 𝑄))) = (((𝑄 𝑅) (𝑇 𝑈)) ((𝑅 𝑃) (𝑈 𝑆))))
149134, 148eqtr3d 2782 . 2 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (((𝑄 (𝑇 𝑈)) (𝑈 𝑆)) (𝑃 𝑄)) = (((𝑄 𝑅) (𝑇 𝑈)) ((𝑅 𝑃) (𝑈 𝑆))))
150128, 149breqtrd 5192 1 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑃 𝑄) (𝑆 𝑇)) (((𝑄 𝑅) (𝑇 𝑈)) ((𝑅 𝑃) (𝑈 𝑆))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108   class class class wbr 5166  cfv 6573  (class class class)co 7448  Basecbs 17258  lecple 17318  joincjn 18381  meetcmee 18382  Latclat 18501  OLcol 39130  Atomscatm 39219  HLchlt 39306
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-1st 8030  df-2nd 8031  df-proset 18365  df-poset 18383  df-plt 18400  df-lub 18416  df-glb 18417  df-join 18418  df-meet 18419  df-p0 18495  df-lat 18502  df-clat 18569  df-oposet 39132  df-ol 39134  df-oml 39135  df-covers 39222  df-ats 39223  df-atl 39254  df-cvlat 39278  df-hlat 39307  df-psubsp 39460  df-pmap 39461  df-padd 39753
This theorem is referenced by:  dalawlem13  39840
  Copyright terms: Public domain W3C validator