MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  noinfbnd1lem4 Structured version   Visualization version   GIF version

Theorem noinfbnd1lem4 27671
Description: Lemma for noinfbnd1 27674. If 𝑈 is a prolongment of 𝑇 and in 𝐵, then (𝑈‘dom 𝑇) is not undefined. (Contributed by Scott Fenton, 9-Aug-2024.)
Hypothesis
Ref Expression
noinfbnd1.1 𝑇 = if(∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥, ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
Assertion
Ref Expression
noinfbnd1lem4 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) → (𝑈‘dom 𝑇) ≠ ∅)
Distinct variable groups:   𝐵,𝑔,𝑢,𝑣,𝑥,𝑦   𝑣,𝑈   𝑔,𝑉   𝑥,𝑈,𝑦
Allowed substitution hints:   𝑇(𝑥,𝑦,𝑣,𝑢,𝑔)   𝑈(𝑢,𝑔)   𝑉(𝑥,𝑦,𝑣,𝑢)

Proof of Theorem noinfbnd1lem4
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 simpl1 1192 . . . . . . . 8 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑤𝐵𝑤 <s 𝑈)) → ¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)
2 simpl2 1193 . . . . . . . 8 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑤𝐵𝑤 <s 𝑈)) → (𝐵 No 𝐵𝑉))
3 simprl 770 . . . . . . . 8 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑤𝐵𝑤 <s 𝑈)) → 𝑤𝐵)
4 simpl3 1194 . . . . . . . . 9 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑤𝐵𝑤 <s 𝑈)) → (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇))
5 simp2l 1200 . . . . . . . . . . . . 13 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) → 𝐵 No )
65sselda 3943 . . . . . . . . . . . 12 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ 𝑤𝐵) → 𝑤 No )
7 simp3l 1202 . . . . . . . . . . . . . 14 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) → 𝑈𝐵)
85, 7sseldd 3944 . . . . . . . . . . . . 13 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) → 𝑈 No )
98adantr 480 . . . . . . . . . . . 12 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ 𝑤𝐵) → 𝑈 No )
10 sltso 27621 . . . . . . . . . . . . 13 <s Or No
11 soasym 5572 . . . . . . . . . . . . 13 (( <s Or No ∧ (𝑤 No 𝑈 No )) → (𝑤 <s 𝑈 → ¬ 𝑈 <s 𝑤))
1210, 11mpan 690 . . . . . . . . . . . 12 ((𝑤 No 𝑈 No ) → (𝑤 <s 𝑈 → ¬ 𝑈 <s 𝑤))
136, 9, 12syl2anc 584 . . . . . . . . . . 11 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ 𝑤𝐵) → (𝑤 <s 𝑈 → ¬ 𝑈 <s 𝑤))
1413impr 454 . . . . . . . . . 10 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑤𝐵𝑤 <s 𝑈)) → ¬ 𝑈 <s 𝑤)
153, 14jca 511 . . . . . . . . 9 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑤𝐵𝑤 <s 𝑈)) → (𝑤𝐵 ∧ ¬ 𝑈 <s 𝑤))
16 noinfbnd1.1 . . . . . . . . . 10 𝑇 = if(∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥, ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
1716noinfbnd1lem2 27669 . . . . . . . . 9 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ ((𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇) ∧ (𝑤𝐵 ∧ ¬ 𝑈 <s 𝑤))) → (𝑤 ↾ dom 𝑇) = 𝑇)
181, 2, 4, 15, 17syl112anc 1376 . . . . . . . 8 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑤𝐵𝑤 <s 𝑈)) → (𝑤 ↾ dom 𝑇) = 𝑇)
1916noinfbnd1lem3 27670 . . . . . . . 8 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑤𝐵 ∧ (𝑤 ↾ dom 𝑇) = 𝑇)) → (𝑤‘dom 𝑇) ≠ 1o)
201, 2, 3, 18, 19syl112anc 1376 . . . . . . 7 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑤𝐵𝑤 <s 𝑈)) → (𝑤‘dom 𝑇) ≠ 1o)
2120neneqd 2930 . . . . . 6 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑤𝐵𝑤 <s 𝑈)) → ¬ (𝑤‘dom 𝑇) = 1o)
2221expr 456 . . . . 5 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ 𝑤𝐵) → (𝑤 <s 𝑈 → ¬ (𝑤‘dom 𝑇) = 1o))
23 imnan 399 . . . . 5 ((𝑤 <s 𝑈 → ¬ (𝑤‘dom 𝑇) = 1o) ↔ ¬ (𝑤 <s 𝑈 ∧ (𝑤‘dom 𝑇) = 1o))
2422, 23sylib 218 . . . 4 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ 𝑤𝐵) → ¬ (𝑤 <s 𝑈 ∧ (𝑤‘dom 𝑇) = 1o))
2524nrexdv 3128 . . 3 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) → ¬ ∃𝑤𝐵 (𝑤 <s 𝑈 ∧ (𝑤‘dom 𝑇) = 1o))
26 breq2 5106 . . . . . . 7 (𝑥 = 𝑈 → (𝑦 <s 𝑥𝑦 <s 𝑈))
2726rexbidv 3157 . . . . . 6 (𝑥 = 𝑈 → (∃𝑦𝐵 𝑦 <s 𝑥 ↔ ∃𝑦𝐵 𝑦 <s 𝑈))
28 simpl1 1192 . . . . . . 7 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = ∅) → ¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)
29 dfral2 3081 . . . . . . . 8 (∀𝑥𝐵𝑦𝐵 𝑦 <s 𝑥 ↔ ¬ ∃𝑥𝐵 ¬ ∃𝑦𝐵 𝑦 <s 𝑥)
30 ralnex 3055 . . . . . . . . 9 (∀𝑦𝐵 ¬ 𝑦 <s 𝑥 ↔ ¬ ∃𝑦𝐵 𝑦 <s 𝑥)
3130rexbii 3076 . . . . . . . 8 (∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ↔ ∃𝑥𝐵 ¬ ∃𝑦𝐵 𝑦 <s 𝑥)
3229, 31xchbinxr 335 . . . . . . 7 (∀𝑥𝐵𝑦𝐵 𝑦 <s 𝑥 ↔ ¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)
3328, 32sylibr 234 . . . . . 6 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = ∅) → ∀𝑥𝐵𝑦𝐵 𝑦 <s 𝑥)
34 simpl3l 1229 . . . . . 6 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = ∅) → 𝑈𝐵)
3527, 33, 34rspcdva 3586 . . . . 5 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = ∅) → ∃𝑦𝐵 𝑦 <s 𝑈)
36 breq1 5105 . . . . . 6 (𝑦 = 𝑤 → (𝑦 <s 𝑈𝑤 <s 𝑈))
3736cbvrexvw 3214 . . . . 5 (∃𝑦𝐵 𝑦 <s 𝑈 ↔ ∃𝑤𝐵 𝑤 <s 𝑈)
3835, 37sylib 218 . . . 4 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = ∅) → ∃𝑤𝐵 𝑤 <s 𝑈)
39 simpl2l 1227 . . . . . . . . . 10 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = ∅) → 𝐵 No )
4039adantr 480 . . . . . . . . 9 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = ∅) ∧ (𝑤𝐵𝑤 <s 𝑈)) → 𝐵 No )
41 simprl 770 . . . . . . . . 9 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = ∅) ∧ (𝑤𝐵𝑤 <s 𝑈)) → 𝑤𝐵)
4240, 41sseldd 3944 . . . . . . . 8 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = ∅) ∧ (𝑤𝐵𝑤 <s 𝑈)) → 𝑤 No )
4334adantr 480 . . . . . . . . 9 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = ∅) ∧ (𝑤𝐵𝑤 <s 𝑈)) → 𝑈𝐵)
4440, 43sseldd 3944 . . . . . . . 8 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = ∅) ∧ (𝑤𝐵𝑤 <s 𝑈)) → 𝑈 No )
45 simpl2 1193 . . . . . . . . . . 11 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = ∅) → (𝐵 No 𝐵𝑉))
4616noinfno 27663 . . . . . . . . . . 11 ((𝐵 No 𝐵𝑉) → 𝑇 No )
4745, 46syl 17 . . . . . . . . . 10 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = ∅) → 𝑇 No )
4847adantr 480 . . . . . . . . 9 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = ∅) ∧ (𝑤𝐵𝑤 <s 𝑈)) → 𝑇 No )
49 nodmon 27595 . . . . . . . . 9 (𝑇 No → dom 𝑇 ∈ On)
5048, 49syl 17 . . . . . . . 8 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = ∅) ∧ (𝑤𝐵𝑤 <s 𝑈)) → dom 𝑇 ∈ On)
51 simpll1 1213 . . . . . . . . . 10 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = ∅) ∧ (𝑤𝐵𝑤 <s 𝑈)) → ¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)
52 simpll2 1214 . . . . . . . . . 10 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = ∅) ∧ (𝑤𝐵𝑤 <s 𝑈)) → (𝐵 No 𝐵𝑉))
53 simpll3 1215 . . . . . . . . . 10 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = ∅) ∧ (𝑤𝐵𝑤 <s 𝑈)) → (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇))
54 simprr 772 . . . . . . . . . . . 12 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = ∅) ∧ (𝑤𝐵𝑤 <s 𝑈)) → 𝑤 <s 𝑈)
5542, 44, 12syl2anc 584 . . . . . . . . . . . 12 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = ∅) ∧ (𝑤𝐵𝑤 <s 𝑈)) → (𝑤 <s 𝑈 → ¬ 𝑈 <s 𝑤))
5654, 55mpd 15 . . . . . . . . . . 11 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = ∅) ∧ (𝑤𝐵𝑤 <s 𝑈)) → ¬ 𝑈 <s 𝑤)
5741, 56jca 511 . . . . . . . . . 10 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = ∅) ∧ (𝑤𝐵𝑤 <s 𝑈)) → (𝑤𝐵 ∧ ¬ 𝑈 <s 𝑤))
5851, 52, 53, 57, 17syl112anc 1376 . . . . . . . . 9 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = ∅) ∧ (𝑤𝐵𝑤 <s 𝑈)) → (𝑤 ↾ dom 𝑇) = 𝑇)
59 simpl3r 1230 . . . . . . . . . 10 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = ∅) → (𝑈 ↾ dom 𝑇) = 𝑇)
6059adantr 480 . . . . . . . . 9 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = ∅) ∧ (𝑤𝐵𝑤 <s 𝑈)) → (𝑈 ↾ dom 𝑇) = 𝑇)
6158, 60eqtr4d 2767 . . . . . . . 8 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = ∅) ∧ (𝑤𝐵𝑤 <s 𝑈)) → (𝑤 ↾ dom 𝑇) = (𝑈 ↾ dom 𝑇))
62 simplr 768 . . . . . . . 8 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = ∅) ∧ (𝑤𝐵𝑤 <s 𝑈)) → (𝑈‘dom 𝑇) = ∅)
63 nogt01o 27641 . . . . . . . 8 (((𝑤 No 𝑈 No ∧ dom 𝑇 ∈ On) ∧ ((𝑤 ↾ dom 𝑇) = (𝑈 ↾ dom 𝑇) ∧ 𝑤 <s 𝑈) ∧ (𝑈‘dom 𝑇) = ∅) → (𝑤‘dom 𝑇) = 1o)
6442, 44, 50, 61, 54, 62, 63syl321anc 1394 . . . . . . 7 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = ∅) ∧ (𝑤𝐵𝑤 <s 𝑈)) → (𝑤‘dom 𝑇) = 1o)
6564expr 456 . . . . . 6 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = ∅) ∧ 𝑤𝐵) → (𝑤 <s 𝑈 → (𝑤‘dom 𝑇) = 1o))
6665ancld 550 . . . . 5 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = ∅) ∧ 𝑤𝐵) → (𝑤 <s 𝑈 → (𝑤 <s 𝑈 ∧ (𝑤‘dom 𝑇) = 1o)))
6766reximdva 3146 . . . 4 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = ∅) → (∃𝑤𝐵 𝑤 <s 𝑈 → ∃𝑤𝐵 (𝑤 <s 𝑈 ∧ (𝑤‘dom 𝑇) = 1o)))
6838, 67mpd 15 . . 3 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = ∅) → ∃𝑤𝐵 (𝑤 <s 𝑈 ∧ (𝑤‘dom 𝑇) = 1o))
6925, 68mtand 815 . 2 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) → ¬ (𝑈‘dom 𝑇) = ∅)
7069neqned 2932 1 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) → (𝑈‘dom 𝑇) ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  {cab 2707  wne 2925  wral 3044  wrex 3053  cun 3909  wss 3911  c0 4292  ifcif 4484  {csn 4585  cop 4591   class class class wbr 5102  cmpt 5183   Or wor 5538  dom cdm 5631  cres 5633  Oncon0 6320  suc csuc 6322  cio 6450  cfv 6499  crio 7325  1oc1o 8404   No csur 27584   <s cslt 27585
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-ord 6323  df-on 6324  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-fo 6505  df-fv 6507  df-riota 7326  df-1o 8411  df-2o 8412  df-no 27587  df-slt 27588  df-bday 27589
This theorem is referenced by:  noinfbnd1lem5  27672  noinfbnd1lem6  27673
  Copyright terms: Public domain W3C validator