MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  noinfbnd1lem4 Structured version   Visualization version   GIF version

Theorem noinfbnd1lem4 27690
Description: Lemma for noinfbnd1 27693. If 𝑈 is a prolongment of 𝑇 and in 𝐵, then (𝑈‘dom 𝑇) is not undefined. (Contributed by Scott Fenton, 9-Aug-2024.)
Hypothesis
Ref Expression
noinfbnd1.1 𝑇 = if(∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥, ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
Assertion
Ref Expression
noinfbnd1lem4 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) → (𝑈‘dom 𝑇) ≠ ∅)
Distinct variable groups:   𝐵,𝑔,𝑢,𝑣,𝑥,𝑦   𝑣,𝑈   𝑔,𝑉   𝑥,𝑈,𝑦
Allowed substitution hints:   𝑇(𝑥,𝑦,𝑣,𝑢,𝑔)   𝑈(𝑢,𝑔)   𝑉(𝑥,𝑦,𝑣,𝑢)

Proof of Theorem noinfbnd1lem4
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 simpl1 1192 . . . . . . . 8 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑤𝐵𝑤 <s 𝑈)) → ¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)
2 simpl2 1193 . . . . . . . 8 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑤𝐵𝑤 <s 𝑈)) → (𝐵 No 𝐵𝑉))
3 simprl 770 . . . . . . . 8 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑤𝐵𝑤 <s 𝑈)) → 𝑤𝐵)
4 simpl3 1194 . . . . . . . . 9 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑤𝐵𝑤 <s 𝑈)) → (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇))
5 simp2l 1200 . . . . . . . . . . . . 13 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) → 𝐵 No )
65sselda 3958 . . . . . . . . . . . 12 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ 𝑤𝐵) → 𝑤 No )
7 simp3l 1202 . . . . . . . . . . . . . 14 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) → 𝑈𝐵)
85, 7sseldd 3959 . . . . . . . . . . . . 13 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) → 𝑈 No )
98adantr 480 . . . . . . . . . . . 12 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ 𝑤𝐵) → 𝑈 No )
10 sltso 27640 . . . . . . . . . . . . 13 <s Or No
11 soasym 5594 . . . . . . . . . . . . 13 (( <s Or No ∧ (𝑤 No 𝑈 No )) → (𝑤 <s 𝑈 → ¬ 𝑈 <s 𝑤))
1210, 11mpan 690 . . . . . . . . . . . 12 ((𝑤 No 𝑈 No ) → (𝑤 <s 𝑈 → ¬ 𝑈 <s 𝑤))
136, 9, 12syl2anc 584 . . . . . . . . . . 11 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ 𝑤𝐵) → (𝑤 <s 𝑈 → ¬ 𝑈 <s 𝑤))
1413impr 454 . . . . . . . . . 10 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑤𝐵𝑤 <s 𝑈)) → ¬ 𝑈 <s 𝑤)
153, 14jca 511 . . . . . . . . 9 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑤𝐵𝑤 <s 𝑈)) → (𝑤𝐵 ∧ ¬ 𝑈 <s 𝑤))
16 noinfbnd1.1 . . . . . . . . . 10 𝑇 = if(∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥, ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
1716noinfbnd1lem2 27688 . . . . . . . . 9 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ ((𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇) ∧ (𝑤𝐵 ∧ ¬ 𝑈 <s 𝑤))) → (𝑤 ↾ dom 𝑇) = 𝑇)
181, 2, 4, 15, 17syl112anc 1376 . . . . . . . 8 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑤𝐵𝑤 <s 𝑈)) → (𝑤 ↾ dom 𝑇) = 𝑇)
1916noinfbnd1lem3 27689 . . . . . . . 8 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑤𝐵 ∧ (𝑤 ↾ dom 𝑇) = 𝑇)) → (𝑤‘dom 𝑇) ≠ 1o)
201, 2, 3, 18, 19syl112anc 1376 . . . . . . 7 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑤𝐵𝑤 <s 𝑈)) → (𝑤‘dom 𝑇) ≠ 1o)
2120neneqd 2937 . . . . . 6 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑤𝐵𝑤 <s 𝑈)) → ¬ (𝑤‘dom 𝑇) = 1o)
2221expr 456 . . . . 5 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ 𝑤𝐵) → (𝑤 <s 𝑈 → ¬ (𝑤‘dom 𝑇) = 1o))
23 imnan 399 . . . . 5 ((𝑤 <s 𝑈 → ¬ (𝑤‘dom 𝑇) = 1o) ↔ ¬ (𝑤 <s 𝑈 ∧ (𝑤‘dom 𝑇) = 1o))
2422, 23sylib 218 . . . 4 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ 𝑤𝐵) → ¬ (𝑤 <s 𝑈 ∧ (𝑤‘dom 𝑇) = 1o))
2524nrexdv 3135 . . 3 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) → ¬ ∃𝑤𝐵 (𝑤 <s 𝑈 ∧ (𝑤‘dom 𝑇) = 1o))
26 breq2 5123 . . . . . . 7 (𝑥 = 𝑈 → (𝑦 <s 𝑥𝑦 <s 𝑈))
2726rexbidv 3164 . . . . . 6 (𝑥 = 𝑈 → (∃𝑦𝐵 𝑦 <s 𝑥 ↔ ∃𝑦𝐵 𝑦 <s 𝑈))
28 simpl1 1192 . . . . . . 7 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = ∅) → ¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)
29 dfral2 3088 . . . . . . . 8 (∀𝑥𝐵𝑦𝐵 𝑦 <s 𝑥 ↔ ¬ ∃𝑥𝐵 ¬ ∃𝑦𝐵 𝑦 <s 𝑥)
30 ralnex 3062 . . . . . . . . 9 (∀𝑦𝐵 ¬ 𝑦 <s 𝑥 ↔ ¬ ∃𝑦𝐵 𝑦 <s 𝑥)
3130rexbii 3083 . . . . . . . 8 (∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ↔ ∃𝑥𝐵 ¬ ∃𝑦𝐵 𝑦 <s 𝑥)
3229, 31xchbinxr 335 . . . . . . 7 (∀𝑥𝐵𝑦𝐵 𝑦 <s 𝑥 ↔ ¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)
3328, 32sylibr 234 . . . . . 6 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = ∅) → ∀𝑥𝐵𝑦𝐵 𝑦 <s 𝑥)
34 simpl3l 1229 . . . . . 6 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = ∅) → 𝑈𝐵)
3527, 33, 34rspcdva 3602 . . . . 5 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = ∅) → ∃𝑦𝐵 𝑦 <s 𝑈)
36 breq1 5122 . . . . . 6 (𝑦 = 𝑤 → (𝑦 <s 𝑈𝑤 <s 𝑈))
3736cbvrexvw 3221 . . . . 5 (∃𝑦𝐵 𝑦 <s 𝑈 ↔ ∃𝑤𝐵 𝑤 <s 𝑈)
3835, 37sylib 218 . . . 4 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = ∅) → ∃𝑤𝐵 𝑤 <s 𝑈)
39 simpl2l 1227 . . . . . . . . . 10 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = ∅) → 𝐵 No )
4039adantr 480 . . . . . . . . 9 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = ∅) ∧ (𝑤𝐵𝑤 <s 𝑈)) → 𝐵 No )
41 simprl 770 . . . . . . . . 9 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = ∅) ∧ (𝑤𝐵𝑤 <s 𝑈)) → 𝑤𝐵)
4240, 41sseldd 3959 . . . . . . . 8 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = ∅) ∧ (𝑤𝐵𝑤 <s 𝑈)) → 𝑤 No )
4334adantr 480 . . . . . . . . 9 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = ∅) ∧ (𝑤𝐵𝑤 <s 𝑈)) → 𝑈𝐵)
4440, 43sseldd 3959 . . . . . . . 8 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = ∅) ∧ (𝑤𝐵𝑤 <s 𝑈)) → 𝑈 No )
45 simpl2 1193 . . . . . . . . . . 11 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = ∅) → (𝐵 No 𝐵𝑉))
4616noinfno 27682 . . . . . . . . . . 11 ((𝐵 No 𝐵𝑉) → 𝑇 No )
4745, 46syl 17 . . . . . . . . . 10 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = ∅) → 𝑇 No )
4847adantr 480 . . . . . . . . 9 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = ∅) ∧ (𝑤𝐵𝑤 <s 𝑈)) → 𝑇 No )
49 nodmon 27614 . . . . . . . . 9 (𝑇 No → dom 𝑇 ∈ On)
5048, 49syl 17 . . . . . . . 8 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = ∅) ∧ (𝑤𝐵𝑤 <s 𝑈)) → dom 𝑇 ∈ On)
51 simpll1 1213 . . . . . . . . . 10 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = ∅) ∧ (𝑤𝐵𝑤 <s 𝑈)) → ¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)
52 simpll2 1214 . . . . . . . . . 10 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = ∅) ∧ (𝑤𝐵𝑤 <s 𝑈)) → (𝐵 No 𝐵𝑉))
53 simpll3 1215 . . . . . . . . . 10 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = ∅) ∧ (𝑤𝐵𝑤 <s 𝑈)) → (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇))
54 simprr 772 . . . . . . . . . . . 12 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = ∅) ∧ (𝑤𝐵𝑤 <s 𝑈)) → 𝑤 <s 𝑈)
5542, 44, 12syl2anc 584 . . . . . . . . . . . 12 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = ∅) ∧ (𝑤𝐵𝑤 <s 𝑈)) → (𝑤 <s 𝑈 → ¬ 𝑈 <s 𝑤))
5654, 55mpd 15 . . . . . . . . . . 11 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = ∅) ∧ (𝑤𝐵𝑤 <s 𝑈)) → ¬ 𝑈 <s 𝑤)
5741, 56jca 511 . . . . . . . . . 10 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = ∅) ∧ (𝑤𝐵𝑤 <s 𝑈)) → (𝑤𝐵 ∧ ¬ 𝑈 <s 𝑤))
5851, 52, 53, 57, 17syl112anc 1376 . . . . . . . . 9 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = ∅) ∧ (𝑤𝐵𝑤 <s 𝑈)) → (𝑤 ↾ dom 𝑇) = 𝑇)
59 simpl3r 1230 . . . . . . . . . 10 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = ∅) → (𝑈 ↾ dom 𝑇) = 𝑇)
6059adantr 480 . . . . . . . . 9 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = ∅) ∧ (𝑤𝐵𝑤 <s 𝑈)) → (𝑈 ↾ dom 𝑇) = 𝑇)
6158, 60eqtr4d 2773 . . . . . . . 8 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = ∅) ∧ (𝑤𝐵𝑤 <s 𝑈)) → (𝑤 ↾ dom 𝑇) = (𝑈 ↾ dom 𝑇))
62 simplr 768 . . . . . . . 8 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = ∅) ∧ (𝑤𝐵𝑤 <s 𝑈)) → (𝑈‘dom 𝑇) = ∅)
63 nogt01o 27660 . . . . . . . 8 (((𝑤 No 𝑈 No ∧ dom 𝑇 ∈ On) ∧ ((𝑤 ↾ dom 𝑇) = (𝑈 ↾ dom 𝑇) ∧ 𝑤 <s 𝑈) ∧ (𝑈‘dom 𝑇) = ∅) → (𝑤‘dom 𝑇) = 1o)
6442, 44, 50, 61, 54, 62, 63syl321anc 1394 . . . . . . 7 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = ∅) ∧ (𝑤𝐵𝑤 <s 𝑈)) → (𝑤‘dom 𝑇) = 1o)
6564expr 456 . . . . . 6 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = ∅) ∧ 𝑤𝐵) → (𝑤 <s 𝑈 → (𝑤‘dom 𝑇) = 1o))
6665ancld 550 . . . . 5 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = ∅) ∧ 𝑤𝐵) → (𝑤 <s 𝑈 → (𝑤 <s 𝑈 ∧ (𝑤‘dom 𝑇) = 1o)))
6766reximdva 3153 . . . 4 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = ∅) → (∃𝑤𝐵 𝑤 <s 𝑈 → ∃𝑤𝐵 (𝑤 <s 𝑈 ∧ (𝑤‘dom 𝑇) = 1o)))
6838, 67mpd 15 . . 3 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = ∅) → ∃𝑤𝐵 (𝑤 <s 𝑈 ∧ (𝑤‘dom 𝑇) = 1o))
6925, 68mtand 815 . 2 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) → ¬ (𝑈‘dom 𝑇) = ∅)
7069neqned 2939 1 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) → (𝑈‘dom 𝑇) ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2108  {cab 2713  wne 2932  wral 3051  wrex 3060  cun 3924  wss 3926  c0 4308  ifcif 4500  {csn 4601  cop 4607   class class class wbr 5119  cmpt 5201   Or wor 5560  dom cdm 5654  cres 5656  Oncon0 6352  suc csuc 6354  cio 6482  cfv 6531  crio 7361  1oc1o 8473   No csur 27603   <s cslt 27604
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-int 4923  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-ord 6355  df-on 6356  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-fo 6537  df-fv 6539  df-riota 7362  df-1o 8480  df-2o 8481  df-no 27606  df-slt 27607  df-bday 27608
This theorem is referenced by:  noinfbnd1lem5  27691  noinfbnd1lem6  27692
  Copyright terms: Public domain W3C validator