Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  rankuni Structured version   Visualization version   GIF version

Theorem rankuni 9279
 Description: The rank of a union. Part of Exercise 4 of [Kunen] p. 107. (Contributed by NM, 15-Sep-2006.) (Revised by Mario Carneiro, 17-Nov-2014.)
Assertion
Ref Expression
rankuni (rank‘ 𝐴) = (rank‘𝐴)

Proof of Theorem rankuni
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 unieq 4812 . . . . 5 (𝑥 = 𝐴 𝑥 = 𝐴)
21fveq2d 6650 . . . 4 (𝑥 = 𝐴 → (rank‘ 𝑥) = (rank‘ 𝐴))
3 fveq2 6646 . . . . 5 (𝑥 = 𝐴 → (rank‘𝑥) = (rank‘𝐴))
43unieqd 4815 . . . 4 (𝑥 = 𝐴 (rank‘𝑥) = (rank‘𝐴))
52, 4eqeq12d 2814 . . 3 (𝑥 = 𝐴 → ((rank‘ 𝑥) = (rank‘𝑥) ↔ (rank‘ 𝐴) = (rank‘𝐴)))
6 vex 3444 . . . . . . 7 𝑥 ∈ V
76rankuni2 9271 . . . . . 6 (rank‘ 𝑥) = 𝑧𝑥 (rank‘𝑧)
8 fvex 6659 . . . . . . 7 (rank‘𝑧) ∈ V
98dfiun2 4921 . . . . . 6 𝑧𝑥 (rank‘𝑧) = {𝑦 ∣ ∃𝑧𝑥 𝑦 = (rank‘𝑧)}
107, 9eqtri 2821 . . . . 5 (rank‘ 𝑥) = {𝑦 ∣ ∃𝑧𝑥 𝑦 = (rank‘𝑧)}
11 df-rex 3112 . . . . . . . 8 (∃𝑧𝑥 𝑦 = (rank‘𝑧) ↔ ∃𝑧(𝑧𝑥𝑦 = (rank‘𝑧)))
126rankel 9255 . . . . . . . . . . 11 (𝑧𝑥 → (rank‘𝑧) ∈ (rank‘𝑥))
1312anim1i 617 . . . . . . . . . 10 ((𝑧𝑥𝑦 = (rank‘𝑧)) → ((rank‘𝑧) ∈ (rank‘𝑥) ∧ 𝑦 = (rank‘𝑧)))
1413eximi 1836 . . . . . . . . 9 (∃𝑧(𝑧𝑥𝑦 = (rank‘𝑧)) → ∃𝑧((rank‘𝑧) ∈ (rank‘𝑥) ∧ 𝑦 = (rank‘𝑧)))
15 19.42v 1954 . . . . . . . . . 10 (∃𝑧(𝑦 ∈ (rank‘𝑥) ∧ 𝑦 = (rank‘𝑧)) ↔ (𝑦 ∈ (rank‘𝑥) ∧ ∃𝑧 𝑦 = (rank‘𝑧)))
16 eleq1 2877 . . . . . . . . . . . 12 (𝑦 = (rank‘𝑧) → (𝑦 ∈ (rank‘𝑥) ↔ (rank‘𝑧) ∈ (rank‘𝑥)))
1716pm5.32ri 579 . . . . . . . . . . 11 ((𝑦 ∈ (rank‘𝑥) ∧ 𝑦 = (rank‘𝑧)) ↔ ((rank‘𝑧) ∈ (rank‘𝑥) ∧ 𝑦 = (rank‘𝑧)))
1817exbii 1849 . . . . . . . . . 10 (∃𝑧(𝑦 ∈ (rank‘𝑥) ∧ 𝑦 = (rank‘𝑧)) ↔ ∃𝑧((rank‘𝑧) ∈ (rank‘𝑥) ∧ 𝑦 = (rank‘𝑧)))
19 simpl 486 . . . . . . . . . . 11 ((𝑦 ∈ (rank‘𝑥) ∧ ∃𝑧 𝑦 = (rank‘𝑧)) → 𝑦 ∈ (rank‘𝑥))
20 rankon 9211 . . . . . . . . . . . . . . . . 17 (rank‘𝑥) ∈ On
2120oneli 6267 . . . . . . . . . . . . . . . 16 (𝑦 ∈ (rank‘𝑥) → 𝑦 ∈ On)
22 r1fnon 9183 . . . . . . . . . . . . . . . . 17 𝑅1 Fn On
23 fndm 6426 . . . . . . . . . . . . . . . . 17 (𝑅1 Fn On → dom 𝑅1 = On)
2422, 23ax-mp 5 . . . . . . . . . . . . . . . 16 dom 𝑅1 = On
2521, 24eleqtrrdi 2901 . . . . . . . . . . . . . . 15 (𝑦 ∈ (rank‘𝑥) → 𝑦 ∈ dom 𝑅1)
26 rankr1id 9278 . . . . . . . . . . . . . . 15 (𝑦 ∈ dom 𝑅1 ↔ (rank‘(𝑅1𝑦)) = 𝑦)
2725, 26sylib 221 . . . . . . . . . . . . . 14 (𝑦 ∈ (rank‘𝑥) → (rank‘(𝑅1𝑦)) = 𝑦)
2827eqcomd 2804 . . . . . . . . . . . . 13 (𝑦 ∈ (rank‘𝑥) → 𝑦 = (rank‘(𝑅1𝑦)))
29 fvex 6659 . . . . . . . . . . . . . 14 (𝑅1𝑦) ∈ V
30 fveq2 6646 . . . . . . . . . . . . . . 15 (𝑧 = (𝑅1𝑦) → (rank‘𝑧) = (rank‘(𝑅1𝑦)))
3130eqeq2d 2809 . . . . . . . . . . . . . 14 (𝑧 = (𝑅1𝑦) → (𝑦 = (rank‘𝑧) ↔ 𝑦 = (rank‘(𝑅1𝑦))))
3229, 31spcev 3555 . . . . . . . . . . . . 13 (𝑦 = (rank‘(𝑅1𝑦)) → ∃𝑧 𝑦 = (rank‘𝑧))
3328, 32syl 17 . . . . . . . . . . . 12 (𝑦 ∈ (rank‘𝑥) → ∃𝑧 𝑦 = (rank‘𝑧))
3433ancli 552 . . . . . . . . . . 11 (𝑦 ∈ (rank‘𝑥) → (𝑦 ∈ (rank‘𝑥) ∧ ∃𝑧 𝑦 = (rank‘𝑧)))
3519, 34impbii 212 . . . . . . . . . 10 ((𝑦 ∈ (rank‘𝑥) ∧ ∃𝑧 𝑦 = (rank‘𝑧)) ↔ 𝑦 ∈ (rank‘𝑥))
3615, 18, 353bitr3i 304 . . . . . . . . 9 (∃𝑧((rank‘𝑧) ∈ (rank‘𝑥) ∧ 𝑦 = (rank‘𝑧)) ↔ 𝑦 ∈ (rank‘𝑥))
3714, 36sylib 221 . . . . . . . 8 (∃𝑧(𝑧𝑥𝑦 = (rank‘𝑧)) → 𝑦 ∈ (rank‘𝑥))
3811, 37sylbi 220 . . . . . . 7 (∃𝑧𝑥 𝑦 = (rank‘𝑧) → 𝑦 ∈ (rank‘𝑥))
3938abssi 3997 . . . . . 6 {𝑦 ∣ ∃𝑧𝑥 𝑦 = (rank‘𝑧)} ⊆ (rank‘𝑥)
4039unissi 4810 . . . . 5 {𝑦 ∣ ∃𝑧𝑥 𝑦 = (rank‘𝑧)} ⊆ (rank‘𝑥)
4110, 40eqsstri 3949 . . . 4 (rank‘ 𝑥) ⊆ (rank‘𝑥)
42 pwuni 4838 . . . . . . . 8 𝑥 ⊆ 𝒫 𝑥
43 vuniex 7448 . . . . . . . . . 10 𝑥 ∈ V
4443pwex 5247 . . . . . . . . 9 𝒫 𝑥 ∈ V
4544rankss 9265 . . . . . . . 8 (𝑥 ⊆ 𝒫 𝑥 → (rank‘𝑥) ⊆ (rank‘𝒫 𝑥))
4642, 45ax-mp 5 . . . . . . 7 (rank‘𝑥) ⊆ (rank‘𝒫 𝑥)
4743rankpw 9259 . . . . . . 7 (rank‘𝒫 𝑥) = suc (rank‘ 𝑥)
4846, 47sseqtri 3951 . . . . . 6 (rank‘𝑥) ⊆ suc (rank‘ 𝑥)
4948unissi 4810 . . . . 5 (rank‘𝑥) ⊆ suc (rank‘ 𝑥)
50 rankon 9211 . . . . . 6 (rank‘ 𝑥) ∈ On
5150onunisuci 6273 . . . . 5 suc (rank‘ 𝑥) = (rank‘ 𝑥)
5249, 51sseqtri 3951 . . . 4 (rank‘𝑥) ⊆ (rank‘ 𝑥)
5341, 52eqssi 3931 . . 3 (rank‘ 𝑥) = (rank‘𝑥)
545, 53vtoclg 3515 . 2 (𝐴 ∈ V → (rank‘ 𝐴) = (rank‘𝐴))
55 uniexb 7469 . . . . 5 (𝐴 ∈ V ↔ 𝐴 ∈ V)
56 fvprc 6639 . . . . 5 𝐴 ∈ V → (rank‘ 𝐴) = ∅)
5755, 56sylnbi 333 . . . 4 𝐴 ∈ V → (rank‘ 𝐴) = ∅)
58 uni0 4829 . . . 4 ∅ = ∅
5957, 58eqtr4di 2851 . . 3 𝐴 ∈ V → (rank‘ 𝐴) = ∅)
60 fvprc 6639 . . . 4 𝐴 ∈ V → (rank‘𝐴) = ∅)
6160unieqd 4815 . . 3 𝐴 ∈ V → (rank‘𝐴) = ∅)
6259, 61eqtr4d 2836 . 2 𝐴 ∈ V → (rank‘ 𝐴) = (rank‘𝐴))
6354, 62pm2.61i 185 1 (rank‘ 𝐴) = (rank‘𝐴)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   ∧ wa 399   = wceq 1538  ∃wex 1781   ∈ wcel 2111  {cab 2776  ∃wrex 3107  Vcvv 3441   ⊆ wss 3881  ∅c0 4243  𝒫 cpw 4497  ∪ cuni 4801  ∪ ciun 4882  dom cdm 5520  Oncon0 6160  suc csuc 6162   Fn wfn 6320  ‘cfv 6325  𝑅1cr1 9178  rankcrnk 9179 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5155  ax-sep 5168  ax-nul 5175  ax-pow 5232  ax-pr 5296  ax-un 7444  ax-reg 9043  ax-inf2 9091 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4802  df-int 4840  df-iun 4884  df-br 5032  df-opab 5094  df-mpt 5112  df-tr 5138  df-id 5426  df-eprel 5431  df-po 5439  df-so 5440  df-fr 5479  df-we 5481  df-xp 5526  df-rel 5527  df-cnv 5528  df-co 5529  df-dm 5530  df-rn 5531  df-res 5532  df-ima 5533  df-pred 6117  df-ord 6163  df-on 6164  df-lim 6165  df-suc 6166  df-iota 6284  df-fun 6327  df-fn 6328  df-f 6329  df-f1 6330  df-fo 6331  df-f1o 6332  df-fv 6333  df-om 7564  df-wrecs 7933  df-recs 7994  df-rdg 8032  df-r1 9180  df-rank 9181 This theorem is referenced by:  rankuniss  9282  rankbnd2  9285  rankxplim2  9296  rankxplim3  9297  rankxpsuc  9298  r1limwun  10150  hfuni  33773
 Copyright terms: Public domain W3C validator