MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  noinfbnd1lem4 Structured version   Visualization version   GIF version

Theorem noinfbnd1lem4 27614
Description: Lemma for noinfbnd1 27617. If 𝑈 is a prolongment of 𝑇 and in 𝐵, then (𝑈‘dom 𝑇) is not undefined. (Contributed by Scott Fenton, 9-Aug-2024.)
Hypothesis
Ref Expression
noinfbnd1.1 𝑇 = if(∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥, ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
Assertion
Ref Expression
noinfbnd1lem4 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) → (𝑈‘dom 𝑇) ≠ ∅)
Distinct variable groups:   𝐵,𝑔,𝑢,𝑣,𝑥,𝑦   𝑣,𝑈   𝑥,𝑢,𝑦   𝑔,𝑉   𝑥,𝑣,𝑦,𝑈
Allowed substitution hints:   𝑇(𝑥,𝑦,𝑣,𝑢,𝑔)   𝑈(𝑢,𝑔)   𝑉(𝑥,𝑦,𝑣,𝑢)

Proof of Theorem noinfbnd1lem4
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 simpl1 1188 . . . . . . . 8 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑤𝐵𝑤 <s 𝑈)) → ¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)
2 simpl2 1189 . . . . . . . 8 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑤𝐵𝑤 <s 𝑈)) → (𝐵 No 𝐵𝑉))
3 simprl 768 . . . . . . . 8 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑤𝐵𝑤 <s 𝑈)) → 𝑤𝐵)
4 simpl3 1190 . . . . . . . . 9 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑤𝐵𝑤 <s 𝑈)) → (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇))
5 simp2l 1196 . . . . . . . . . . . . 13 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) → 𝐵 No )
65sselda 3977 . . . . . . . . . . . 12 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ 𝑤𝐵) → 𝑤 No )
7 simp3l 1198 . . . . . . . . . . . . . 14 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) → 𝑈𝐵)
85, 7sseldd 3978 . . . . . . . . . . . . 13 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) → 𝑈 No )
98adantr 480 . . . . . . . . . . . 12 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ 𝑤𝐵) → 𝑈 No )
10 sltso 27564 . . . . . . . . . . . . 13 <s Or No
11 soasym 5612 . . . . . . . . . . . . 13 (( <s Or No ∧ (𝑤 No 𝑈 No )) → (𝑤 <s 𝑈 → ¬ 𝑈 <s 𝑤))
1210, 11mpan 687 . . . . . . . . . . . 12 ((𝑤 No 𝑈 No ) → (𝑤 <s 𝑈 → ¬ 𝑈 <s 𝑤))
136, 9, 12syl2anc 583 . . . . . . . . . . 11 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ 𝑤𝐵) → (𝑤 <s 𝑈 → ¬ 𝑈 <s 𝑤))
1413impr 454 . . . . . . . . . 10 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑤𝐵𝑤 <s 𝑈)) → ¬ 𝑈 <s 𝑤)
153, 14jca 511 . . . . . . . . 9 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑤𝐵𝑤 <s 𝑈)) → (𝑤𝐵 ∧ ¬ 𝑈 <s 𝑤))
16 noinfbnd1.1 . . . . . . . . . 10 𝑇 = if(∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥, ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
1716noinfbnd1lem2 27612 . . . . . . . . 9 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ ((𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇) ∧ (𝑤𝐵 ∧ ¬ 𝑈 <s 𝑤))) → (𝑤 ↾ dom 𝑇) = 𝑇)
181, 2, 4, 15, 17syl112anc 1371 . . . . . . . 8 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑤𝐵𝑤 <s 𝑈)) → (𝑤 ↾ dom 𝑇) = 𝑇)
1916noinfbnd1lem3 27613 . . . . . . . 8 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑤𝐵 ∧ (𝑤 ↾ dom 𝑇) = 𝑇)) → (𝑤‘dom 𝑇) ≠ 1o)
201, 2, 3, 18, 19syl112anc 1371 . . . . . . 7 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑤𝐵𝑤 <s 𝑈)) → (𝑤‘dom 𝑇) ≠ 1o)
2120neneqd 2939 . . . . . 6 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑤𝐵𝑤 <s 𝑈)) → ¬ (𝑤‘dom 𝑇) = 1o)
2221expr 456 . . . . 5 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ 𝑤𝐵) → (𝑤 <s 𝑈 → ¬ (𝑤‘dom 𝑇) = 1o))
23 imnan 399 . . . . 5 ((𝑤 <s 𝑈 → ¬ (𝑤‘dom 𝑇) = 1o) ↔ ¬ (𝑤 <s 𝑈 ∧ (𝑤‘dom 𝑇) = 1o))
2422, 23sylib 217 . . . 4 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ 𝑤𝐵) → ¬ (𝑤 <s 𝑈 ∧ (𝑤‘dom 𝑇) = 1o))
2524nrexdv 3143 . . 3 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) → ¬ ∃𝑤𝐵 (𝑤 <s 𝑈 ∧ (𝑤‘dom 𝑇) = 1o))
26 breq2 5145 . . . . . . 7 (𝑥 = 𝑈 → (𝑦 <s 𝑥𝑦 <s 𝑈))
2726rexbidv 3172 . . . . . 6 (𝑥 = 𝑈 → (∃𝑦𝐵 𝑦 <s 𝑥 ↔ ∃𝑦𝐵 𝑦 <s 𝑈))
28 simpl1 1188 . . . . . . 7 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = ∅) → ¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)
29 dfral2 3093 . . . . . . . 8 (∀𝑥𝐵𝑦𝐵 𝑦 <s 𝑥 ↔ ¬ ∃𝑥𝐵 ¬ ∃𝑦𝐵 𝑦 <s 𝑥)
30 ralnex 3066 . . . . . . . . 9 (∀𝑦𝐵 ¬ 𝑦 <s 𝑥 ↔ ¬ ∃𝑦𝐵 𝑦 <s 𝑥)
3130rexbii 3088 . . . . . . . 8 (∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ↔ ∃𝑥𝐵 ¬ ∃𝑦𝐵 𝑦 <s 𝑥)
3229, 31xchbinxr 335 . . . . . . 7 (∀𝑥𝐵𝑦𝐵 𝑦 <s 𝑥 ↔ ¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)
3328, 32sylibr 233 . . . . . 6 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = ∅) → ∀𝑥𝐵𝑦𝐵 𝑦 <s 𝑥)
34 simpl3l 1225 . . . . . 6 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = ∅) → 𝑈𝐵)
3527, 33, 34rspcdva 3607 . . . . 5 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = ∅) → ∃𝑦𝐵 𝑦 <s 𝑈)
36 breq1 5144 . . . . . 6 (𝑦 = 𝑤 → (𝑦 <s 𝑈𝑤 <s 𝑈))
3736cbvrexvw 3229 . . . . 5 (∃𝑦𝐵 𝑦 <s 𝑈 ↔ ∃𝑤𝐵 𝑤 <s 𝑈)
3835, 37sylib 217 . . . 4 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = ∅) → ∃𝑤𝐵 𝑤 <s 𝑈)
39 simpl2l 1223 . . . . . . . . . 10 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = ∅) → 𝐵 No )
4039adantr 480 . . . . . . . . 9 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = ∅) ∧ (𝑤𝐵𝑤 <s 𝑈)) → 𝐵 No )
41 simprl 768 . . . . . . . . 9 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = ∅) ∧ (𝑤𝐵𝑤 <s 𝑈)) → 𝑤𝐵)
4240, 41sseldd 3978 . . . . . . . 8 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = ∅) ∧ (𝑤𝐵𝑤 <s 𝑈)) → 𝑤 No )
4334adantr 480 . . . . . . . . 9 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = ∅) ∧ (𝑤𝐵𝑤 <s 𝑈)) → 𝑈𝐵)
4440, 43sseldd 3978 . . . . . . . 8 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = ∅) ∧ (𝑤𝐵𝑤 <s 𝑈)) → 𝑈 No )
45 simpl2 1189 . . . . . . . . . . 11 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = ∅) → (𝐵 No 𝐵𝑉))
4616noinfno 27606 . . . . . . . . . . 11 ((𝐵 No 𝐵𝑉) → 𝑇 No )
4745, 46syl 17 . . . . . . . . . 10 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = ∅) → 𝑇 No )
4847adantr 480 . . . . . . . . 9 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = ∅) ∧ (𝑤𝐵𝑤 <s 𝑈)) → 𝑇 No )
49 nodmon 27538 . . . . . . . . 9 (𝑇 No → dom 𝑇 ∈ On)
5048, 49syl 17 . . . . . . . 8 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = ∅) ∧ (𝑤𝐵𝑤 <s 𝑈)) → dom 𝑇 ∈ On)
51 simpll1 1209 . . . . . . . . . 10 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = ∅) ∧ (𝑤𝐵𝑤 <s 𝑈)) → ¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)
52 simpll2 1210 . . . . . . . . . 10 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = ∅) ∧ (𝑤𝐵𝑤 <s 𝑈)) → (𝐵 No 𝐵𝑉))
53 simpll3 1211 . . . . . . . . . 10 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = ∅) ∧ (𝑤𝐵𝑤 <s 𝑈)) → (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇))
54 simprr 770 . . . . . . . . . . . 12 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = ∅) ∧ (𝑤𝐵𝑤 <s 𝑈)) → 𝑤 <s 𝑈)
5542, 44, 12syl2anc 583 . . . . . . . . . . . 12 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = ∅) ∧ (𝑤𝐵𝑤 <s 𝑈)) → (𝑤 <s 𝑈 → ¬ 𝑈 <s 𝑤))
5654, 55mpd 15 . . . . . . . . . . 11 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = ∅) ∧ (𝑤𝐵𝑤 <s 𝑈)) → ¬ 𝑈 <s 𝑤)
5741, 56jca 511 . . . . . . . . . 10 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = ∅) ∧ (𝑤𝐵𝑤 <s 𝑈)) → (𝑤𝐵 ∧ ¬ 𝑈 <s 𝑤))
5851, 52, 53, 57, 17syl112anc 1371 . . . . . . . . 9 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = ∅) ∧ (𝑤𝐵𝑤 <s 𝑈)) → (𝑤 ↾ dom 𝑇) = 𝑇)
59 simpl3r 1226 . . . . . . . . . 10 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = ∅) → (𝑈 ↾ dom 𝑇) = 𝑇)
6059adantr 480 . . . . . . . . 9 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = ∅) ∧ (𝑤𝐵𝑤 <s 𝑈)) → (𝑈 ↾ dom 𝑇) = 𝑇)
6158, 60eqtr4d 2769 . . . . . . . 8 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = ∅) ∧ (𝑤𝐵𝑤 <s 𝑈)) → (𝑤 ↾ dom 𝑇) = (𝑈 ↾ dom 𝑇))
62 simplr 766 . . . . . . . 8 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = ∅) ∧ (𝑤𝐵𝑤 <s 𝑈)) → (𝑈‘dom 𝑇) = ∅)
63 nogt01o 27584 . . . . . . . 8 (((𝑤 No 𝑈 No ∧ dom 𝑇 ∈ On) ∧ ((𝑤 ↾ dom 𝑇) = (𝑈 ↾ dom 𝑇) ∧ 𝑤 <s 𝑈) ∧ (𝑈‘dom 𝑇) = ∅) → (𝑤‘dom 𝑇) = 1o)
6442, 44, 50, 61, 54, 62, 63syl321anc 1389 . . . . . . 7 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = ∅) ∧ (𝑤𝐵𝑤 <s 𝑈)) → (𝑤‘dom 𝑇) = 1o)
6564expr 456 . . . . . 6 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = ∅) ∧ 𝑤𝐵) → (𝑤 <s 𝑈 → (𝑤‘dom 𝑇) = 1o))
6665ancld 550 . . . . 5 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = ∅) ∧ 𝑤𝐵) → (𝑤 <s 𝑈 → (𝑤 <s 𝑈 ∧ (𝑤‘dom 𝑇) = 1o)))
6766reximdva 3162 . . . 4 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = ∅) → (∃𝑤𝐵 𝑤 <s 𝑈 → ∃𝑤𝐵 (𝑤 <s 𝑈 ∧ (𝑤‘dom 𝑇) = 1o)))
6838, 67mpd 15 . . 3 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = ∅) → ∃𝑤𝐵 (𝑤 <s 𝑈 ∧ (𝑤‘dom 𝑇) = 1o))
6925, 68mtand 813 . 2 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) → ¬ (𝑈‘dom 𝑇) = ∅)
7069neqned 2941 1 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) → (𝑈‘dom 𝑇) ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1084   = wceq 1533  wcel 2098  {cab 2703  wne 2934  wral 3055  wrex 3064  cun 3941  wss 3943  c0 4317  ifcif 4523  {csn 4623  cop 4629   class class class wbr 5141  cmpt 5224   Or wor 5580  dom cdm 5669  cres 5671  Oncon0 6358  suc csuc 6360  cio 6487  cfv 6537  crio 7360  1oc1o 8460   No csur 27528   <s cslt 27529
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pr 5420  ax-un 7722
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-ral 3056  df-rex 3065  df-rmo 3370  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-pss 3962  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-tp 4628  df-op 4630  df-uni 4903  df-int 4944  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-ord 6361  df-on 6362  df-suc 6364  df-iota 6489  df-fun 6539  df-fn 6540  df-f 6541  df-f1 6542  df-fo 6543  df-f1o 6544  df-fv 6545  df-riota 7361  df-1o 8467  df-2o 8468  df-no 27531  df-slt 27532  df-bday 27533
This theorem is referenced by:  noinfbnd1lem5  27615  noinfbnd1lem6  27616
  Copyright terms: Public domain W3C validator