Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dalawlem12 Structured version   Visualization version   GIF version

Theorem dalawlem12 38348
Description: Lemma for dalaw 38352. Second part of dalawlem13 38349. (Contributed by NM, 17-Sep-2012.)
Hypotheses
Ref Expression
dalawlem.l ≀ = (leβ€˜πΎ)
dalawlem.j ∨ = (joinβ€˜πΎ)
dalawlem.m ∧ = (meetβ€˜πΎ)
dalawlem.a 𝐴 = (Atomsβ€˜πΎ)
Assertion
Ref Expression
dalawlem12 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑅 ∨ π‘ˆ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) β†’ ((𝑃 ∨ 𝑄) ∧ (𝑆 ∨ 𝑇)) ≀ (((𝑄 ∨ 𝑅) ∧ (𝑇 ∨ π‘ˆ)) ∨ ((𝑅 ∨ 𝑃) ∧ (π‘ˆ ∨ 𝑆))))

Proof of Theorem dalawlem12
StepHypRef Expression
1 eqid 2737 . . . 4 (Baseβ€˜πΎ) = (Baseβ€˜πΎ)
2 dalawlem.l . . . 4 ≀ = (leβ€˜πΎ)
3 simp11 1204 . . . . 5 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑅 ∨ π‘ˆ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) β†’ 𝐾 ∈ HL)
43hllatd 37829 . . . 4 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑅 ∨ π‘ˆ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) β†’ 𝐾 ∈ Lat)
5 simp21 1207 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑅 ∨ π‘ˆ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) β†’ 𝑃 ∈ 𝐴)
6 simp22 1208 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑅 ∨ π‘ˆ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) β†’ 𝑄 ∈ 𝐴)
7 dalawlem.j . . . . . . 7 ∨ = (joinβ€˜πΎ)
8 dalawlem.a . . . . . . 7 𝐴 = (Atomsβ€˜πΎ)
91, 7, 8hlatjcl 37832 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) β†’ (𝑃 ∨ 𝑄) ∈ (Baseβ€˜πΎ))
103, 5, 6, 9syl3anc 1372 . . . . 5 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑅 ∨ π‘ˆ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) β†’ (𝑃 ∨ 𝑄) ∈ (Baseβ€˜πΎ))
11 simp31 1210 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑅 ∨ π‘ˆ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) β†’ 𝑆 ∈ 𝐴)
12 simp32 1211 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑅 ∨ π‘ˆ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) β†’ 𝑇 ∈ 𝐴)
131, 7, 8hlatjcl 37832 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) β†’ (𝑆 ∨ 𝑇) ∈ (Baseβ€˜πΎ))
143, 11, 12, 13syl3anc 1372 . . . . 5 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑅 ∨ π‘ˆ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) β†’ (𝑆 ∨ 𝑇) ∈ (Baseβ€˜πΎ))
15 dalawlem.m . . . . . 6 ∧ = (meetβ€˜πΎ)
161, 15latmcl 18330 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑃 ∨ 𝑄) ∈ (Baseβ€˜πΎ) ∧ (𝑆 ∨ 𝑇) ∈ (Baseβ€˜πΎ)) β†’ ((𝑃 ∨ 𝑄) ∧ (𝑆 ∨ 𝑇)) ∈ (Baseβ€˜πΎ))
174, 10, 14, 16syl3anc 1372 . . . 4 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑅 ∨ π‘ˆ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) β†’ ((𝑃 ∨ 𝑄) ∧ (𝑆 ∨ 𝑇)) ∈ (Baseβ€˜πΎ))
181, 8atbase 37754 . . . . . . . 8 (𝑆 ∈ 𝐴 β†’ 𝑆 ∈ (Baseβ€˜πΎ))
1911, 18syl 17 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑅 ∨ π‘ˆ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) β†’ 𝑆 ∈ (Baseβ€˜πΎ))
201, 7latjcl 18329 . . . . . . 7 ((𝐾 ∈ Lat ∧ (𝑃 ∨ 𝑄) ∈ (Baseβ€˜πΎ) ∧ 𝑆 ∈ (Baseβ€˜πΎ)) β†’ ((𝑃 ∨ 𝑄) ∨ 𝑆) ∈ (Baseβ€˜πΎ))
214, 10, 19, 20syl3anc 1372 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑅 ∨ π‘ˆ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) β†’ ((𝑃 ∨ 𝑄) ∨ 𝑆) ∈ (Baseβ€˜πΎ))
221, 8atbase 37754 . . . . . . 7 (𝑇 ∈ 𝐴 β†’ 𝑇 ∈ (Baseβ€˜πΎ))
2312, 22syl 17 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑅 ∨ π‘ˆ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) β†’ 𝑇 ∈ (Baseβ€˜πΎ))
241, 15latmcl 18330 . . . . . 6 ((𝐾 ∈ Lat ∧ ((𝑃 ∨ 𝑄) ∨ 𝑆) ∈ (Baseβ€˜πΎ) ∧ 𝑇 ∈ (Baseβ€˜πΎ)) β†’ (((𝑃 ∨ 𝑄) ∨ 𝑆) ∧ 𝑇) ∈ (Baseβ€˜πΎ))
254, 21, 23, 24syl3anc 1372 . . . . 5 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑅 ∨ π‘ˆ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) β†’ (((𝑃 ∨ 𝑄) ∨ 𝑆) ∧ 𝑇) ∈ (Baseβ€˜πΎ))
261, 7latjcl 18329 . . . . 5 ((𝐾 ∈ Lat ∧ (((𝑃 ∨ 𝑄) ∨ 𝑆) ∧ 𝑇) ∈ (Baseβ€˜πΎ) ∧ 𝑆 ∈ (Baseβ€˜πΎ)) β†’ ((((𝑃 ∨ 𝑄) ∨ 𝑆) ∧ 𝑇) ∨ 𝑆) ∈ (Baseβ€˜πΎ))
274, 25, 19, 26syl3anc 1372 . . . 4 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑅 ∨ π‘ˆ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) β†’ ((((𝑃 ∨ 𝑄) ∨ 𝑆) ∧ 𝑇) ∨ 𝑆) ∈ (Baseβ€˜πΎ))
281, 8atbase 37754 . . . . . . 7 (𝑄 ∈ 𝐴 β†’ 𝑄 ∈ (Baseβ€˜πΎ))
296, 28syl 17 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑅 ∨ π‘ˆ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) β†’ 𝑄 ∈ (Baseβ€˜πΎ))
30 simp33 1212 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑅 ∨ π‘ˆ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) β†’ π‘ˆ ∈ 𝐴)
311, 7, 8hlatjcl 37832 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴) β†’ (𝑇 ∨ π‘ˆ) ∈ (Baseβ€˜πΎ))
323, 12, 30, 31syl3anc 1372 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑅 ∨ π‘ˆ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) β†’ (𝑇 ∨ π‘ˆ) ∈ (Baseβ€˜πΎ))
331, 15latmcl 18330 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑄 ∈ (Baseβ€˜πΎ) ∧ (𝑇 ∨ π‘ˆ) ∈ (Baseβ€˜πΎ)) β†’ (𝑄 ∧ (𝑇 ∨ π‘ˆ)) ∈ (Baseβ€˜πΎ))
344, 29, 32, 33syl3anc 1372 . . . . 5 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑅 ∨ π‘ˆ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) β†’ (𝑄 ∧ (𝑇 ∨ π‘ˆ)) ∈ (Baseβ€˜πΎ))
351, 7, 8hlatjcl 37832 . . . . . 6 ((𝐾 ∈ HL ∧ π‘ˆ ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) β†’ (π‘ˆ ∨ 𝑆) ∈ (Baseβ€˜πΎ))
363, 30, 11, 35syl3anc 1372 . . . . 5 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑅 ∨ π‘ˆ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) β†’ (π‘ˆ ∨ 𝑆) ∈ (Baseβ€˜πΎ))
371, 7latjcl 18329 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑄 ∧ (𝑇 ∨ π‘ˆ)) ∈ (Baseβ€˜πΎ) ∧ (π‘ˆ ∨ 𝑆) ∈ (Baseβ€˜πΎ)) β†’ ((𝑄 ∧ (𝑇 ∨ π‘ˆ)) ∨ (π‘ˆ ∨ 𝑆)) ∈ (Baseβ€˜πΎ))
384, 34, 36, 37syl3anc 1372 . . . 4 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑅 ∨ π‘ˆ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) β†’ ((𝑄 ∧ (𝑇 ∨ π‘ˆ)) ∨ (π‘ˆ ∨ 𝑆)) ∈ (Baseβ€˜πΎ))
391, 2, 7latlej1 18338 . . . . . . 7 ((𝐾 ∈ Lat ∧ (𝑃 ∨ 𝑄) ∈ (Baseβ€˜πΎ) ∧ 𝑆 ∈ (Baseβ€˜πΎ)) β†’ (𝑃 ∨ 𝑄) ≀ ((𝑃 ∨ 𝑄) ∨ 𝑆))
404, 10, 19, 39syl3anc 1372 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑅 ∨ π‘ˆ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) β†’ (𝑃 ∨ 𝑄) ≀ ((𝑃 ∨ 𝑄) ∨ 𝑆))
411, 7, 8hlatjcl 37832 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑇 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) β†’ (𝑇 ∨ 𝑆) ∈ (Baseβ€˜πΎ))
423, 12, 11, 41syl3anc 1372 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑅 ∨ π‘ˆ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) β†’ (𝑇 ∨ 𝑆) ∈ (Baseβ€˜πΎ))
431, 2, 15latmlem1 18359 . . . . . . 7 ((𝐾 ∈ Lat ∧ ((𝑃 ∨ 𝑄) ∈ (Baseβ€˜πΎ) ∧ ((𝑃 ∨ 𝑄) ∨ 𝑆) ∈ (Baseβ€˜πΎ) ∧ (𝑇 ∨ 𝑆) ∈ (Baseβ€˜πΎ))) β†’ ((𝑃 ∨ 𝑄) ≀ ((𝑃 ∨ 𝑄) ∨ 𝑆) β†’ ((𝑃 ∨ 𝑄) ∧ (𝑇 ∨ 𝑆)) ≀ (((𝑃 ∨ 𝑄) ∨ 𝑆) ∧ (𝑇 ∨ 𝑆))))
444, 10, 21, 42, 43syl13anc 1373 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑅 ∨ π‘ˆ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) β†’ ((𝑃 ∨ 𝑄) ≀ ((𝑃 ∨ 𝑄) ∨ 𝑆) β†’ ((𝑃 ∨ 𝑄) ∧ (𝑇 ∨ 𝑆)) ≀ (((𝑃 ∨ 𝑄) ∨ 𝑆) ∧ (𝑇 ∨ 𝑆))))
4540, 44mpd 15 . . . . 5 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑅 ∨ π‘ˆ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) β†’ ((𝑃 ∨ 𝑄) ∧ (𝑇 ∨ 𝑆)) ≀ (((𝑃 ∨ 𝑄) ∨ 𝑆) ∧ (𝑇 ∨ 𝑆)))
467, 8hlatjcom 37833 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) β†’ (𝑆 ∨ 𝑇) = (𝑇 ∨ 𝑆))
473, 11, 12, 46syl3anc 1372 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑅 ∨ π‘ˆ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) β†’ (𝑆 ∨ 𝑇) = (𝑇 ∨ 𝑆))
4847oveq2d 7374 . . . . 5 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑅 ∨ π‘ˆ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) β†’ ((𝑃 ∨ 𝑄) ∧ (𝑆 ∨ 𝑇)) = ((𝑃 ∨ 𝑄) ∧ (𝑇 ∨ 𝑆)))
491, 2, 7latlej2 18339 . . . . . . 7 ((𝐾 ∈ Lat ∧ (𝑃 ∨ 𝑄) ∈ (Baseβ€˜πΎ) ∧ 𝑆 ∈ (Baseβ€˜πΎ)) β†’ 𝑆 ≀ ((𝑃 ∨ 𝑄) ∨ 𝑆))
504, 10, 19, 49syl3anc 1372 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑅 ∨ π‘ˆ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) β†’ 𝑆 ≀ ((𝑃 ∨ 𝑄) ∨ 𝑆))
511, 2, 7, 15, 8atmod2i2 38328 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑇 ∈ 𝐴 ∧ ((𝑃 ∨ 𝑄) ∨ 𝑆) ∈ (Baseβ€˜πΎ) ∧ 𝑆 ∈ (Baseβ€˜πΎ)) ∧ 𝑆 ≀ ((𝑃 ∨ 𝑄) ∨ 𝑆)) β†’ ((((𝑃 ∨ 𝑄) ∨ 𝑆) ∧ 𝑇) ∨ 𝑆) = (((𝑃 ∨ 𝑄) ∨ 𝑆) ∧ (𝑇 ∨ 𝑆)))
523, 12, 21, 19, 50, 51syl131anc 1384 . . . . 5 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑅 ∨ π‘ˆ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) β†’ ((((𝑃 ∨ 𝑄) ∨ 𝑆) ∧ 𝑇) ∨ 𝑆) = (((𝑃 ∨ 𝑄) ∨ 𝑆) ∧ (𝑇 ∨ 𝑆)))
5345, 48, 523brtr4d 5138 . . . 4 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑅 ∨ π‘ˆ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) β†’ ((𝑃 ∨ 𝑄) ∧ (𝑆 ∨ 𝑇)) ≀ ((((𝑃 ∨ 𝑄) ∨ 𝑆) ∧ 𝑇) ∨ 𝑆))
54 hlol 37826 . . . . . . . . . . 11 (𝐾 ∈ HL β†’ 𝐾 ∈ OL)
553, 54syl 17 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑅 ∨ π‘ˆ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) β†’ 𝐾 ∈ OL)
561, 7, 8hlatjcl 37832 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) β†’ (𝑃 ∨ 𝑆) ∈ (Baseβ€˜πΎ))
573, 5, 11, 56syl3anc 1372 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑅 ∨ π‘ˆ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) β†’ (𝑃 ∨ 𝑆) ∈ (Baseβ€˜πΎ))
581, 7latjcl 18329 . . . . . . . . . . 11 ((𝐾 ∈ Lat ∧ 𝑄 ∈ (Baseβ€˜πΎ) ∧ (𝑃 ∨ 𝑆) ∈ (Baseβ€˜πΎ)) β†’ (𝑄 ∨ (𝑃 ∨ 𝑆)) ∈ (Baseβ€˜πΎ))
594, 29, 57, 58syl3anc 1372 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑅 ∨ π‘ˆ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) β†’ (𝑄 ∨ (𝑃 ∨ 𝑆)) ∈ (Baseβ€˜πΎ))
601, 7, 8hlatjcl 37832 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) β†’ (𝑄 ∨ 𝑇) ∈ (Baseβ€˜πΎ))
613, 6, 12, 60syl3anc 1372 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑅 ∨ π‘ˆ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) β†’ (𝑄 ∨ 𝑇) ∈ (Baseβ€˜πΎ))
621, 15latmassOLD 37694 . . . . . . . . . 10 ((𝐾 ∈ OL ∧ ((𝑄 ∨ (𝑃 ∨ 𝑆)) ∈ (Baseβ€˜πΎ) ∧ (𝑄 ∨ 𝑇) ∈ (Baseβ€˜πΎ) ∧ 𝑇 ∈ (Baseβ€˜πΎ))) β†’ (((𝑄 ∨ (𝑃 ∨ 𝑆)) ∧ (𝑄 ∨ 𝑇)) ∧ 𝑇) = ((𝑄 ∨ (𝑃 ∨ 𝑆)) ∧ ((𝑄 ∨ 𝑇) ∧ 𝑇)))
6355, 59, 61, 23, 62syl13anc 1373 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑅 ∨ π‘ˆ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) β†’ (((𝑄 ∨ (𝑃 ∨ 𝑆)) ∧ (𝑄 ∨ 𝑇)) ∧ 𝑇) = ((𝑄 ∨ (𝑃 ∨ 𝑆)) ∧ ((𝑄 ∨ 𝑇) ∧ 𝑇)))
647, 8hlatjass 37835 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) β†’ ((𝑃 ∨ 𝑄) ∨ 𝑆) = (𝑃 ∨ (𝑄 ∨ 𝑆)))
653, 5, 6, 11, 64syl13anc 1373 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑅 ∨ π‘ˆ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) β†’ ((𝑃 ∨ 𝑄) ∨ 𝑆) = (𝑃 ∨ (𝑄 ∨ 𝑆)))
667, 8hlatj12 37836 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) β†’ (𝑃 ∨ (𝑄 ∨ 𝑆)) = (𝑄 ∨ (𝑃 ∨ 𝑆)))
673, 5, 6, 11, 66syl13anc 1373 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑅 ∨ π‘ˆ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) β†’ (𝑃 ∨ (𝑄 ∨ 𝑆)) = (𝑄 ∨ (𝑃 ∨ 𝑆)))
6865, 67eqtr2d 2778 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑅 ∨ π‘ˆ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) β†’ (𝑄 ∨ (𝑃 ∨ 𝑆)) = ((𝑃 ∨ 𝑄) ∨ 𝑆))
692, 7, 8hlatlej2 37841 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) β†’ 𝑇 ≀ (𝑄 ∨ 𝑇))
703, 6, 12, 69syl3anc 1372 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑅 ∨ π‘ˆ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) β†’ 𝑇 ≀ (𝑄 ∨ 𝑇))
711, 2, 15latleeqm2 18358 . . . . . . . . . . . 12 ((𝐾 ∈ Lat ∧ 𝑇 ∈ (Baseβ€˜πΎ) ∧ (𝑄 ∨ 𝑇) ∈ (Baseβ€˜πΎ)) β†’ (𝑇 ≀ (𝑄 ∨ 𝑇) ↔ ((𝑄 ∨ 𝑇) ∧ 𝑇) = 𝑇))
724, 23, 61, 71syl3anc 1372 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑅 ∨ π‘ˆ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) β†’ (𝑇 ≀ (𝑄 ∨ 𝑇) ↔ ((𝑄 ∨ 𝑇) ∧ 𝑇) = 𝑇))
7370, 72mpbid 231 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑅 ∨ π‘ˆ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) β†’ ((𝑄 ∨ 𝑇) ∧ 𝑇) = 𝑇)
7468, 73oveq12d 7376 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑅 ∨ π‘ˆ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) β†’ ((𝑄 ∨ (𝑃 ∨ 𝑆)) ∧ ((𝑄 ∨ 𝑇) ∧ 𝑇)) = (((𝑃 ∨ 𝑄) ∨ 𝑆) ∧ 𝑇))
7563, 74eqtr2d 2778 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑅 ∨ π‘ˆ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) β†’ (((𝑃 ∨ 𝑄) ∨ 𝑆) ∧ 𝑇) = (((𝑄 ∨ (𝑃 ∨ 𝑆)) ∧ (𝑄 ∨ 𝑇)) ∧ 𝑇))
762, 7, 8hlatlej1 37840 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) β†’ 𝑄 ≀ (𝑄 ∨ 𝑇))
773, 6, 12, 76syl3anc 1372 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑅 ∨ π‘ˆ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) β†’ 𝑄 ≀ (𝑄 ∨ 𝑇))
781, 2, 7, 15, 8atmod1i1 38323 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ (𝑄 ∈ 𝐴 ∧ (𝑃 ∨ 𝑆) ∈ (Baseβ€˜πΎ) ∧ (𝑄 ∨ 𝑇) ∈ (Baseβ€˜πΎ)) ∧ 𝑄 ≀ (𝑄 ∨ 𝑇)) β†’ (𝑄 ∨ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇))) = ((𝑄 ∨ (𝑃 ∨ 𝑆)) ∧ (𝑄 ∨ 𝑇)))
793, 6, 57, 61, 77, 78syl131anc 1384 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑅 ∨ π‘ˆ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) β†’ (𝑄 ∨ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇))) = ((𝑄 ∨ (𝑃 ∨ 𝑆)) ∧ (𝑄 ∨ 𝑇)))
802, 7, 8hlatlej2 37841 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ π‘ˆ ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) β†’ 𝑄 ≀ (π‘ˆ ∨ 𝑄))
813, 30, 6, 80syl3anc 1372 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑅 ∨ π‘ˆ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) β†’ 𝑄 ≀ (π‘ˆ ∨ 𝑄))
82 simp13 1206 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑅 ∨ π‘ˆ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) β†’ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑅 ∨ π‘ˆ))
83 simp12 1205 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑅 ∨ π‘ˆ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) β†’ 𝑄 = 𝑅)
8483oveq1d 7373 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑅 ∨ π‘ˆ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) β†’ (𝑄 ∨ π‘ˆ) = (𝑅 ∨ π‘ˆ))
857, 8hlatjcom 37833 . . . . . . . . . . . . . 14 ((𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴) β†’ (𝑄 ∨ π‘ˆ) = (π‘ˆ ∨ 𝑄))
863, 6, 30, 85syl3anc 1372 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑅 ∨ π‘ˆ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) β†’ (𝑄 ∨ π‘ˆ) = (π‘ˆ ∨ 𝑄))
8784, 86eqtr3d 2779 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑅 ∨ π‘ˆ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) β†’ (𝑅 ∨ π‘ˆ) = (π‘ˆ ∨ 𝑄))
8882, 87breqtrd 5132 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑅 ∨ π‘ˆ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) β†’ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (π‘ˆ ∨ 𝑄))
891, 15latmcl 18330 . . . . . . . . . . . . 13 ((𝐾 ∈ Lat ∧ (𝑃 ∨ 𝑆) ∈ (Baseβ€˜πΎ) ∧ (𝑄 ∨ 𝑇) ∈ (Baseβ€˜πΎ)) β†’ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ∈ (Baseβ€˜πΎ))
904, 57, 61, 89syl3anc 1372 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑅 ∨ π‘ˆ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) β†’ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ∈ (Baseβ€˜πΎ))
911, 7, 8hlatjcl 37832 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ π‘ˆ ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) β†’ (π‘ˆ ∨ 𝑄) ∈ (Baseβ€˜πΎ))
923, 30, 6, 91syl3anc 1372 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑅 ∨ π‘ˆ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) β†’ (π‘ˆ ∨ 𝑄) ∈ (Baseβ€˜πΎ))
931, 2, 7latjle12 18340 . . . . . . . . . . . 12 ((𝐾 ∈ Lat ∧ (𝑄 ∈ (Baseβ€˜πΎ) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ∈ (Baseβ€˜πΎ) ∧ (π‘ˆ ∨ 𝑄) ∈ (Baseβ€˜πΎ))) β†’ ((𝑄 ≀ (π‘ˆ ∨ 𝑄) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (π‘ˆ ∨ 𝑄)) ↔ (𝑄 ∨ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇))) ≀ (π‘ˆ ∨ 𝑄)))
944, 29, 90, 92, 93syl13anc 1373 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑅 ∨ π‘ˆ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) β†’ ((𝑄 ≀ (π‘ˆ ∨ 𝑄) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (π‘ˆ ∨ 𝑄)) ↔ (𝑄 ∨ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇))) ≀ (π‘ˆ ∨ 𝑄)))
9581, 88, 94mpbi2and 711 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑅 ∨ π‘ˆ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) β†’ (𝑄 ∨ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇))) ≀ (π‘ˆ ∨ 𝑄))
9679, 95eqbrtrrd 5130 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑅 ∨ π‘ˆ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) β†’ ((𝑄 ∨ (𝑃 ∨ 𝑆)) ∧ (𝑄 ∨ 𝑇)) ≀ (π‘ˆ ∨ 𝑄))
972, 7, 8hlatlej1 37840 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴) β†’ 𝑇 ≀ (𝑇 ∨ π‘ˆ))
983, 12, 30, 97syl3anc 1372 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑅 ∨ π‘ˆ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) β†’ 𝑇 ≀ (𝑇 ∨ π‘ˆ))
991, 15latmcl 18330 . . . . . . . . . . 11 ((𝐾 ∈ Lat ∧ (𝑄 ∨ (𝑃 ∨ 𝑆)) ∈ (Baseβ€˜πΎ) ∧ (𝑄 ∨ 𝑇) ∈ (Baseβ€˜πΎ)) β†’ ((𝑄 ∨ (𝑃 ∨ 𝑆)) ∧ (𝑄 ∨ 𝑇)) ∈ (Baseβ€˜πΎ))
1004, 59, 61, 99syl3anc 1372 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑅 ∨ π‘ˆ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) β†’ ((𝑄 ∨ (𝑃 ∨ 𝑆)) ∧ (𝑄 ∨ 𝑇)) ∈ (Baseβ€˜πΎ))
1011, 2, 15latmlem12 18361 . . . . . . . . . 10 ((𝐾 ∈ Lat ∧ (((𝑄 ∨ (𝑃 ∨ 𝑆)) ∧ (𝑄 ∨ 𝑇)) ∈ (Baseβ€˜πΎ) ∧ (π‘ˆ ∨ 𝑄) ∈ (Baseβ€˜πΎ)) ∧ (𝑇 ∈ (Baseβ€˜πΎ) ∧ (𝑇 ∨ π‘ˆ) ∈ (Baseβ€˜πΎ))) β†’ ((((𝑄 ∨ (𝑃 ∨ 𝑆)) ∧ (𝑄 ∨ 𝑇)) ≀ (π‘ˆ ∨ 𝑄) ∧ 𝑇 ≀ (𝑇 ∨ π‘ˆ)) β†’ (((𝑄 ∨ (𝑃 ∨ 𝑆)) ∧ (𝑄 ∨ 𝑇)) ∧ 𝑇) ≀ ((π‘ˆ ∨ 𝑄) ∧ (𝑇 ∨ π‘ˆ))))
1024, 100, 92, 23, 32, 101syl122anc 1380 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑅 ∨ π‘ˆ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) β†’ ((((𝑄 ∨ (𝑃 ∨ 𝑆)) ∧ (𝑄 ∨ 𝑇)) ≀ (π‘ˆ ∨ 𝑄) ∧ 𝑇 ≀ (𝑇 ∨ π‘ˆ)) β†’ (((𝑄 ∨ (𝑃 ∨ 𝑆)) ∧ (𝑄 ∨ 𝑇)) ∧ 𝑇) ≀ ((π‘ˆ ∨ 𝑄) ∧ (𝑇 ∨ π‘ˆ))))
10396, 98, 102mp2and 698 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑅 ∨ π‘ˆ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) β†’ (((𝑄 ∨ (𝑃 ∨ 𝑆)) ∧ (𝑄 ∨ 𝑇)) ∧ 𝑇) ≀ ((π‘ˆ ∨ 𝑄) ∧ (𝑇 ∨ π‘ˆ)))
10475, 103eqbrtrd 5128 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑅 ∨ π‘ˆ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) β†’ (((𝑃 ∨ 𝑄) ∨ 𝑆) ∧ 𝑇) ≀ ((π‘ˆ ∨ 𝑄) ∧ (𝑇 ∨ π‘ˆ)))
1052, 7, 8hlatlej2 37841 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴) β†’ π‘ˆ ≀ (𝑇 ∨ π‘ˆ))
1063, 12, 30, 105syl3anc 1372 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑅 ∨ π‘ˆ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) β†’ π‘ˆ ≀ (𝑇 ∨ π‘ˆ))
1071, 2, 7, 15, 8atmod1i1 38323 . . . . . . . . 9 ((𝐾 ∈ HL ∧ (π‘ˆ ∈ 𝐴 ∧ 𝑄 ∈ (Baseβ€˜πΎ) ∧ (𝑇 ∨ π‘ˆ) ∈ (Baseβ€˜πΎ)) ∧ π‘ˆ ≀ (𝑇 ∨ π‘ˆ)) β†’ (π‘ˆ ∨ (𝑄 ∧ (𝑇 ∨ π‘ˆ))) = ((π‘ˆ ∨ 𝑄) ∧ (𝑇 ∨ π‘ˆ)))
1083, 30, 29, 32, 106, 107syl131anc 1384 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑅 ∨ π‘ˆ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) β†’ (π‘ˆ ∨ (𝑄 ∧ (𝑇 ∨ π‘ˆ))) = ((π‘ˆ ∨ 𝑄) ∧ (𝑇 ∨ π‘ˆ)))
1091, 8atbase 37754 . . . . . . . . . 10 (π‘ˆ ∈ 𝐴 β†’ π‘ˆ ∈ (Baseβ€˜πΎ))
11030, 109syl 17 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑅 ∨ π‘ˆ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) β†’ π‘ˆ ∈ (Baseβ€˜πΎ))
1111, 7latjcom 18337 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ π‘ˆ ∈ (Baseβ€˜πΎ) ∧ (𝑄 ∧ (𝑇 ∨ π‘ˆ)) ∈ (Baseβ€˜πΎ)) β†’ (π‘ˆ ∨ (𝑄 ∧ (𝑇 ∨ π‘ˆ))) = ((𝑄 ∧ (𝑇 ∨ π‘ˆ)) ∨ π‘ˆ))
1124, 110, 34, 111syl3anc 1372 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑅 ∨ π‘ˆ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) β†’ (π‘ˆ ∨ (𝑄 ∧ (𝑇 ∨ π‘ˆ))) = ((𝑄 ∧ (𝑇 ∨ π‘ˆ)) ∨ π‘ˆ))
113108, 112eqtr3d 2779 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑅 ∨ π‘ˆ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) β†’ ((π‘ˆ ∨ 𝑄) ∧ (𝑇 ∨ π‘ˆ)) = ((𝑄 ∧ (𝑇 ∨ π‘ˆ)) ∨ π‘ˆ))
114104, 113breqtrd 5132 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑅 ∨ π‘ˆ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) β†’ (((𝑃 ∨ 𝑄) ∨ 𝑆) ∧ 𝑇) ≀ ((𝑄 ∧ (𝑇 ∨ π‘ˆ)) ∨ π‘ˆ))
1151, 7latjcl 18329 . . . . . . . 8 ((𝐾 ∈ Lat ∧ (𝑄 ∧ (𝑇 ∨ π‘ˆ)) ∈ (Baseβ€˜πΎ) ∧ π‘ˆ ∈ (Baseβ€˜πΎ)) β†’ ((𝑄 ∧ (𝑇 ∨ π‘ˆ)) ∨ π‘ˆ) ∈ (Baseβ€˜πΎ))
1164, 34, 110, 115syl3anc 1372 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑅 ∨ π‘ˆ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) β†’ ((𝑄 ∧ (𝑇 ∨ π‘ˆ)) ∨ π‘ˆ) ∈ (Baseβ€˜πΎ))
1171, 2, 7latjlej1 18343 . . . . . . 7 ((𝐾 ∈ Lat ∧ ((((𝑃 ∨ 𝑄) ∨ 𝑆) ∧ 𝑇) ∈ (Baseβ€˜πΎ) ∧ ((𝑄 ∧ (𝑇 ∨ π‘ˆ)) ∨ π‘ˆ) ∈ (Baseβ€˜πΎ) ∧ 𝑆 ∈ (Baseβ€˜πΎ))) β†’ ((((𝑃 ∨ 𝑄) ∨ 𝑆) ∧ 𝑇) ≀ ((𝑄 ∧ (𝑇 ∨ π‘ˆ)) ∨ π‘ˆ) β†’ ((((𝑃 ∨ 𝑄) ∨ 𝑆) ∧ 𝑇) ∨ 𝑆) ≀ (((𝑄 ∧ (𝑇 ∨ π‘ˆ)) ∨ π‘ˆ) ∨ 𝑆)))
1184, 25, 116, 19, 117syl13anc 1373 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑅 ∨ π‘ˆ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) β†’ ((((𝑃 ∨ 𝑄) ∨ 𝑆) ∧ 𝑇) ≀ ((𝑄 ∧ (𝑇 ∨ π‘ˆ)) ∨ π‘ˆ) β†’ ((((𝑃 ∨ 𝑄) ∨ 𝑆) ∧ 𝑇) ∨ 𝑆) ≀ (((𝑄 ∧ (𝑇 ∨ π‘ˆ)) ∨ π‘ˆ) ∨ 𝑆)))
119114, 118mpd 15 . . . . 5 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑅 ∨ π‘ˆ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) β†’ ((((𝑃 ∨ 𝑄) ∨ 𝑆) ∧ 𝑇) ∨ 𝑆) ≀ (((𝑄 ∧ (𝑇 ∨ π‘ˆ)) ∨ π‘ˆ) ∨ 𝑆))
1201, 7latjass 18373 . . . . . 6 ((𝐾 ∈ Lat ∧ ((𝑄 ∧ (𝑇 ∨ π‘ˆ)) ∈ (Baseβ€˜πΎ) ∧ π‘ˆ ∈ (Baseβ€˜πΎ) ∧ 𝑆 ∈ (Baseβ€˜πΎ))) β†’ (((𝑄 ∧ (𝑇 ∨ π‘ˆ)) ∨ π‘ˆ) ∨ 𝑆) = ((𝑄 ∧ (𝑇 ∨ π‘ˆ)) ∨ (π‘ˆ ∨ 𝑆)))
1214, 34, 110, 19, 120syl13anc 1373 . . . . 5 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑅 ∨ π‘ˆ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) β†’ (((𝑄 ∧ (𝑇 ∨ π‘ˆ)) ∨ π‘ˆ) ∨ 𝑆) = ((𝑄 ∧ (𝑇 ∨ π‘ˆ)) ∨ (π‘ˆ ∨ 𝑆)))
122119, 121breqtrd 5132 . . . 4 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑅 ∨ π‘ˆ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) β†’ ((((𝑃 ∨ 𝑄) ∨ 𝑆) ∧ 𝑇) ∨ 𝑆) ≀ ((𝑄 ∧ (𝑇 ∨ π‘ˆ)) ∨ (π‘ˆ ∨ 𝑆)))
1231, 2, 4, 17, 27, 38, 53, 122lattrd 18336 . . 3 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑅 ∨ π‘ˆ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) β†’ ((𝑃 ∨ 𝑄) ∧ (𝑆 ∨ 𝑇)) ≀ ((𝑄 ∧ (𝑇 ∨ π‘ˆ)) ∨ (π‘ˆ ∨ 𝑆)))
1241, 2, 15latmle1 18354 . . . 4 ((𝐾 ∈ Lat ∧ (𝑃 ∨ 𝑄) ∈ (Baseβ€˜πΎ) ∧ (𝑆 ∨ 𝑇) ∈ (Baseβ€˜πΎ)) β†’ ((𝑃 ∨ 𝑄) ∧ (𝑆 ∨ 𝑇)) ≀ (𝑃 ∨ 𝑄))
1254, 10, 14, 124syl3anc 1372 . . 3 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑅 ∨ π‘ˆ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) β†’ ((𝑃 ∨ 𝑄) ∧ (𝑆 ∨ 𝑇)) ≀ (𝑃 ∨ 𝑄))
1261, 2, 15latlem12 18356 . . . 4 ((𝐾 ∈ Lat ∧ (((𝑃 ∨ 𝑄) ∧ (𝑆 ∨ 𝑇)) ∈ (Baseβ€˜πΎ) ∧ ((𝑄 ∧ (𝑇 ∨ π‘ˆ)) ∨ (π‘ˆ ∨ 𝑆)) ∈ (Baseβ€˜πΎ) ∧ (𝑃 ∨ 𝑄) ∈ (Baseβ€˜πΎ))) β†’ ((((𝑃 ∨ 𝑄) ∧ (𝑆 ∨ 𝑇)) ≀ ((𝑄 ∧ (𝑇 ∨ π‘ˆ)) ∨ (π‘ˆ ∨ 𝑆)) ∧ ((𝑃 ∨ 𝑄) ∧ (𝑆 ∨ 𝑇)) ≀ (𝑃 ∨ 𝑄)) ↔ ((𝑃 ∨ 𝑄) ∧ (𝑆 ∨ 𝑇)) ≀ (((𝑄 ∧ (𝑇 ∨ π‘ˆ)) ∨ (π‘ˆ ∨ 𝑆)) ∧ (𝑃 ∨ 𝑄))))
1274, 17, 38, 10, 126syl13anc 1373 . . 3 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑅 ∨ π‘ˆ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) β†’ ((((𝑃 ∨ 𝑄) ∧ (𝑆 ∨ 𝑇)) ≀ ((𝑄 ∧ (𝑇 ∨ π‘ˆ)) ∨ (π‘ˆ ∨ 𝑆)) ∧ ((𝑃 ∨ 𝑄) ∧ (𝑆 ∨ 𝑇)) ≀ (𝑃 ∨ 𝑄)) ↔ ((𝑃 ∨ 𝑄) ∧ (𝑆 ∨ 𝑇)) ≀ (((𝑄 ∧ (𝑇 ∨ π‘ˆ)) ∨ (π‘ˆ ∨ 𝑆)) ∧ (𝑃 ∨ 𝑄))))
128123, 125, 127mpbi2and 711 . 2 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑅 ∨ π‘ˆ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) β†’ ((𝑃 ∨ 𝑄) ∧ (𝑆 ∨ 𝑇)) ≀ (((𝑄 ∧ (𝑇 ∨ π‘ˆ)) ∨ (π‘ˆ ∨ 𝑆)) ∧ (𝑃 ∨ 𝑄)))
1291, 8atbase 37754 . . . . . 6 (𝑃 ∈ 𝐴 β†’ 𝑃 ∈ (Baseβ€˜πΎ))
1305, 129syl 17 . . . . 5 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑅 ∨ π‘ˆ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) β†’ 𝑃 ∈ (Baseβ€˜πΎ))
1311, 2, 7, 15latmlej12 18369 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑄 ∈ (Baseβ€˜πΎ) ∧ (𝑇 ∨ π‘ˆ) ∈ (Baseβ€˜πΎ) ∧ 𝑃 ∈ (Baseβ€˜πΎ))) β†’ (𝑄 ∧ (𝑇 ∨ π‘ˆ)) ≀ (𝑃 ∨ 𝑄))
1324, 29, 32, 130, 131syl13anc 1373 . . . 4 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑅 ∨ π‘ˆ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) β†’ (𝑄 ∧ (𝑇 ∨ π‘ˆ)) ≀ (𝑃 ∨ 𝑄))
1331, 2, 7, 15, 8llnmod1i2 38326 . . . 4 (((𝐾 ∈ HL ∧ (𝑄 ∧ (𝑇 ∨ π‘ˆ)) ∈ (Baseβ€˜πΎ) ∧ (𝑃 ∨ 𝑄) ∈ (Baseβ€˜πΎ)) ∧ (π‘ˆ ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑄 ∧ (𝑇 ∨ π‘ˆ)) ≀ (𝑃 ∨ 𝑄)) β†’ ((𝑄 ∧ (𝑇 ∨ π‘ˆ)) ∨ ((π‘ˆ ∨ 𝑆) ∧ (𝑃 ∨ 𝑄))) = (((𝑄 ∧ (𝑇 ∨ π‘ˆ)) ∨ (π‘ˆ ∨ 𝑆)) ∧ (𝑃 ∨ 𝑄)))
1343, 34, 10, 30, 11, 132, 133syl321anc 1393 . . 3 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑅 ∨ π‘ˆ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) β†’ ((𝑄 ∧ (𝑇 ∨ π‘ˆ)) ∨ ((π‘ˆ ∨ 𝑆) ∧ (𝑃 ∨ 𝑄))) = (((𝑄 ∧ (𝑇 ∨ π‘ˆ)) ∨ (π‘ˆ ∨ 𝑆)) ∧ (𝑃 ∨ 𝑄)))
1357, 8hlatjidm 37834 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴) β†’ (𝑄 ∨ 𝑄) = 𝑄)
1363, 6, 135syl2anc 585 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑅 ∨ π‘ˆ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) β†’ (𝑄 ∨ 𝑄) = 𝑄)
13783oveq2d 7374 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑅 ∨ π‘ˆ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) β†’ (𝑄 ∨ 𝑄) = (𝑄 ∨ 𝑅))
138136, 137eqtr3d 2779 . . . . 5 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑅 ∨ π‘ˆ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) β†’ 𝑄 = (𝑄 ∨ 𝑅))
139138oveq1d 7373 . . . 4 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑅 ∨ π‘ˆ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) β†’ (𝑄 ∧ (𝑇 ∨ π‘ˆ)) = ((𝑄 ∨ 𝑅) ∧ (𝑇 ∨ π‘ˆ)))
1401, 15latmcom 18353 . . . . . 6 ((𝐾 ∈ Lat ∧ (π‘ˆ ∨ 𝑆) ∈ (Baseβ€˜πΎ) ∧ (𝑃 ∨ 𝑄) ∈ (Baseβ€˜πΎ)) β†’ ((π‘ˆ ∨ 𝑆) ∧ (𝑃 ∨ 𝑄)) = ((𝑃 ∨ 𝑄) ∧ (π‘ˆ ∨ 𝑆)))
1414, 36, 10, 140syl3anc 1372 . . . . 5 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑅 ∨ π‘ˆ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) β†’ ((π‘ˆ ∨ 𝑆) ∧ (𝑃 ∨ 𝑄)) = ((𝑃 ∨ 𝑄) ∧ (π‘ˆ ∨ 𝑆)))
1427, 8hlatjcom 37833 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) β†’ (𝑃 ∨ 𝑄) = (𝑄 ∨ 𝑃))
1433, 5, 6, 142syl3anc 1372 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑅 ∨ π‘ˆ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) β†’ (𝑃 ∨ 𝑄) = (𝑄 ∨ 𝑃))
14483oveq1d 7373 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑅 ∨ π‘ˆ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) β†’ (𝑄 ∨ 𝑃) = (𝑅 ∨ 𝑃))
145143, 144eqtrd 2777 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑅 ∨ π‘ˆ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) β†’ (𝑃 ∨ 𝑄) = (𝑅 ∨ 𝑃))
146145oveq1d 7373 . . . . 5 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑅 ∨ π‘ˆ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) β†’ ((𝑃 ∨ 𝑄) ∧ (π‘ˆ ∨ 𝑆)) = ((𝑅 ∨ 𝑃) ∧ (π‘ˆ ∨ 𝑆)))
147141, 146eqtrd 2777 . . . 4 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑅 ∨ π‘ˆ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) β†’ ((π‘ˆ ∨ 𝑆) ∧ (𝑃 ∨ 𝑄)) = ((𝑅 ∨ 𝑃) ∧ (π‘ˆ ∨ 𝑆)))
148139, 147oveq12d 7376 . . 3 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑅 ∨ π‘ˆ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) β†’ ((𝑄 ∧ (𝑇 ∨ π‘ˆ)) ∨ ((π‘ˆ ∨ 𝑆) ∧ (𝑃 ∨ 𝑄))) = (((𝑄 ∨ 𝑅) ∧ (𝑇 ∨ π‘ˆ)) ∨ ((𝑅 ∨ 𝑃) ∧ (π‘ˆ ∨ 𝑆))))
149134, 148eqtr3d 2779 . 2 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑅 ∨ π‘ˆ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) β†’ (((𝑄 ∧ (𝑇 ∨ π‘ˆ)) ∨ (π‘ˆ ∨ 𝑆)) ∧ (𝑃 ∨ 𝑄)) = (((𝑄 ∨ 𝑅) ∧ (𝑇 ∨ π‘ˆ)) ∨ ((𝑅 ∨ 𝑃) ∧ (π‘ˆ ∨ 𝑆))))
150128, 149breqtrd 5132 1 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑅 ∨ π‘ˆ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) β†’ ((𝑃 ∨ 𝑄) ∧ (𝑆 ∨ 𝑇)) ≀ (((𝑄 ∨ 𝑅) ∧ (𝑇 ∨ π‘ˆ)) ∨ ((𝑅 ∨ 𝑃) ∧ (π‘ˆ ∨ 𝑆))))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 397   ∧ w3a 1088   = wceq 1542   ∈ wcel 2107   class class class wbr 5106  β€˜cfv 6497  (class class class)co 7358  Basecbs 17084  lecple 17141  joincjn 18201  meetcmee 18202  Latclat 18321  OLcol 37639  Atomscatm 37728  HLchlt 37815
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-rep 5243  ax-sep 5257  ax-nul 5264  ax-pow 5321  ax-pr 5385  ax-un 7673
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2890  df-ne 2945  df-ral 3066  df-rex 3075  df-reu 3355  df-rab 3409  df-v 3448  df-sbc 3741  df-csb 3857  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4284  df-if 4488  df-pw 4563  df-sn 4588  df-pr 4590  df-op 4594  df-uni 4867  df-iun 4957  df-iin 4958  df-br 5107  df-opab 5169  df-mpt 5190  df-id 5532  df-xp 5640  df-rel 5641  df-cnv 5642  df-co 5643  df-dm 5644  df-rn 5645  df-res 5646  df-ima 5647  df-iota 6449  df-fun 6499  df-fn 6500  df-f 6501  df-f1 6502  df-fo 6503  df-f1o 6504  df-fv 6505  df-riota 7314  df-ov 7361  df-oprab 7362  df-mpo 7363  df-1st 7922  df-2nd 7923  df-proset 18185  df-poset 18203  df-plt 18220  df-lub 18236  df-glb 18237  df-join 18238  df-meet 18239  df-p0 18315  df-lat 18322  df-clat 18389  df-oposet 37641  df-ol 37643  df-oml 37644  df-covers 37731  df-ats 37732  df-atl 37763  df-cvlat 37787  df-hlat 37816  df-psubsp 37969  df-pmap 37970  df-padd 38262
This theorem is referenced by:  dalawlem13  38349
  Copyright terms: Public domain W3C validator