Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  noinfbnd1lem4 Structured version   Visualization version   GIF version

Theorem noinfbnd1lem4 33562
Description: Lemma for noinfbnd1 33565. If 𝑈 is a prolongment of 𝑇 and in 𝐵, then (𝑈‘dom 𝑇) is not undefined. (Contributed by Scott Fenton, 9-Aug-2024.)
Hypothesis
Ref Expression
noinfbnd1.1 𝑇 = if(∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥, ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
Assertion
Ref Expression
noinfbnd1lem4 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) → (𝑈‘dom 𝑇) ≠ ∅)
Distinct variable groups:   𝐵,𝑔,𝑢,𝑣,𝑥,𝑦   𝑣,𝑈   𝑥,𝑢,𝑦   𝑔,𝑉   𝑥,𝑣,𝑦,𝑈
Allowed substitution hints:   𝑇(𝑥,𝑦,𝑣,𝑢,𝑔)   𝑈(𝑢,𝑔)   𝑉(𝑥,𝑦,𝑣,𝑢)

Proof of Theorem noinfbnd1lem4
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 simpl1 1192 . . . . . . . 8 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑤𝐵𝑤 <s 𝑈)) → ¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)
2 simpl2 1193 . . . . . . . 8 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑤𝐵𝑤 <s 𝑈)) → (𝐵 No 𝐵𝑉))
3 simprl 771 . . . . . . . 8 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑤𝐵𝑤 <s 𝑈)) → 𝑤𝐵)
4 simpl3 1194 . . . . . . . . 9 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑤𝐵𝑤 <s 𝑈)) → (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇))
5 simp2l 1200 . . . . . . . . . . . . 13 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) → 𝐵 No )
65sselda 3875 . . . . . . . . . . . 12 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ 𝑤𝐵) → 𝑤 No )
7 simp3l 1202 . . . . . . . . . . . . . 14 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) → 𝑈𝐵)
85, 7sseldd 3876 . . . . . . . . . . . . 13 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) → 𝑈 No )
98adantr 484 . . . . . . . . . . . 12 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ 𝑤𝐵) → 𝑈 No )
10 sltso 33512 . . . . . . . . . . . . 13 <s Or No
11 soasym 5468 . . . . . . . . . . . . 13 (( <s Or No ∧ (𝑤 No 𝑈 No )) → (𝑤 <s 𝑈 → ¬ 𝑈 <s 𝑤))
1210, 11mpan 690 . . . . . . . . . . . 12 ((𝑤 No 𝑈 No ) → (𝑤 <s 𝑈 → ¬ 𝑈 <s 𝑤))
136, 9, 12syl2anc 587 . . . . . . . . . . 11 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ 𝑤𝐵) → (𝑤 <s 𝑈 → ¬ 𝑈 <s 𝑤))
1413impr 458 . . . . . . . . . 10 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑤𝐵𝑤 <s 𝑈)) → ¬ 𝑈 <s 𝑤)
153, 14jca 515 . . . . . . . . 9 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑤𝐵𝑤 <s 𝑈)) → (𝑤𝐵 ∧ ¬ 𝑈 <s 𝑤))
16 noinfbnd1.1 . . . . . . . . . 10 𝑇 = if(∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥, ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
1716noinfbnd1lem2 33560 . . . . . . . . 9 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ ((𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇) ∧ (𝑤𝐵 ∧ ¬ 𝑈 <s 𝑤))) → (𝑤 ↾ dom 𝑇) = 𝑇)
181, 2, 4, 15, 17syl112anc 1375 . . . . . . . 8 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑤𝐵𝑤 <s 𝑈)) → (𝑤 ↾ dom 𝑇) = 𝑇)
1916noinfbnd1lem3 33561 . . . . . . . 8 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑤𝐵 ∧ (𝑤 ↾ dom 𝑇) = 𝑇)) → (𝑤‘dom 𝑇) ≠ 1o)
201, 2, 3, 18, 19syl112anc 1375 . . . . . . 7 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑤𝐵𝑤 <s 𝑈)) → (𝑤‘dom 𝑇) ≠ 1o)
2120neneqd 2939 . . . . . 6 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑤𝐵𝑤 <s 𝑈)) → ¬ (𝑤‘dom 𝑇) = 1o)
2221expr 460 . . . . 5 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ 𝑤𝐵) → (𝑤 <s 𝑈 → ¬ (𝑤‘dom 𝑇) = 1o))
23 imnan 403 . . . . 5 ((𝑤 <s 𝑈 → ¬ (𝑤‘dom 𝑇) = 1o) ↔ ¬ (𝑤 <s 𝑈 ∧ (𝑤‘dom 𝑇) = 1o))
2422, 23sylib 221 . . . 4 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ 𝑤𝐵) → ¬ (𝑤 <s 𝑈 ∧ (𝑤‘dom 𝑇) = 1o))
2524nrexdv 3179 . . 3 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) → ¬ ∃𝑤𝐵 (𝑤 <s 𝑈 ∧ (𝑤‘dom 𝑇) = 1o))
26 breq2 5031 . . . . . . 7 (𝑥 = 𝑈 → (𝑦 <s 𝑥𝑦 <s 𝑈))
2726rexbidv 3206 . . . . . 6 (𝑥 = 𝑈 → (∃𝑦𝐵 𝑦 <s 𝑥 ↔ ∃𝑦𝐵 𝑦 <s 𝑈))
28 simpl1 1192 . . . . . . 7 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = ∅) → ¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)
29 dfral2 3149 . . . . . . . 8 (∀𝑥𝐵𝑦𝐵 𝑦 <s 𝑥 ↔ ¬ ∃𝑥𝐵 ¬ ∃𝑦𝐵 𝑦 <s 𝑥)
30 ralnex 3148 . . . . . . . . 9 (∀𝑦𝐵 ¬ 𝑦 <s 𝑥 ↔ ¬ ∃𝑦𝐵 𝑦 <s 𝑥)
3130rexbii 3160 . . . . . . . 8 (∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ↔ ∃𝑥𝐵 ¬ ∃𝑦𝐵 𝑦 <s 𝑥)
3229, 31xchbinxr 338 . . . . . . 7 (∀𝑥𝐵𝑦𝐵 𝑦 <s 𝑥 ↔ ¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)
3328, 32sylibr 237 . . . . . 6 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = ∅) → ∀𝑥𝐵𝑦𝐵 𝑦 <s 𝑥)
34 simpl3l 1229 . . . . . 6 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = ∅) → 𝑈𝐵)
3527, 33, 34rspcdva 3526 . . . . 5 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = ∅) → ∃𝑦𝐵 𝑦 <s 𝑈)
36 breq1 5030 . . . . . 6 (𝑦 = 𝑤 → (𝑦 <s 𝑈𝑤 <s 𝑈))
3736cbvrexvw 3349 . . . . 5 (∃𝑦𝐵 𝑦 <s 𝑈 ↔ ∃𝑤𝐵 𝑤 <s 𝑈)
3835, 37sylib 221 . . . 4 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = ∅) → ∃𝑤𝐵 𝑤 <s 𝑈)
39 simpl2l 1227 . . . . . . . . . 10 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = ∅) → 𝐵 No )
4039adantr 484 . . . . . . . . 9 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = ∅) ∧ (𝑤𝐵𝑤 <s 𝑈)) → 𝐵 No )
41 simprl 771 . . . . . . . . 9 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = ∅) ∧ (𝑤𝐵𝑤 <s 𝑈)) → 𝑤𝐵)
4240, 41sseldd 3876 . . . . . . . 8 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = ∅) ∧ (𝑤𝐵𝑤 <s 𝑈)) → 𝑤 No )
4334adantr 484 . . . . . . . . 9 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = ∅) ∧ (𝑤𝐵𝑤 <s 𝑈)) → 𝑈𝐵)
4440, 43sseldd 3876 . . . . . . . 8 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = ∅) ∧ (𝑤𝐵𝑤 <s 𝑈)) → 𝑈 No )
45 simpl2 1193 . . . . . . . . . . 11 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = ∅) → (𝐵 No 𝐵𝑉))
4616noinfno 33554 . . . . . . . . . . 11 ((𝐵 No 𝐵𝑉) → 𝑇 No )
4745, 46syl 17 . . . . . . . . . 10 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = ∅) → 𝑇 No )
4847adantr 484 . . . . . . . . 9 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = ∅) ∧ (𝑤𝐵𝑤 <s 𝑈)) → 𝑇 No )
49 nodmon 33486 . . . . . . . . 9 (𝑇 No → dom 𝑇 ∈ On)
5048, 49syl 17 . . . . . . . 8 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = ∅) ∧ (𝑤𝐵𝑤 <s 𝑈)) → dom 𝑇 ∈ On)
51 simpll1 1213 . . . . . . . . . 10 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = ∅) ∧ (𝑤𝐵𝑤 <s 𝑈)) → ¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)
52 simpll2 1214 . . . . . . . . . 10 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = ∅) ∧ (𝑤𝐵𝑤 <s 𝑈)) → (𝐵 No 𝐵𝑉))
53 simpll3 1215 . . . . . . . . . 10 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = ∅) ∧ (𝑤𝐵𝑤 <s 𝑈)) → (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇))
54 simprr 773 . . . . . . . . . . . 12 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = ∅) ∧ (𝑤𝐵𝑤 <s 𝑈)) → 𝑤 <s 𝑈)
5542, 44, 12syl2anc 587 . . . . . . . . . . . 12 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = ∅) ∧ (𝑤𝐵𝑤 <s 𝑈)) → (𝑤 <s 𝑈 → ¬ 𝑈 <s 𝑤))
5654, 55mpd 15 . . . . . . . . . . 11 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = ∅) ∧ (𝑤𝐵𝑤 <s 𝑈)) → ¬ 𝑈 <s 𝑤)
5741, 56jca 515 . . . . . . . . . 10 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = ∅) ∧ (𝑤𝐵𝑤 <s 𝑈)) → (𝑤𝐵 ∧ ¬ 𝑈 <s 𝑤))
5851, 52, 53, 57, 17syl112anc 1375 . . . . . . . . 9 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = ∅) ∧ (𝑤𝐵𝑤 <s 𝑈)) → (𝑤 ↾ dom 𝑇) = 𝑇)
59 simpl3r 1230 . . . . . . . . . 10 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = ∅) → (𝑈 ↾ dom 𝑇) = 𝑇)
6059adantr 484 . . . . . . . . 9 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = ∅) ∧ (𝑤𝐵𝑤 <s 𝑈)) → (𝑈 ↾ dom 𝑇) = 𝑇)
6158, 60eqtr4d 2776 . . . . . . . 8 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = ∅) ∧ (𝑤𝐵𝑤 <s 𝑈)) → (𝑤 ↾ dom 𝑇) = (𝑈 ↾ dom 𝑇))
62 simplr 769 . . . . . . . 8 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = ∅) ∧ (𝑤𝐵𝑤 <s 𝑈)) → (𝑈‘dom 𝑇) = ∅)
63 nogt01o 33532 . . . . . . . 8 (((𝑤 No 𝑈 No ∧ dom 𝑇 ∈ On) ∧ ((𝑤 ↾ dom 𝑇) = (𝑈 ↾ dom 𝑇) ∧ 𝑤 <s 𝑈) ∧ (𝑈‘dom 𝑇) = ∅) → (𝑤‘dom 𝑇) = 1o)
6442, 44, 50, 61, 54, 62, 63syl321anc 1393 . . . . . . 7 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = ∅) ∧ (𝑤𝐵𝑤 <s 𝑈)) → (𝑤‘dom 𝑇) = 1o)
6564expr 460 . . . . . 6 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = ∅) ∧ 𝑤𝐵) → (𝑤 <s 𝑈 → (𝑤‘dom 𝑇) = 1o))
6665ancld 554 . . . . 5 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = ∅) ∧ 𝑤𝐵) → (𝑤 <s 𝑈 → (𝑤 <s 𝑈 ∧ (𝑤‘dom 𝑇) = 1o)))
6766reximdva 3183 . . . 4 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = ∅) → (∃𝑤𝐵 𝑤 <s 𝑈 → ∃𝑤𝐵 (𝑤 <s 𝑈 ∧ (𝑤‘dom 𝑇) = 1o)))
6838, 67mpd 15 . . 3 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = ∅) → ∃𝑤𝐵 (𝑤 <s 𝑈 ∧ (𝑤‘dom 𝑇) = 1o))
6925, 68mtand 816 . 2 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) → ¬ (𝑈‘dom 𝑇) = ∅)
7069neqned 2941 1 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) → (𝑈‘dom 𝑇) ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399  w3a 1088   = wceq 1542  wcel 2113  {cab 2716  wne 2934  wral 3053  wrex 3054  cun 3839  wss 3841  c0 4209  ifcif 4411  {csn 4513  cop 4519   class class class wbr 5027  cmpt 5107   Or wor 5437  dom cdm 5519  cres 5521  Oncon0 6166  suc csuc 6168  cio 6289  cfv 6333  crio 7120  1oc1o 8117   No csur 33476   <s cslt 33477
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1916  ax-6 1974  ax-7 2019  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2161  ax-12 2178  ax-ext 2710  ax-rep 5151  ax-sep 5164  ax-nul 5171  ax-pr 5293  ax-un 7473
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2074  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-ral 3058  df-rex 3059  df-reu 3060  df-rmo 3061  df-rab 3062  df-v 3399  df-sbc 3680  df-csb 3789  df-dif 3844  df-un 3846  df-in 3848  df-ss 3858  df-pss 3860  df-nul 4210  df-if 4412  df-pw 4487  df-sn 4514  df-pr 4516  df-tp 4518  df-op 4520  df-uni 4794  df-int 4834  df-iun 4880  df-br 5028  df-opab 5090  df-mpt 5108  df-tr 5134  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-ord 6169  df-on 6170  df-suc 6172  df-iota 6291  df-fun 6335  df-fn 6336  df-f 6337  df-f1 6338  df-fo 6339  df-f1o 6340  df-fv 6341  df-riota 7121  df-1o 8124  df-2o 8125  df-no 33479  df-slt 33480  df-bday 33481
This theorem is referenced by:  noinfbnd1lem5  33563  noinfbnd1lem6  33564
  Copyright terms: Public domain W3C validator