Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dalawlem11 Structured version   Visualization version   GIF version

Theorem dalawlem11 35769
Description: Lemma for dalaw 35774. First part of dalawlem13 35771. (Contributed by NM, 17-Sep-2012.)
Hypotheses
Ref Expression
dalawlem.l = (le‘𝐾)
dalawlem.j = (join‘𝐾)
dalawlem.m = (meet‘𝐾)
dalawlem.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
dalawlem11 (((𝐾 ∈ HL ∧ 𝑃 (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑃 𝑄) (𝑆 𝑇)) (((𝑄 𝑅) (𝑇 𝑈)) ((𝑅 𝑃) (𝑈 𝑆))))

Proof of Theorem dalawlem11
StepHypRef Expression
1 eqid 2765 . . . 4 (Base‘𝐾) = (Base‘𝐾)
2 dalawlem.l . . . 4 = (le‘𝐾)
3 simp11 1260 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃 (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → 𝐾 ∈ HL)
43hllatd 35252 . . . 4 (((𝐾 ∈ HL ∧ 𝑃 (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → 𝐾 ∈ Lat)
5 simp21 1263 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑃 (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → 𝑃𝐴)
6 simp22 1264 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑃 (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → 𝑄𝐴)
7 dalawlem.j . . . . . . 7 = (join‘𝐾)
8 dalawlem.a . . . . . . 7 𝐴 = (Atoms‘𝐾)
91, 7, 8hlatjcl 35255 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → (𝑃 𝑄) ∈ (Base‘𝐾))
103, 5, 6, 9syl3anc 1490 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃 (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (𝑃 𝑄) ∈ (Base‘𝐾))
11 simp31 1266 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑃 (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → 𝑆𝐴)
12 simp32 1267 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑃 (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → 𝑇𝐴)
131, 7, 8hlatjcl 35255 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → (𝑆 𝑇) ∈ (Base‘𝐾))
143, 11, 12, 13syl3anc 1490 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃 (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (𝑆 𝑇) ∈ (Base‘𝐾))
15 dalawlem.m . . . . . 6 = (meet‘𝐾)
161, 15latmcl 17320 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑃 𝑄) ∈ (Base‘𝐾) ∧ (𝑆 𝑇) ∈ (Base‘𝐾)) → ((𝑃 𝑄) (𝑆 𝑇)) ∈ (Base‘𝐾))
174, 10, 14, 16syl3anc 1490 . . . 4 (((𝐾 ∈ HL ∧ 𝑃 (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑃 𝑄) (𝑆 𝑇)) ∈ (Base‘𝐾))
18 simp23 1265 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃 (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → 𝑅𝐴)
191, 7, 8hlatjcl 35255 . . . . 5 ((𝐾 ∈ HL ∧ 𝑄𝐴𝑅𝐴) → (𝑄 𝑅) ∈ (Base‘𝐾))
203, 6, 18, 19syl3anc 1490 . . . 4 (((𝐾 ∈ HL ∧ 𝑃 (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (𝑄 𝑅) ∈ (Base‘𝐾))
211, 2, 15latmle1 17344 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑃 𝑄) ∈ (Base‘𝐾) ∧ (𝑆 𝑇) ∈ (Base‘𝐾)) → ((𝑃 𝑄) (𝑆 𝑇)) (𝑃 𝑄))
224, 10, 14, 21syl3anc 1490 . . . 4 (((𝐾 ∈ HL ∧ 𝑃 (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑃 𝑄) (𝑆 𝑇)) (𝑃 𝑄))
23 simp12 1261 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃 (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → 𝑃 (𝑄 𝑅))
241, 8atbase 35177 . . . . . . 7 (𝑄𝐴𝑄 ∈ (Base‘𝐾))
256, 24syl 17 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑃 (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → 𝑄 ∈ (Base‘𝐾))
261, 8atbase 35177 . . . . . . 7 (𝑅𝐴𝑅 ∈ (Base‘𝐾))
2718, 26syl 17 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑃 (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → 𝑅 ∈ (Base‘𝐾))
281, 2, 7latlej1 17328 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑄 ∈ (Base‘𝐾) ∧ 𝑅 ∈ (Base‘𝐾)) → 𝑄 (𝑄 𝑅))
294, 25, 27, 28syl3anc 1490 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃 (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → 𝑄 (𝑄 𝑅))
301, 8atbase 35177 . . . . . . 7 (𝑃𝐴𝑃 ∈ (Base‘𝐾))
315, 30syl 17 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑃 (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → 𝑃 ∈ (Base‘𝐾))
321, 2, 7latjle12 17330 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝑃 ∈ (Base‘𝐾) ∧ 𝑄 ∈ (Base‘𝐾) ∧ (𝑄 𝑅) ∈ (Base‘𝐾))) → ((𝑃 (𝑄 𝑅) ∧ 𝑄 (𝑄 𝑅)) ↔ (𝑃 𝑄) (𝑄 𝑅)))
334, 31, 25, 20, 32syl13anc 1491 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃 (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑃 (𝑄 𝑅) ∧ 𝑄 (𝑄 𝑅)) ↔ (𝑃 𝑄) (𝑄 𝑅)))
3423, 29, 33mpbi2and 703 . . . 4 (((𝐾 ∈ HL ∧ 𝑃 (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (𝑃 𝑄) (𝑄 𝑅))
351, 2, 4, 17, 10, 20, 22, 34lattrd 17326 . . 3 (((𝐾 ∈ HL ∧ 𝑃 (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑃 𝑄) (𝑆 𝑇)) (𝑄 𝑅))
361, 8atbase 35177 . . . . . . . 8 (𝑇𝐴𝑇 ∈ (Base‘𝐾))
3712, 36syl 17 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑃 (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → 𝑇 ∈ (Base‘𝐾))
381, 7latjcl 17319 . . . . . . 7 ((𝐾 ∈ Lat ∧ (𝑃 𝑄) ∈ (Base‘𝐾) ∧ 𝑇 ∈ (Base‘𝐾)) → ((𝑃 𝑄) 𝑇) ∈ (Base‘𝐾))
394, 10, 37, 38syl3anc 1490 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑃 (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑃 𝑄) 𝑇) ∈ (Base‘𝐾))
401, 15latmcl 17320 . . . . . 6 ((𝐾 ∈ Lat ∧ ((𝑃 𝑄) 𝑇) ∈ (Base‘𝐾) ∧ (𝑆 𝑇) ∈ (Base‘𝐾)) → (((𝑃 𝑄) 𝑇) (𝑆 𝑇)) ∈ (Base‘𝐾))
414, 39, 14, 40syl3anc 1490 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃 (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (((𝑃 𝑄) 𝑇) (𝑆 𝑇)) ∈ (Base‘𝐾))
421, 7, 8hlatjcl 35255 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑅𝐴𝑃𝐴) → (𝑅 𝑃) ∈ (Base‘𝐾))
433, 18, 5, 42syl3anc 1490 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑃 (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (𝑅 𝑃) ∈ (Base‘𝐾))
44 simp33 1268 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑃 (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → 𝑈𝐴)
451, 7, 8hlatjcl 35255 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑈𝐴𝑆𝐴) → (𝑈 𝑆) ∈ (Base‘𝐾))
463, 44, 11, 45syl3anc 1490 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑃 (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (𝑈 𝑆) ∈ (Base‘𝐾))
471, 15latmcl 17320 . . . . . . . 8 ((𝐾 ∈ Lat ∧ (𝑅 𝑃) ∈ (Base‘𝐾) ∧ (𝑈 𝑆) ∈ (Base‘𝐾)) → ((𝑅 𝑃) (𝑈 𝑆)) ∈ (Base‘𝐾))
484, 43, 46, 47syl3anc 1490 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑃 (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑅 𝑃) (𝑈 𝑆)) ∈ (Base‘𝐾))
491, 8atbase 35177 . . . . . . . 8 (𝑈𝐴𝑈 ∈ (Base‘𝐾))
5044, 49syl 17 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑃 (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → 𝑈 ∈ (Base‘𝐾))
511, 7latjcl 17319 . . . . . . 7 ((𝐾 ∈ Lat ∧ ((𝑅 𝑃) (𝑈 𝑆)) ∈ (Base‘𝐾) ∧ 𝑈 ∈ (Base‘𝐾)) → (((𝑅 𝑃) (𝑈 𝑆)) 𝑈) ∈ (Base‘𝐾))
524, 48, 50, 51syl3anc 1490 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑃 (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (((𝑅 𝑃) (𝑈 𝑆)) 𝑈) ∈ (Base‘𝐾))
531, 7latjcl 17319 . . . . . 6 ((𝐾 ∈ Lat ∧ (((𝑅 𝑃) (𝑈 𝑆)) 𝑈) ∈ (Base‘𝐾) ∧ 𝑇 ∈ (Base‘𝐾)) → ((((𝑅 𝑃) (𝑈 𝑆)) 𝑈) 𝑇) ∈ (Base‘𝐾))
544, 52, 37, 53syl3anc 1490 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃 (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((((𝑅 𝑃) (𝑈 𝑆)) 𝑈) 𝑇) ∈ (Base‘𝐾))
551, 2, 7latlej1 17328 . . . . . . 7 ((𝐾 ∈ Lat ∧ (𝑃 𝑄) ∈ (Base‘𝐾) ∧ 𝑇 ∈ (Base‘𝐾)) → (𝑃 𝑄) ((𝑃 𝑄) 𝑇))
564, 10, 37, 55syl3anc 1490 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑃 (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (𝑃 𝑄) ((𝑃 𝑄) 𝑇))
571, 2, 15latmlem1 17349 . . . . . . 7 ((𝐾 ∈ Lat ∧ ((𝑃 𝑄) ∈ (Base‘𝐾) ∧ ((𝑃 𝑄) 𝑇) ∈ (Base‘𝐾) ∧ (𝑆 𝑇) ∈ (Base‘𝐾))) → ((𝑃 𝑄) ((𝑃 𝑄) 𝑇) → ((𝑃 𝑄) (𝑆 𝑇)) (((𝑃 𝑄) 𝑇) (𝑆 𝑇))))
584, 10, 39, 14, 57syl13anc 1491 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑃 (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑃 𝑄) ((𝑃 𝑄) 𝑇) → ((𝑃 𝑄) (𝑆 𝑇)) (((𝑃 𝑄) 𝑇) (𝑆 𝑇))))
5956, 58mpd 15 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃 (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑃 𝑄) (𝑆 𝑇)) (((𝑃 𝑄) 𝑇) (𝑆 𝑇)))
601, 2, 7latlej2 17329 . . . . . . . 8 ((𝐾 ∈ Lat ∧ (𝑃 𝑄) ∈ (Base‘𝐾) ∧ 𝑇 ∈ (Base‘𝐾)) → 𝑇 ((𝑃 𝑄) 𝑇))
614, 10, 37, 60syl3anc 1490 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑃 (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → 𝑇 ((𝑃 𝑄) 𝑇))
621, 2, 7, 15, 8atmod2i2 35750 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝑆𝐴 ∧ ((𝑃 𝑄) 𝑇) ∈ (Base‘𝐾) ∧ 𝑇 ∈ (Base‘𝐾)) ∧ 𝑇 ((𝑃 𝑄) 𝑇)) → ((((𝑃 𝑄) 𝑇) 𝑆) 𝑇) = (((𝑃 𝑄) 𝑇) (𝑆 𝑇)))
633, 11, 39, 37, 61, 62syl131anc 1502 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑃 (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((((𝑃 𝑄) 𝑇) 𝑆) 𝑇) = (((𝑃 𝑄) 𝑇) (𝑆 𝑇)))
641, 7, 8hlatjcl 35255 . . . . . . . . . . . . . 14 ((𝐾 ∈ HL ∧ 𝑄𝐴𝑇𝐴) → (𝑄 𝑇) ∈ (Base‘𝐾))
653, 6, 12, 64syl3anc 1490 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ 𝑃 (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (𝑄 𝑇) ∈ (Base‘𝐾))
661, 7, 8hlatjcl 35255 . . . . . . . . . . . . . 14 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑆𝐴) → (𝑃 𝑆) ∈ (Base‘𝐾))
673, 5, 11, 66syl3anc 1490 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ 𝑃 (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (𝑃 𝑆) ∈ (Base‘𝐾))
681, 15latmcom 17343 . . . . . . . . . . . . 13 ((𝐾 ∈ Lat ∧ (𝑄 𝑇) ∈ (Base‘𝐾) ∧ (𝑃 𝑆) ∈ (Base‘𝐾)) → ((𝑄 𝑇) (𝑃 𝑆)) = ((𝑃 𝑆) (𝑄 𝑇)))
694, 65, 67, 68syl3anc 1490 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑃 (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑄 𝑇) (𝑃 𝑆)) = ((𝑃 𝑆) (𝑄 𝑇)))
70 simp13 1262 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑃 (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈))
7169, 70eqbrtrd 4831 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑃 (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑄 𝑇) (𝑃 𝑆)) (𝑅 𝑈))
721, 15latmcl 17320 . . . . . . . . . . . . 13 ((𝐾 ∈ Lat ∧ (𝑄 𝑇) ∈ (Base‘𝐾) ∧ (𝑃 𝑆) ∈ (Base‘𝐾)) → ((𝑄 𝑇) (𝑃 𝑆)) ∈ (Base‘𝐾))
734, 65, 67, 72syl3anc 1490 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑃 (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑄 𝑇) (𝑃 𝑆)) ∈ (Base‘𝐾))
741, 7, 8hlatjcl 35255 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ 𝑅𝐴𝑈𝐴) → (𝑅 𝑈) ∈ (Base‘𝐾))
753, 18, 44, 74syl3anc 1490 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑃 (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (𝑅 𝑈) ∈ (Base‘𝐾))
761, 2, 7latjlej2 17334 . . . . . . . . . . . 12 ((𝐾 ∈ Lat ∧ (((𝑄 𝑇) (𝑃 𝑆)) ∈ (Base‘𝐾) ∧ (𝑅 𝑈) ∈ (Base‘𝐾) ∧ 𝑃 ∈ (Base‘𝐾))) → (((𝑄 𝑇) (𝑃 𝑆)) (𝑅 𝑈) → (𝑃 ((𝑄 𝑇) (𝑃 𝑆))) (𝑃 (𝑅 𝑈))))
774, 73, 75, 31, 76syl13anc 1491 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑃 (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (((𝑄 𝑇) (𝑃 𝑆)) (𝑅 𝑈) → (𝑃 ((𝑄 𝑇) (𝑃 𝑆))) (𝑃 (𝑅 𝑈))))
7871, 77mpd 15 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑃 (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (𝑃 ((𝑄 𝑇) (𝑃 𝑆))) (𝑃 (𝑅 𝑈)))
791, 8atbase 35177 . . . . . . . . . . . . 13 (𝑆𝐴𝑆 ∈ (Base‘𝐾))
8011, 79syl 17 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑃 (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → 𝑆 ∈ (Base‘𝐾))
811, 2, 7latlej1 17328 . . . . . . . . . . . 12 ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Base‘𝐾) ∧ 𝑆 ∈ (Base‘𝐾)) → 𝑃 (𝑃 𝑆))
824, 31, 80, 81syl3anc 1490 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑃 (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → 𝑃 (𝑃 𝑆))
831, 2, 7, 15, 8atmod1i1 35745 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ (𝑃𝐴 ∧ (𝑄 𝑇) ∈ (Base‘𝐾) ∧ (𝑃 𝑆) ∈ (Base‘𝐾)) ∧ 𝑃 (𝑃 𝑆)) → (𝑃 ((𝑄 𝑇) (𝑃 𝑆))) = ((𝑃 (𝑄 𝑇)) (𝑃 𝑆)))
843, 5, 65, 67, 82, 83syl131anc 1502 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑃 (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (𝑃 ((𝑄 𝑇) (𝑃 𝑆))) = ((𝑃 (𝑄 𝑇)) (𝑃 𝑆)))
857, 8hlatjass 35258 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑅𝐴𝑈𝐴)) → ((𝑃 𝑅) 𝑈) = (𝑃 (𝑅 𝑈)))
863, 5, 18, 44, 85syl13anc 1491 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑃 (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑃 𝑅) 𝑈) = (𝑃 (𝑅 𝑈)))
877, 8hlatjcom 35256 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑅𝐴) → (𝑃 𝑅) = (𝑅 𝑃))
883, 5, 18, 87syl3anc 1490 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑃 (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (𝑃 𝑅) = (𝑅 𝑃))
8988oveq1d 6857 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑃 (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑃 𝑅) 𝑈) = ((𝑅 𝑃) 𝑈))
9086, 89eqtr3d 2801 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑃 (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (𝑃 (𝑅 𝑈)) = ((𝑅 𝑃) 𝑈))
9178, 84, 903brtr3d 4840 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑃 (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑃 (𝑄 𝑇)) (𝑃 𝑆)) ((𝑅 𝑃) 𝑈))
921, 2, 7latlej2 17329 . . . . . . . . . 10 ((𝐾 ∈ Lat ∧ 𝑈 ∈ (Base‘𝐾) ∧ 𝑆 ∈ (Base‘𝐾)) → 𝑆 (𝑈 𝑆))
934, 50, 80, 92syl3anc 1490 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑃 (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → 𝑆 (𝑈 𝑆))
941, 7latjcl 17319 . . . . . . . . . . . 12 ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Base‘𝐾) ∧ (𝑄 𝑇) ∈ (Base‘𝐾)) → (𝑃 (𝑄 𝑇)) ∈ (Base‘𝐾))
954, 31, 65, 94syl3anc 1490 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑃 (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (𝑃 (𝑄 𝑇)) ∈ (Base‘𝐾))
961, 15latmcl 17320 . . . . . . . . . . 11 ((𝐾 ∈ Lat ∧ (𝑃 (𝑄 𝑇)) ∈ (Base‘𝐾) ∧ (𝑃 𝑆) ∈ (Base‘𝐾)) → ((𝑃 (𝑄 𝑇)) (𝑃 𝑆)) ∈ (Base‘𝐾))
974, 95, 67, 96syl3anc 1490 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑃 (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑃 (𝑄 𝑇)) (𝑃 𝑆)) ∈ (Base‘𝐾))
981, 7latjcl 17319 . . . . . . . . . . 11 ((𝐾 ∈ Lat ∧ (𝑅 𝑃) ∈ (Base‘𝐾) ∧ 𝑈 ∈ (Base‘𝐾)) → ((𝑅 𝑃) 𝑈) ∈ (Base‘𝐾))
994, 43, 50, 98syl3anc 1490 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑃 (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑅 𝑃) 𝑈) ∈ (Base‘𝐾))
1001, 2, 15latmlem12 17351 . . . . . . . . . 10 ((𝐾 ∈ Lat ∧ (((𝑃 (𝑄 𝑇)) (𝑃 𝑆)) ∈ (Base‘𝐾) ∧ ((𝑅 𝑃) 𝑈) ∈ (Base‘𝐾)) ∧ (𝑆 ∈ (Base‘𝐾) ∧ (𝑈 𝑆) ∈ (Base‘𝐾))) → ((((𝑃 (𝑄 𝑇)) (𝑃 𝑆)) ((𝑅 𝑃) 𝑈) ∧ 𝑆 (𝑈 𝑆)) → (((𝑃 (𝑄 𝑇)) (𝑃 𝑆)) 𝑆) (((𝑅 𝑃) 𝑈) (𝑈 𝑆))))
1014, 97, 99, 80, 46, 100syl122anc 1498 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑃 (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((((𝑃 (𝑄 𝑇)) (𝑃 𝑆)) ((𝑅 𝑃) 𝑈) ∧ 𝑆 (𝑈 𝑆)) → (((𝑃 (𝑄 𝑇)) (𝑃 𝑆)) 𝑆) (((𝑅 𝑃) 𝑈) (𝑈 𝑆))))
10291, 93, 101mp2and 690 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑃 (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (((𝑃 (𝑄 𝑇)) (𝑃 𝑆)) 𝑆) (((𝑅 𝑃) 𝑈) (𝑈 𝑆)))
103 hlol 35249 . . . . . . . . . . 11 (𝐾 ∈ HL → 𝐾 ∈ OL)
1043, 103syl 17 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑃 (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → 𝐾 ∈ OL)
1051, 15latmassOLD 35117 . . . . . . . . . 10 ((𝐾 ∈ OL ∧ ((𝑃 (𝑄 𝑇)) ∈ (Base‘𝐾) ∧ (𝑃 𝑆) ∈ (Base‘𝐾) ∧ 𝑆 ∈ (Base‘𝐾))) → (((𝑃 (𝑄 𝑇)) (𝑃 𝑆)) 𝑆) = ((𝑃 (𝑄 𝑇)) ((𝑃 𝑆) 𝑆)))
106104, 95, 67, 80, 105syl13anc 1491 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑃 (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (((𝑃 (𝑄 𝑇)) (𝑃 𝑆)) 𝑆) = ((𝑃 (𝑄 𝑇)) ((𝑃 𝑆) 𝑆)))
1077, 8hlatjass 35258 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑇𝐴)) → ((𝑃 𝑄) 𝑇) = (𝑃 (𝑄 𝑇)))
1083, 5, 6, 12, 107syl13anc 1491 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑃 (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑃 𝑄) 𝑇) = (𝑃 (𝑄 𝑇)))
109108eqcomd 2771 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑃 (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (𝑃 (𝑄 𝑇)) = ((𝑃 𝑄) 𝑇))
1101, 2, 7latlej2 17329 . . . . . . . . . . . 12 ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Base‘𝐾) ∧ 𝑆 ∈ (Base‘𝐾)) → 𝑆 (𝑃 𝑆))
1114, 31, 80, 110syl3anc 1490 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑃 (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → 𝑆 (𝑃 𝑆))
1121, 2, 15latleeqm2 17348 . . . . . . . . . . . 12 ((𝐾 ∈ Lat ∧ 𝑆 ∈ (Base‘𝐾) ∧ (𝑃 𝑆) ∈ (Base‘𝐾)) → (𝑆 (𝑃 𝑆) ↔ ((𝑃 𝑆) 𝑆) = 𝑆))
1134, 80, 67, 112syl3anc 1490 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑃 (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (𝑆 (𝑃 𝑆) ↔ ((𝑃 𝑆) 𝑆) = 𝑆))
114111, 113mpbid 223 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑃 (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑃 𝑆) 𝑆) = 𝑆)
115109, 114oveq12d 6860 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑃 (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑃 (𝑄 𝑇)) ((𝑃 𝑆) 𝑆)) = (((𝑃 𝑄) 𝑇) 𝑆))
116106, 115eqtr2d 2800 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑃 (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (((𝑃 𝑄) 𝑇) 𝑆) = (((𝑃 (𝑄 𝑇)) (𝑃 𝑆)) 𝑆))
1171, 2, 7latlej1 17328 . . . . . . . . . 10 ((𝐾 ∈ Lat ∧ 𝑈 ∈ (Base‘𝐾) ∧ 𝑆 ∈ (Base‘𝐾)) → 𝑈 (𝑈 𝑆))
1184, 50, 80, 117syl3anc 1490 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑃 (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → 𝑈 (𝑈 𝑆))
1191, 2, 7, 15, 8atmod4i1 35754 . . . . . . . . 9 ((𝐾 ∈ HL ∧ (𝑈𝐴 ∧ (𝑅 𝑃) ∈ (Base‘𝐾) ∧ (𝑈 𝑆) ∈ (Base‘𝐾)) ∧ 𝑈 (𝑈 𝑆)) → (((𝑅 𝑃) (𝑈 𝑆)) 𝑈) = (((𝑅 𝑃) 𝑈) (𝑈 𝑆)))
1203, 44, 43, 46, 118, 119syl131anc 1502 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑃 (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (((𝑅 𝑃) (𝑈 𝑆)) 𝑈) = (((𝑅 𝑃) 𝑈) (𝑈 𝑆)))
121102, 116, 1203brtr4d 4841 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑃 (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (((𝑃 𝑄) 𝑇) 𝑆) (((𝑅 𝑃) (𝑈 𝑆)) 𝑈))
1221, 15latmcl 17320 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ ((𝑃 𝑄) 𝑇) ∈ (Base‘𝐾) ∧ 𝑆 ∈ (Base‘𝐾)) → (((𝑃 𝑄) 𝑇) 𝑆) ∈ (Base‘𝐾))
1234, 39, 80, 122syl3anc 1490 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑃 (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (((𝑃 𝑄) 𝑇) 𝑆) ∈ (Base‘𝐾))
1241, 2, 7latjlej1 17333 . . . . . . . 8 ((𝐾 ∈ Lat ∧ ((((𝑃 𝑄) 𝑇) 𝑆) ∈ (Base‘𝐾) ∧ (((𝑅 𝑃) (𝑈 𝑆)) 𝑈) ∈ (Base‘𝐾) ∧ 𝑇 ∈ (Base‘𝐾))) → ((((𝑃 𝑄) 𝑇) 𝑆) (((𝑅 𝑃) (𝑈 𝑆)) 𝑈) → ((((𝑃 𝑄) 𝑇) 𝑆) 𝑇) ((((𝑅 𝑃) (𝑈 𝑆)) 𝑈) 𝑇)))
1254, 123, 52, 37, 124syl13anc 1491 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑃 (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((((𝑃 𝑄) 𝑇) 𝑆) (((𝑅 𝑃) (𝑈 𝑆)) 𝑈) → ((((𝑃 𝑄) 𝑇) 𝑆) 𝑇) ((((𝑅 𝑃) (𝑈 𝑆)) 𝑈) 𝑇)))
126121, 125mpd 15 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑃 (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((((𝑃 𝑄) 𝑇) 𝑆) 𝑇) ((((𝑅 𝑃) (𝑈 𝑆)) 𝑈) 𝑇))
12763, 126eqbrtrrd 4833 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃 (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (((𝑃 𝑄) 𝑇) (𝑆 𝑇)) ((((𝑅 𝑃) (𝑈 𝑆)) 𝑈) 𝑇))
1281, 2, 4, 17, 41, 54, 59, 127lattrd 17326 . . . 4 (((𝐾 ∈ HL ∧ 𝑃 (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑃 𝑄) (𝑆 𝑇)) ((((𝑅 𝑃) (𝑈 𝑆)) 𝑈) 𝑇))
1291, 7latj31 17367 . . . . 5 ((𝐾 ∈ Lat ∧ (((𝑅 𝑃) (𝑈 𝑆)) ∈ (Base‘𝐾) ∧ 𝑈 ∈ (Base‘𝐾) ∧ 𝑇 ∈ (Base‘𝐾))) → ((((𝑅 𝑃) (𝑈 𝑆)) 𝑈) 𝑇) = ((𝑇 𝑈) ((𝑅 𝑃) (𝑈 𝑆))))
1304, 48, 50, 37, 129syl13anc 1491 . . . 4 (((𝐾 ∈ HL ∧ 𝑃 (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((((𝑅 𝑃) (𝑈 𝑆)) 𝑈) 𝑇) = ((𝑇 𝑈) ((𝑅 𝑃) (𝑈 𝑆))))
131128, 130breqtrd 4835 . . 3 (((𝐾 ∈ HL ∧ 𝑃 (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑃 𝑄) (𝑆 𝑇)) ((𝑇 𝑈) ((𝑅 𝑃) (𝑈 𝑆))))
1321, 7, 8hlatjcl 35255 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑇𝐴𝑈𝐴) → (𝑇 𝑈) ∈ (Base‘𝐾))
1333, 12, 44, 132syl3anc 1490 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃 (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (𝑇 𝑈) ∈ (Base‘𝐾))
1341, 7latjcl 17319 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑇 𝑈) ∈ (Base‘𝐾) ∧ ((𝑅 𝑃) (𝑈 𝑆)) ∈ (Base‘𝐾)) → ((𝑇 𝑈) ((𝑅 𝑃) (𝑈 𝑆))) ∈ (Base‘𝐾))
1354, 133, 48, 134syl3anc 1490 . . . 4 (((𝐾 ∈ HL ∧ 𝑃 (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑇 𝑈) ((𝑅 𝑃) (𝑈 𝑆))) ∈ (Base‘𝐾))
1361, 2, 15latlem12 17346 . . . 4 ((𝐾 ∈ Lat ∧ (((𝑃 𝑄) (𝑆 𝑇)) ∈ (Base‘𝐾) ∧ (𝑄 𝑅) ∈ (Base‘𝐾) ∧ ((𝑇 𝑈) ((𝑅 𝑃) (𝑈 𝑆))) ∈ (Base‘𝐾))) → ((((𝑃 𝑄) (𝑆 𝑇)) (𝑄 𝑅) ∧ ((𝑃 𝑄) (𝑆 𝑇)) ((𝑇 𝑈) ((𝑅 𝑃) (𝑈 𝑆)))) ↔ ((𝑃 𝑄) (𝑆 𝑇)) ((𝑄 𝑅) ((𝑇 𝑈) ((𝑅 𝑃) (𝑈 𝑆))))))
1374, 17, 20, 135, 136syl13anc 1491 . . 3 (((𝐾 ∈ HL ∧ 𝑃 (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((((𝑃 𝑄) (𝑆 𝑇)) (𝑄 𝑅) ∧ ((𝑃 𝑄) (𝑆 𝑇)) ((𝑇 𝑈) ((𝑅 𝑃) (𝑈 𝑆)))) ↔ ((𝑃 𝑄) (𝑆 𝑇)) ((𝑄 𝑅) ((𝑇 𝑈) ((𝑅 𝑃) (𝑈 𝑆))))))
13835, 131, 137mpbi2and 703 . 2 (((𝐾 ∈ HL ∧ 𝑃 (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑃 𝑄) (𝑆 𝑇)) ((𝑄 𝑅) ((𝑇 𝑈) ((𝑅 𝑃) (𝑈 𝑆)))))
1391, 2, 15latmle1 17344 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑅 𝑃) ∈ (Base‘𝐾) ∧ (𝑈 𝑆) ∈ (Base‘𝐾)) → ((𝑅 𝑃) (𝑈 𝑆)) (𝑅 𝑃))
1404, 43, 46, 139syl3anc 1490 . . . 4 (((𝐾 ∈ HL ∧ 𝑃 (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑅 𝑃) (𝑈 𝑆)) (𝑅 𝑃))
1411, 2, 7latlej2 17329 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑄 ∈ (Base‘𝐾) ∧ 𝑅 ∈ (Base‘𝐾)) → 𝑅 (𝑄 𝑅))
1424, 25, 27, 141syl3anc 1490 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃 (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → 𝑅 (𝑄 𝑅))
1431, 2, 7latjle12 17330 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝑅 ∈ (Base‘𝐾) ∧ 𝑃 ∈ (Base‘𝐾) ∧ (𝑄 𝑅) ∈ (Base‘𝐾))) → ((𝑅 (𝑄 𝑅) ∧ 𝑃 (𝑄 𝑅)) ↔ (𝑅 𝑃) (𝑄 𝑅)))
1444, 27, 31, 20, 143syl13anc 1491 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃 (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑅 (𝑄 𝑅) ∧ 𝑃 (𝑄 𝑅)) ↔ (𝑅 𝑃) (𝑄 𝑅)))
145142, 23, 144mpbi2and 703 . . . 4 (((𝐾 ∈ HL ∧ 𝑃 (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (𝑅 𝑃) (𝑄 𝑅))
1461, 2, 4, 48, 43, 20, 140, 145lattrd 17326 . . 3 (((𝐾 ∈ HL ∧ 𝑃 (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑅 𝑃) (𝑈 𝑆)) (𝑄 𝑅))
1471, 2, 7, 15, 8llnmod2i2 35751 . . 3 (((𝐾 ∈ HL ∧ (𝑄 𝑅) ∈ (Base‘𝐾) ∧ ((𝑅 𝑃) (𝑈 𝑆)) ∈ (Base‘𝐾)) ∧ (𝑇𝐴𝑈𝐴) ∧ ((𝑅 𝑃) (𝑈 𝑆)) (𝑄 𝑅)) → (((𝑄 𝑅) (𝑇 𝑈)) ((𝑅 𝑃) (𝑈 𝑆))) = ((𝑄 𝑅) ((𝑇 𝑈) ((𝑅 𝑃) (𝑈 𝑆)))))
1483, 20, 48, 12, 44, 146, 147syl321anc 1511 . 2 (((𝐾 ∈ HL ∧ 𝑃 (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (((𝑄 𝑅) (𝑇 𝑈)) ((𝑅 𝑃) (𝑈 𝑆))) = ((𝑄 𝑅) ((𝑇 𝑈) ((𝑅 𝑃) (𝑈 𝑆)))))
149138, 148breqtrrd 4837 1 (((𝐾 ∈ HL ∧ 𝑃 (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑃 𝑄) (𝑆 𝑇)) (((𝑄 𝑅) (𝑇 𝑈)) ((𝑅 𝑃) (𝑈 𝑆))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wa 384  w3a 1107   = wceq 1652  wcel 2155   class class class wbr 4809  cfv 6068  (class class class)co 6842  Basecbs 16132  lecple 16223  joincjn 17212  meetcmee 17213  Latclat 17313  OLcol 35062  Atomscatm 35151  HLchlt 35238
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2069  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4930  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2062  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-ral 3060  df-rex 3061  df-reu 3062  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-op 4341  df-uni 4595  df-iun 4678  df-iin 4679  df-br 4810  df-opab 4872  df-mpt 4889  df-id 5185  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076  df-riota 6803  df-ov 6845  df-oprab 6846  df-mpt2 6847  df-1st 7366  df-2nd 7367  df-proset 17196  df-poset 17214  df-plt 17226  df-lub 17242  df-glb 17243  df-join 17244  df-meet 17245  df-p0 17307  df-lat 17314  df-clat 17376  df-oposet 35064  df-ol 35066  df-oml 35067  df-covers 35154  df-ats 35155  df-atl 35186  df-cvlat 35210  df-hlat 35239  df-psubsp 35391  df-pmap 35392  df-padd 35684
This theorem is referenced by:  dalawlem13  35771
  Copyright terms: Public domain W3C validator