MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  noinfbnd1lem4 Structured version   Visualization version   GIF version

Theorem noinfbnd1lem4 27645
Description: Lemma for noinfbnd1 27648. If 𝑈 is a prolongment of 𝑇 and in 𝐵, then (𝑈‘dom 𝑇) is not undefined. (Contributed by Scott Fenton, 9-Aug-2024.)
Hypothesis
Ref Expression
noinfbnd1.1 𝑇 = if(∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥, ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
Assertion
Ref Expression
noinfbnd1lem4 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) → (𝑈‘dom 𝑇) ≠ ∅)
Distinct variable groups:   𝐵,𝑔,𝑢,𝑣,𝑥,𝑦   𝑣,𝑈   𝑔,𝑉   𝑥,𝑈,𝑦
Allowed substitution hints:   𝑇(𝑥,𝑦,𝑣,𝑢,𝑔)   𝑈(𝑢,𝑔)   𝑉(𝑥,𝑦,𝑣,𝑢)

Proof of Theorem noinfbnd1lem4
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 simpl1 1192 . . . . . . . 8 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑤𝐵𝑤 <s 𝑈)) → ¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)
2 simpl2 1193 . . . . . . . 8 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑤𝐵𝑤 <s 𝑈)) → (𝐵 No 𝐵𝑉))
3 simprl 770 . . . . . . . 8 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑤𝐵𝑤 <s 𝑈)) → 𝑤𝐵)
4 simpl3 1194 . . . . . . . . 9 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑤𝐵𝑤 <s 𝑈)) → (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇))
5 simp2l 1200 . . . . . . . . . . . . 13 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) → 𝐵 No )
65sselda 3949 . . . . . . . . . . . 12 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ 𝑤𝐵) → 𝑤 No )
7 simp3l 1202 . . . . . . . . . . . . . 14 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) → 𝑈𝐵)
85, 7sseldd 3950 . . . . . . . . . . . . 13 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) → 𝑈 No )
98adantr 480 . . . . . . . . . . . 12 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ 𝑤𝐵) → 𝑈 No )
10 sltso 27595 . . . . . . . . . . . . 13 <s Or No
11 soasym 5582 . . . . . . . . . . . . 13 (( <s Or No ∧ (𝑤 No 𝑈 No )) → (𝑤 <s 𝑈 → ¬ 𝑈 <s 𝑤))
1210, 11mpan 690 . . . . . . . . . . . 12 ((𝑤 No 𝑈 No ) → (𝑤 <s 𝑈 → ¬ 𝑈 <s 𝑤))
136, 9, 12syl2anc 584 . . . . . . . . . . 11 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ 𝑤𝐵) → (𝑤 <s 𝑈 → ¬ 𝑈 <s 𝑤))
1413impr 454 . . . . . . . . . 10 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑤𝐵𝑤 <s 𝑈)) → ¬ 𝑈 <s 𝑤)
153, 14jca 511 . . . . . . . . 9 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑤𝐵𝑤 <s 𝑈)) → (𝑤𝐵 ∧ ¬ 𝑈 <s 𝑤))
16 noinfbnd1.1 . . . . . . . . . 10 𝑇 = if(∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥, ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
1716noinfbnd1lem2 27643 . . . . . . . . 9 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ ((𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇) ∧ (𝑤𝐵 ∧ ¬ 𝑈 <s 𝑤))) → (𝑤 ↾ dom 𝑇) = 𝑇)
181, 2, 4, 15, 17syl112anc 1376 . . . . . . . 8 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑤𝐵𝑤 <s 𝑈)) → (𝑤 ↾ dom 𝑇) = 𝑇)
1916noinfbnd1lem3 27644 . . . . . . . 8 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑤𝐵 ∧ (𝑤 ↾ dom 𝑇) = 𝑇)) → (𝑤‘dom 𝑇) ≠ 1o)
201, 2, 3, 18, 19syl112anc 1376 . . . . . . 7 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑤𝐵𝑤 <s 𝑈)) → (𝑤‘dom 𝑇) ≠ 1o)
2120neneqd 2931 . . . . . 6 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑤𝐵𝑤 <s 𝑈)) → ¬ (𝑤‘dom 𝑇) = 1o)
2221expr 456 . . . . 5 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ 𝑤𝐵) → (𝑤 <s 𝑈 → ¬ (𝑤‘dom 𝑇) = 1o))
23 imnan 399 . . . . 5 ((𝑤 <s 𝑈 → ¬ (𝑤‘dom 𝑇) = 1o) ↔ ¬ (𝑤 <s 𝑈 ∧ (𝑤‘dom 𝑇) = 1o))
2422, 23sylib 218 . . . 4 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ 𝑤𝐵) → ¬ (𝑤 <s 𝑈 ∧ (𝑤‘dom 𝑇) = 1o))
2524nrexdv 3129 . . 3 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) → ¬ ∃𝑤𝐵 (𝑤 <s 𝑈 ∧ (𝑤‘dom 𝑇) = 1o))
26 breq2 5114 . . . . . . 7 (𝑥 = 𝑈 → (𝑦 <s 𝑥𝑦 <s 𝑈))
2726rexbidv 3158 . . . . . 6 (𝑥 = 𝑈 → (∃𝑦𝐵 𝑦 <s 𝑥 ↔ ∃𝑦𝐵 𝑦 <s 𝑈))
28 simpl1 1192 . . . . . . 7 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = ∅) → ¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)
29 dfral2 3082 . . . . . . . 8 (∀𝑥𝐵𝑦𝐵 𝑦 <s 𝑥 ↔ ¬ ∃𝑥𝐵 ¬ ∃𝑦𝐵 𝑦 <s 𝑥)
30 ralnex 3056 . . . . . . . . 9 (∀𝑦𝐵 ¬ 𝑦 <s 𝑥 ↔ ¬ ∃𝑦𝐵 𝑦 <s 𝑥)
3130rexbii 3077 . . . . . . . 8 (∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ↔ ∃𝑥𝐵 ¬ ∃𝑦𝐵 𝑦 <s 𝑥)
3229, 31xchbinxr 335 . . . . . . 7 (∀𝑥𝐵𝑦𝐵 𝑦 <s 𝑥 ↔ ¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)
3328, 32sylibr 234 . . . . . 6 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = ∅) → ∀𝑥𝐵𝑦𝐵 𝑦 <s 𝑥)
34 simpl3l 1229 . . . . . 6 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = ∅) → 𝑈𝐵)
3527, 33, 34rspcdva 3592 . . . . 5 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = ∅) → ∃𝑦𝐵 𝑦 <s 𝑈)
36 breq1 5113 . . . . . 6 (𝑦 = 𝑤 → (𝑦 <s 𝑈𝑤 <s 𝑈))
3736cbvrexvw 3217 . . . . 5 (∃𝑦𝐵 𝑦 <s 𝑈 ↔ ∃𝑤𝐵 𝑤 <s 𝑈)
3835, 37sylib 218 . . . 4 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = ∅) → ∃𝑤𝐵 𝑤 <s 𝑈)
39 simpl2l 1227 . . . . . . . . . 10 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = ∅) → 𝐵 No )
4039adantr 480 . . . . . . . . 9 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = ∅) ∧ (𝑤𝐵𝑤 <s 𝑈)) → 𝐵 No )
41 simprl 770 . . . . . . . . 9 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = ∅) ∧ (𝑤𝐵𝑤 <s 𝑈)) → 𝑤𝐵)
4240, 41sseldd 3950 . . . . . . . 8 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = ∅) ∧ (𝑤𝐵𝑤 <s 𝑈)) → 𝑤 No )
4334adantr 480 . . . . . . . . 9 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = ∅) ∧ (𝑤𝐵𝑤 <s 𝑈)) → 𝑈𝐵)
4440, 43sseldd 3950 . . . . . . . 8 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = ∅) ∧ (𝑤𝐵𝑤 <s 𝑈)) → 𝑈 No )
45 simpl2 1193 . . . . . . . . . . 11 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = ∅) → (𝐵 No 𝐵𝑉))
4616noinfno 27637 . . . . . . . . . . 11 ((𝐵 No 𝐵𝑉) → 𝑇 No )
4745, 46syl 17 . . . . . . . . . 10 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = ∅) → 𝑇 No )
4847adantr 480 . . . . . . . . 9 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = ∅) ∧ (𝑤𝐵𝑤 <s 𝑈)) → 𝑇 No )
49 nodmon 27569 . . . . . . . . 9 (𝑇 No → dom 𝑇 ∈ On)
5048, 49syl 17 . . . . . . . 8 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = ∅) ∧ (𝑤𝐵𝑤 <s 𝑈)) → dom 𝑇 ∈ On)
51 simpll1 1213 . . . . . . . . . 10 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = ∅) ∧ (𝑤𝐵𝑤 <s 𝑈)) → ¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥)
52 simpll2 1214 . . . . . . . . . 10 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = ∅) ∧ (𝑤𝐵𝑤 <s 𝑈)) → (𝐵 No 𝐵𝑉))
53 simpll3 1215 . . . . . . . . . 10 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = ∅) ∧ (𝑤𝐵𝑤 <s 𝑈)) → (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇))
54 simprr 772 . . . . . . . . . . . 12 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = ∅) ∧ (𝑤𝐵𝑤 <s 𝑈)) → 𝑤 <s 𝑈)
5542, 44, 12syl2anc 584 . . . . . . . . . . . 12 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = ∅) ∧ (𝑤𝐵𝑤 <s 𝑈)) → (𝑤 <s 𝑈 → ¬ 𝑈 <s 𝑤))
5654, 55mpd 15 . . . . . . . . . . 11 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = ∅) ∧ (𝑤𝐵𝑤 <s 𝑈)) → ¬ 𝑈 <s 𝑤)
5741, 56jca 511 . . . . . . . . . 10 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = ∅) ∧ (𝑤𝐵𝑤 <s 𝑈)) → (𝑤𝐵 ∧ ¬ 𝑈 <s 𝑤))
5851, 52, 53, 57, 17syl112anc 1376 . . . . . . . . 9 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = ∅) ∧ (𝑤𝐵𝑤 <s 𝑈)) → (𝑤 ↾ dom 𝑇) = 𝑇)
59 simpl3r 1230 . . . . . . . . . 10 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = ∅) → (𝑈 ↾ dom 𝑇) = 𝑇)
6059adantr 480 . . . . . . . . 9 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = ∅) ∧ (𝑤𝐵𝑤 <s 𝑈)) → (𝑈 ↾ dom 𝑇) = 𝑇)
6158, 60eqtr4d 2768 . . . . . . . 8 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = ∅) ∧ (𝑤𝐵𝑤 <s 𝑈)) → (𝑤 ↾ dom 𝑇) = (𝑈 ↾ dom 𝑇))
62 simplr 768 . . . . . . . 8 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = ∅) ∧ (𝑤𝐵𝑤 <s 𝑈)) → (𝑈‘dom 𝑇) = ∅)
63 nogt01o 27615 . . . . . . . 8 (((𝑤 No 𝑈 No ∧ dom 𝑇 ∈ On) ∧ ((𝑤 ↾ dom 𝑇) = (𝑈 ↾ dom 𝑇) ∧ 𝑤 <s 𝑈) ∧ (𝑈‘dom 𝑇) = ∅) → (𝑤‘dom 𝑇) = 1o)
6442, 44, 50, 61, 54, 62, 63syl321anc 1394 . . . . . . 7 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = ∅) ∧ (𝑤𝐵𝑤 <s 𝑈)) → (𝑤‘dom 𝑇) = 1o)
6564expr 456 . . . . . 6 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = ∅) ∧ 𝑤𝐵) → (𝑤 <s 𝑈 → (𝑤‘dom 𝑇) = 1o))
6665ancld 550 . . . . 5 ((((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = ∅) ∧ 𝑤𝐵) → (𝑤 <s 𝑈 → (𝑤 <s 𝑈 ∧ (𝑤‘dom 𝑇) = 1o)))
6766reximdva 3147 . . . 4 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = ∅) → (∃𝑤𝐵 𝑤 <s 𝑈 → ∃𝑤𝐵 (𝑤 <s 𝑈 ∧ (𝑤‘dom 𝑇) = 1o)))
6838, 67mpd 15 . . 3 (((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) ∧ (𝑈‘dom 𝑇) = ∅) → ∃𝑤𝐵 (𝑤 <s 𝑈 ∧ (𝑤‘dom 𝑇) = 1o))
6925, 68mtand 815 . 2 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) → ¬ (𝑈‘dom 𝑇) = ∅)
7069neqned 2933 1 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ (𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇)) → (𝑈‘dom 𝑇) ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  {cab 2708  wne 2926  wral 3045  wrex 3054  cun 3915  wss 3917  c0 4299  ifcif 4491  {csn 4592  cop 4598   class class class wbr 5110  cmpt 5191   Or wor 5548  dom cdm 5641  cres 5643  Oncon0 6335  suc csuc 6337  cio 6465  cfv 6514  crio 7346  1oc1o 8430   No csur 27558   <s cslt 27559
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-ord 6338  df-on 6339  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-fo 6520  df-fv 6522  df-riota 7347  df-1o 8437  df-2o 8438  df-no 27561  df-slt 27562  df-bday 27563
This theorem is referenced by:  noinfbnd1lem5  27646  noinfbnd1lem6  27647
  Copyright terms: Public domain W3C validator