Proof of Theorem cdlemk47
| Step | Hyp | Ref
| Expression |
| 1 | | simp11l 1285 |
. 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝐼))) → 𝐾 ∈ HL) |
| 2 | | simp11 1204 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝐼))) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| 3 | | simp12 1205 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝐼))) → (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵))) |
| 4 | | simp13 1206 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝐼))) → (𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵))) |
| 5 | | simp21 1207 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝐼))) → 𝑁 ∈ 𝑇) |
| 6 | | simp22 1208 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝐼))) → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) |
| 7 | | simp23 1209 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝐼))) → (𝑅‘𝐹) = (𝑅‘𝑁)) |
| 8 | | cdlemk5.b |
. . . . . 6
⊢ 𝐵 = (Base‘𝐾) |
| 9 | | cdlemk5.l |
. . . . . 6
⊢ ≤ =
(le‘𝐾) |
| 10 | | cdlemk5.j |
. . . . . 6
⊢ ∨ =
(join‘𝐾) |
| 11 | | cdlemk5.m |
. . . . . 6
⊢ ∧ =
(meet‘𝐾) |
| 12 | | cdlemk5.a |
. . . . . 6
⊢ 𝐴 = (Atoms‘𝐾) |
| 13 | | cdlemk5.h |
. . . . . 6
⊢ 𝐻 = (LHyp‘𝐾) |
| 14 | | cdlemk5.t |
. . . . . 6
⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
| 15 | | cdlemk5.r |
. . . . . 6
⊢ 𝑅 = ((trL‘𝐾)‘𝑊) |
| 16 | | cdlemk5.z |
. . . . . 6
⊢ 𝑍 = ((𝑃 ∨ (𝑅‘𝑏)) ∧ ((𝑁‘𝑃) ∨ (𝑅‘(𝑏 ∘ ◡𝐹)))) |
| 17 | | cdlemk5.y |
. . . . . 6
⊢ 𝑌 = ((𝑃 ∨ (𝑅‘𝑔)) ∧ (𝑍 ∨ (𝑅‘(𝑔 ∘ ◡𝑏)))) |
| 18 | | cdlemk5.x |
. . . . . 6
⊢ 𝑋 = (℩𝑧 ∈ 𝑇 ∀𝑏 ∈ 𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝑔)) → (𝑧‘𝑃) = 𝑌)) |
| 19 | 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18 | cdlemk35s 40939 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵)) ∧ 𝑁 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁))) → ⦋𝐺 / 𝑔⦌𝑋 ∈ 𝑇) |
| 20 | 2, 3, 4, 5, 6, 7, 19 | syl132anc 1390 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝐼))) → ⦋𝐺 / 𝑔⦌𝑋 ∈ 𝑇) |
| 21 | 9, 12, 13, 14 | ltrnel 40141 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ⦋𝐺 / 𝑔⦌𝑋 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → ((⦋𝐺 / 𝑔⦌𝑋‘𝑃) ∈ 𝐴 ∧ ¬ (⦋𝐺 / 𝑔⦌𝑋‘𝑃) ≤ 𝑊)) |
| 22 | 2, 20, 6, 21 | syl3anc 1373 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝐼))) → ((⦋𝐺 / 𝑔⦌𝑋‘𝑃) ∈ 𝐴 ∧ ¬ (⦋𝐺 / 𝑔⦌𝑋‘𝑃) ≤ 𝑊)) |
| 23 | 22 | simpld 494 |
. 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝐼))) → (⦋𝐺 / 𝑔⦌𝑋‘𝑃) ∈ 𝐴) |
| 24 | | simp31 1210 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝐼))) → 𝐼 ∈ 𝑇) |
| 25 | | simp32 1211 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝐼))) → 𝐼 ≠ ( I ↾ 𝐵)) |
| 26 | 8, 12, 13, 14, 15 | trlnidat 40175 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐼 ∈ 𝑇 ∧ 𝐼 ≠ ( I ↾ 𝐵)) → (𝑅‘𝐼) ∈ 𝐴) |
| 27 | 2, 24, 25, 26 | syl3anc 1373 |
. 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝐼))) → (𝑅‘𝐼) ∈ 𝐴) |
| 28 | 24, 25 | jca 511 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝐼))) → (𝐼 ∈ 𝑇 ∧ 𝐼 ≠ ( I ↾ 𝐵))) |
| 29 | 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18 | cdlemk35s 40939 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 ≠ ( I ↾ 𝐵)) ∧ 𝑁 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁))) → ⦋𝐼 / 𝑔⦌𝑋 ∈ 𝑇) |
| 30 | 2, 3, 28, 5, 6, 7,
29 | syl132anc 1390 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝐼))) → ⦋𝐼 / 𝑔⦌𝑋 ∈ 𝑇) |
| 31 | | simp22l 1293 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝐼))) → 𝑃 ∈ 𝐴) |
| 32 | 9, 12, 13, 14 | ltrnat 40142 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ⦋𝐼 / 𝑔⦌𝑋 ∈ 𝑇 ∧ 𝑃 ∈ 𝐴) → (⦋𝐼 / 𝑔⦌𝑋‘𝑃) ∈ 𝐴) |
| 33 | 2, 30, 31, 32 | syl3anc 1373 |
. 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝐼))) → (⦋𝐼 / 𝑔⦌𝑋‘𝑃) ∈ 𝐴) |
| 34 | | simp13l 1289 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝐼))) → 𝐺 ∈ 𝑇) |
| 35 | | simp13r 1290 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝐼))) → 𝐺 ≠ ( I ↾ 𝐵)) |
| 36 | 8, 12, 13, 14, 15 | trlnidat 40175 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵)) → (𝑅‘𝐺) ∈ 𝐴) |
| 37 | 2, 34, 35, 36 | syl3anc 1373 |
. 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝐼))) → (𝑅‘𝐺) ∈ 𝐴) |
| 38 | 13, 14 | ltrnco 40721 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐺 ∈ 𝑇 ∧ 𝐼 ∈ 𝑇) → (𝐺 ∘ 𝐼) ∈ 𝑇) |
| 39 | 2, 34, 24, 38 | syl3anc 1373 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝐼))) → (𝐺 ∘ 𝐼) ∈ 𝑇) |
| 40 | 34, 24 | jca 511 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝐼))) → (𝐺 ∈ 𝑇 ∧ 𝐼 ∈ 𝑇)) |
| 41 | | simp33 1212 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝐼))) → (𝑅‘𝐺) ≠ (𝑅‘𝐼)) |
| 42 | 8, 13, 14, 15 | trlconid 40727 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐺 ∈ 𝑇 ∧ 𝐼 ∈ 𝑇) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝐼)) → (𝐺 ∘ 𝐼) ≠ ( I ↾ 𝐵)) |
| 43 | 2, 40, 41, 42 | syl3anc 1373 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝐼))) → (𝐺 ∘ 𝐼) ≠ ( I ↾ 𝐵)) |
| 44 | 39, 43 | jca 511 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝐼))) → ((𝐺 ∘ 𝐼) ∈ 𝑇 ∧ (𝐺 ∘ 𝐼) ≠ ( I ↾ 𝐵))) |
| 45 | 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18 | cdlemk35s 40939 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) ∧ ((𝐺 ∘ 𝐼) ∈ 𝑇 ∧ (𝐺 ∘ 𝐼) ≠ ( I ↾ 𝐵)) ∧ 𝑁 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁))) → ⦋(𝐺 ∘ 𝐼) / 𝑔⦌𝑋 ∈ 𝑇) |
| 46 | 2, 3, 44, 5, 6, 7,
45 | syl132anc 1390 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝐼))) → ⦋(𝐺 ∘ 𝐼) / 𝑔⦌𝑋 ∈ 𝑇) |
| 47 | 9, 12, 13, 14 | ltrnat 40142 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ⦋(𝐺 ∘ 𝐼) / 𝑔⦌𝑋 ∈ 𝑇 ∧ 𝑃 ∈ 𝐴) → (⦋(𝐺 ∘ 𝐼) / 𝑔⦌𝑋‘𝑃) ∈ 𝐴) |
| 48 | 2, 46, 31, 47 | syl3anc 1373 |
. 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝐼))) → (⦋(𝐺 ∘ 𝐼) / 𝑔⦌𝑋‘𝑃) ∈ 𝐴) |
| 49 | 24, 25, 43 | 3jca 1129 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝐼))) → (𝐼 ∈ 𝑇 ∧ 𝐼 ≠ ( I ↾ 𝐵) ∧ (𝐺 ∘ 𝐼) ≠ ( I ↾ 𝐵))) |
| 50 | 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18 | cdlemk46 40950 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 ≠ ( I ↾ 𝐵) ∧ (𝐺 ∘ 𝐼) ≠ ( I ↾ 𝐵))) → (⦋(𝐺 ∘ 𝐼) / 𝑔⦌𝑋‘𝑃) ≤ ((⦋𝐺 / 𝑔⦌𝑋‘𝑃) ∨ (𝑅‘𝐼))) |
| 51 | 49, 50 | syld3an3 1411 |
. 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝐼))) → (⦋(𝐺 ∘ 𝐼) / 𝑔⦌𝑋‘𝑃) ≤ ((⦋𝐺 / 𝑔⦌𝑋‘𝑃) ∨ (𝑅‘𝐼))) |
| 52 | 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18 | cdlemk45 40949 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 ≠ ( I ↾ 𝐵) ∧ (𝐺 ∘ 𝐼) ≠ ( I ↾ 𝐵))) → (⦋(𝐺 ∘ 𝐼) / 𝑔⦌𝑋‘𝑃) ≤ ((⦋𝐼 / 𝑔⦌𝑋‘𝑃) ∨ (𝑅‘𝐺))) |
| 53 | 49, 52 | syld3an3 1411 |
. 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝐼))) → (⦋(𝐺 ∘ 𝐼) / 𝑔⦌𝑋‘𝑃) ≤ ((⦋𝐼 / 𝑔⦌𝑋‘𝑃) ∨ (𝑅‘𝐺))) |
| 54 | 9, 13, 14, 15 | trlle 40186 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐼 ∈ 𝑇) → (𝑅‘𝐼) ≤ 𝑊) |
| 55 | 2, 24, 54 | syl2anc 584 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝐼))) → (𝑅‘𝐼) ≤ 𝑊) |
| 56 | 27, 55 | jca 511 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝐼))) → ((𝑅‘𝐼) ∈ 𝐴 ∧ (𝑅‘𝐼) ≤ 𝑊)) |
| 57 | 9, 13, 14, 15 | trlle 40186 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐺 ∈ 𝑇) → (𝑅‘𝐺) ≤ 𝑊) |
| 58 | 2, 34, 57 | syl2anc 584 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝐼))) → (𝑅‘𝐺) ≤ 𝑊) |
| 59 | 37, 58 | jca 511 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝐼))) → ((𝑅‘𝐺) ∈ 𝐴 ∧ (𝑅‘𝐺) ≤ 𝑊)) |
| 60 | 41 | necomd 2996 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝐼))) → (𝑅‘𝐼) ≠ (𝑅‘𝐺)) |
| 61 | 9, 10, 12, 13 | lhp2atne 40036 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((⦋𝐺 / 𝑔⦌𝑋‘𝑃) ∈ 𝐴 ∧ ¬ (⦋𝐺 / 𝑔⦌𝑋‘𝑃) ≤ 𝑊) ∧ (⦋𝐼 / 𝑔⦌𝑋‘𝑃) ∈ 𝐴) ∧ (((𝑅‘𝐼) ∈ 𝐴 ∧ (𝑅‘𝐼) ≤ 𝑊) ∧ ((𝑅‘𝐺) ∈ 𝐴 ∧ (𝑅‘𝐺) ≤ 𝑊)) ∧ (𝑅‘𝐼) ≠ (𝑅‘𝐺)) → ((⦋𝐺 / 𝑔⦌𝑋‘𝑃) ∨ (𝑅‘𝐼)) ≠ ((⦋𝐼 / 𝑔⦌𝑋‘𝑃) ∨ (𝑅‘𝐺))) |
| 62 | 2, 22, 33, 56, 59, 60, 61 | syl321anc 1394 |
. 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝐼))) → ((⦋𝐺 / 𝑔⦌𝑋‘𝑃) ∨ (𝑅‘𝐼)) ≠ ((⦋𝐼 / 𝑔⦌𝑋‘𝑃) ∨ (𝑅‘𝐺))) |
| 63 | 9, 10, 11, 12 | 2atm 39529 |
. 2
⊢ (((𝐾 ∈ HL ∧
(⦋𝐺 / 𝑔⦌𝑋‘𝑃) ∈ 𝐴 ∧ (𝑅‘𝐼) ∈ 𝐴) ∧ ((⦋𝐼 / 𝑔⦌𝑋‘𝑃) ∈ 𝐴 ∧ (𝑅‘𝐺) ∈ 𝐴 ∧ (⦋(𝐺 ∘ 𝐼) / 𝑔⦌𝑋‘𝑃) ∈ 𝐴) ∧ ((⦋(𝐺 ∘ 𝐼) / 𝑔⦌𝑋‘𝑃) ≤ ((⦋𝐺 / 𝑔⦌𝑋‘𝑃) ∨ (𝑅‘𝐼)) ∧ (⦋(𝐺 ∘ 𝐼) / 𝑔⦌𝑋‘𝑃) ≤ ((⦋𝐼 / 𝑔⦌𝑋‘𝑃) ∨ (𝑅‘𝐺)) ∧ ((⦋𝐺 / 𝑔⦌𝑋‘𝑃) ∨ (𝑅‘𝐼)) ≠ ((⦋𝐼 / 𝑔⦌𝑋‘𝑃) ∨ (𝑅‘𝐺)))) → (⦋(𝐺 ∘ 𝐼) / 𝑔⦌𝑋‘𝑃) = (((⦋𝐺 / 𝑔⦌𝑋‘𝑃) ∨ (𝑅‘𝐼)) ∧ ((⦋𝐼 / 𝑔⦌𝑋‘𝑃) ∨ (𝑅‘𝐺)))) |
| 64 | 1, 23, 27, 33, 37, 48, 51, 53, 62, 63 | syl333anc 1404 |
1
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝐼))) → (⦋(𝐺 ∘ 𝐼) / 𝑔⦌𝑋‘𝑃) = (((⦋𝐺 / 𝑔⦌𝑋‘𝑃) ∨ (𝑅‘𝐼)) ∧ ((⦋𝐼 / 𝑔⦌𝑋‘𝑃) ∨ (𝑅‘𝐺)))) |