MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rankuni Structured version   Visualization version   GIF version

Theorem rankuni 9860
Description: The rank of a union. Part of Exercise 4 of [Kunen] p. 107. (Contributed by NM, 15-Sep-2006.) (Revised by Mario Carneiro, 17-Nov-2014.)
Assertion
Ref Expression
rankuni (rankβ€˜βˆͺ 𝐴) = βˆͺ (rankβ€˜π΄)

Proof of Theorem rankuni
Dummy variables π‘₯ 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 unieq 4918 . . . . 5 (π‘₯ = 𝐴 β†’ βˆͺ π‘₯ = βˆͺ 𝐴)
21fveq2d 6894 . . . 4 (π‘₯ = 𝐴 β†’ (rankβ€˜βˆͺ π‘₯) = (rankβ€˜βˆͺ 𝐴))
3 fveq2 6890 . . . . 5 (π‘₯ = 𝐴 β†’ (rankβ€˜π‘₯) = (rankβ€˜π΄))
43unieqd 4921 . . . 4 (π‘₯ = 𝐴 β†’ βˆͺ (rankβ€˜π‘₯) = βˆͺ (rankβ€˜π΄))
52, 4eqeq12d 2746 . . 3 (π‘₯ = 𝐴 β†’ ((rankβ€˜βˆͺ π‘₯) = βˆͺ (rankβ€˜π‘₯) ↔ (rankβ€˜βˆͺ 𝐴) = βˆͺ (rankβ€˜π΄)))
6 vex 3476 . . . . . . 7 π‘₯ ∈ V
76rankuni2 9852 . . . . . 6 (rankβ€˜βˆͺ π‘₯) = βˆͺ 𝑧 ∈ π‘₯ (rankβ€˜π‘§)
8 fvex 6903 . . . . . . 7 (rankβ€˜π‘§) ∈ V
98dfiun2 5035 . . . . . 6 βˆͺ 𝑧 ∈ π‘₯ (rankβ€˜π‘§) = βˆͺ {𝑦 ∣ βˆƒπ‘§ ∈ π‘₯ 𝑦 = (rankβ€˜π‘§)}
107, 9eqtri 2758 . . . . 5 (rankβ€˜βˆͺ π‘₯) = βˆͺ {𝑦 ∣ βˆƒπ‘§ ∈ π‘₯ 𝑦 = (rankβ€˜π‘§)}
11 df-rex 3069 . . . . . . . 8 (βˆƒπ‘§ ∈ π‘₯ 𝑦 = (rankβ€˜π‘§) ↔ βˆƒπ‘§(𝑧 ∈ π‘₯ ∧ 𝑦 = (rankβ€˜π‘§)))
126rankel 9836 . . . . . . . . . . 11 (𝑧 ∈ π‘₯ β†’ (rankβ€˜π‘§) ∈ (rankβ€˜π‘₯))
1312anim1i 613 . . . . . . . . . 10 ((𝑧 ∈ π‘₯ ∧ 𝑦 = (rankβ€˜π‘§)) β†’ ((rankβ€˜π‘§) ∈ (rankβ€˜π‘₯) ∧ 𝑦 = (rankβ€˜π‘§)))
1413eximi 1835 . . . . . . . . 9 (βˆƒπ‘§(𝑧 ∈ π‘₯ ∧ 𝑦 = (rankβ€˜π‘§)) β†’ βˆƒπ‘§((rankβ€˜π‘§) ∈ (rankβ€˜π‘₯) ∧ 𝑦 = (rankβ€˜π‘§)))
15 19.42v 1955 . . . . . . . . . 10 (βˆƒπ‘§(𝑦 ∈ (rankβ€˜π‘₯) ∧ 𝑦 = (rankβ€˜π‘§)) ↔ (𝑦 ∈ (rankβ€˜π‘₯) ∧ βˆƒπ‘§ 𝑦 = (rankβ€˜π‘§)))
16 eleq1 2819 . . . . . . . . . . . 12 (𝑦 = (rankβ€˜π‘§) β†’ (𝑦 ∈ (rankβ€˜π‘₯) ↔ (rankβ€˜π‘§) ∈ (rankβ€˜π‘₯)))
1716pm5.32ri 574 . . . . . . . . . . 11 ((𝑦 ∈ (rankβ€˜π‘₯) ∧ 𝑦 = (rankβ€˜π‘§)) ↔ ((rankβ€˜π‘§) ∈ (rankβ€˜π‘₯) ∧ 𝑦 = (rankβ€˜π‘§)))
1817exbii 1848 . . . . . . . . . 10 (βˆƒπ‘§(𝑦 ∈ (rankβ€˜π‘₯) ∧ 𝑦 = (rankβ€˜π‘§)) ↔ βˆƒπ‘§((rankβ€˜π‘§) ∈ (rankβ€˜π‘₯) ∧ 𝑦 = (rankβ€˜π‘§)))
19 simpl 481 . . . . . . . . . . 11 ((𝑦 ∈ (rankβ€˜π‘₯) ∧ βˆƒπ‘§ 𝑦 = (rankβ€˜π‘§)) β†’ 𝑦 ∈ (rankβ€˜π‘₯))
20 rankon 9792 . . . . . . . . . . . . . . . . 17 (rankβ€˜π‘₯) ∈ On
2120oneli 6477 . . . . . . . . . . . . . . . 16 (𝑦 ∈ (rankβ€˜π‘₯) β†’ 𝑦 ∈ On)
22 r1fnon 9764 . . . . . . . . . . . . . . . . 17 𝑅1 Fn On
23 fndm 6651 . . . . . . . . . . . . . . . . 17 (𝑅1 Fn On β†’ dom 𝑅1 = On)
2422, 23ax-mp 5 . . . . . . . . . . . . . . . 16 dom 𝑅1 = On
2521, 24eleqtrrdi 2842 . . . . . . . . . . . . . . 15 (𝑦 ∈ (rankβ€˜π‘₯) β†’ 𝑦 ∈ dom 𝑅1)
26 rankr1id 9859 . . . . . . . . . . . . . . 15 (𝑦 ∈ dom 𝑅1 ↔ (rankβ€˜(𝑅1β€˜π‘¦)) = 𝑦)
2725, 26sylib 217 . . . . . . . . . . . . . 14 (𝑦 ∈ (rankβ€˜π‘₯) β†’ (rankβ€˜(𝑅1β€˜π‘¦)) = 𝑦)
2827eqcomd 2736 . . . . . . . . . . . . 13 (𝑦 ∈ (rankβ€˜π‘₯) β†’ 𝑦 = (rankβ€˜(𝑅1β€˜π‘¦)))
29 fvex 6903 . . . . . . . . . . . . . 14 (𝑅1β€˜π‘¦) ∈ V
30 fveq2 6890 . . . . . . . . . . . . . . 15 (𝑧 = (𝑅1β€˜π‘¦) β†’ (rankβ€˜π‘§) = (rankβ€˜(𝑅1β€˜π‘¦)))
3130eqeq2d 2741 . . . . . . . . . . . . . 14 (𝑧 = (𝑅1β€˜π‘¦) β†’ (𝑦 = (rankβ€˜π‘§) ↔ 𝑦 = (rankβ€˜(𝑅1β€˜π‘¦))))
3229, 31spcev 3595 . . . . . . . . . . . . 13 (𝑦 = (rankβ€˜(𝑅1β€˜π‘¦)) β†’ βˆƒπ‘§ 𝑦 = (rankβ€˜π‘§))
3328, 32syl 17 . . . . . . . . . . . 12 (𝑦 ∈ (rankβ€˜π‘₯) β†’ βˆƒπ‘§ 𝑦 = (rankβ€˜π‘§))
3433ancli 547 . . . . . . . . . . 11 (𝑦 ∈ (rankβ€˜π‘₯) β†’ (𝑦 ∈ (rankβ€˜π‘₯) ∧ βˆƒπ‘§ 𝑦 = (rankβ€˜π‘§)))
3519, 34impbii 208 . . . . . . . . . 10 ((𝑦 ∈ (rankβ€˜π‘₯) ∧ βˆƒπ‘§ 𝑦 = (rankβ€˜π‘§)) ↔ 𝑦 ∈ (rankβ€˜π‘₯))
3615, 18, 353bitr3i 300 . . . . . . . . 9 (βˆƒπ‘§((rankβ€˜π‘§) ∈ (rankβ€˜π‘₯) ∧ 𝑦 = (rankβ€˜π‘§)) ↔ 𝑦 ∈ (rankβ€˜π‘₯))
3714, 36sylib 217 . . . . . . . 8 (βˆƒπ‘§(𝑧 ∈ π‘₯ ∧ 𝑦 = (rankβ€˜π‘§)) β†’ 𝑦 ∈ (rankβ€˜π‘₯))
3811, 37sylbi 216 . . . . . . 7 (βˆƒπ‘§ ∈ π‘₯ 𝑦 = (rankβ€˜π‘§) β†’ 𝑦 ∈ (rankβ€˜π‘₯))
3938abssi 4066 . . . . . 6 {𝑦 ∣ βˆƒπ‘§ ∈ π‘₯ 𝑦 = (rankβ€˜π‘§)} βŠ† (rankβ€˜π‘₯)
4039unissi 4916 . . . . 5 βˆͺ {𝑦 ∣ βˆƒπ‘§ ∈ π‘₯ 𝑦 = (rankβ€˜π‘§)} βŠ† βˆͺ (rankβ€˜π‘₯)
4110, 40eqsstri 4015 . . . 4 (rankβ€˜βˆͺ π‘₯) βŠ† βˆͺ (rankβ€˜π‘₯)
42 pwuni 4948 . . . . . . . 8 π‘₯ βŠ† 𝒫 βˆͺ π‘₯
43 vuniex 7731 . . . . . . . . . 10 βˆͺ π‘₯ ∈ V
4443pwex 5377 . . . . . . . . 9 𝒫 βˆͺ π‘₯ ∈ V
4544rankss 9846 . . . . . . . 8 (π‘₯ βŠ† 𝒫 βˆͺ π‘₯ β†’ (rankβ€˜π‘₯) βŠ† (rankβ€˜π’« βˆͺ π‘₯))
4642, 45ax-mp 5 . . . . . . 7 (rankβ€˜π‘₯) βŠ† (rankβ€˜π’« βˆͺ π‘₯)
4743rankpw 9840 . . . . . . 7 (rankβ€˜π’« βˆͺ π‘₯) = suc (rankβ€˜βˆͺ π‘₯)
4846, 47sseqtri 4017 . . . . . 6 (rankβ€˜π‘₯) βŠ† suc (rankβ€˜βˆͺ π‘₯)
4948unissi 4916 . . . . 5 βˆͺ (rankβ€˜π‘₯) βŠ† βˆͺ suc (rankβ€˜βˆͺ π‘₯)
50 rankon 9792 . . . . . 6 (rankβ€˜βˆͺ π‘₯) ∈ On
5150onunisuci 6483 . . . . 5 βˆͺ suc (rankβ€˜βˆͺ π‘₯) = (rankβ€˜βˆͺ π‘₯)
5249, 51sseqtri 4017 . . . 4 βˆͺ (rankβ€˜π‘₯) βŠ† (rankβ€˜βˆͺ π‘₯)
5341, 52eqssi 3997 . . 3 (rankβ€˜βˆͺ π‘₯) = βˆͺ (rankβ€˜π‘₯)
545, 53vtoclg 3541 . 2 (𝐴 ∈ V β†’ (rankβ€˜βˆͺ 𝐴) = βˆͺ (rankβ€˜π΄))
55 uniexb 7753 . . . . 5 (𝐴 ∈ V ↔ βˆͺ 𝐴 ∈ V)
56 fvprc 6882 . . . . 5 (Β¬ βˆͺ 𝐴 ∈ V β†’ (rankβ€˜βˆͺ 𝐴) = βˆ…)
5755, 56sylnbi 329 . . . 4 (Β¬ 𝐴 ∈ V β†’ (rankβ€˜βˆͺ 𝐴) = βˆ…)
58 uni0 4938 . . . 4 βˆͺ βˆ… = βˆ…
5957, 58eqtr4di 2788 . . 3 (Β¬ 𝐴 ∈ V β†’ (rankβ€˜βˆͺ 𝐴) = βˆͺ βˆ…)
60 fvprc 6882 . . . 4 (Β¬ 𝐴 ∈ V β†’ (rankβ€˜π΄) = βˆ…)
6160unieqd 4921 . . 3 (Β¬ 𝐴 ∈ V β†’ βˆͺ (rankβ€˜π΄) = βˆͺ βˆ…)
6259, 61eqtr4d 2773 . 2 (Β¬ 𝐴 ∈ V β†’ (rankβ€˜βˆͺ 𝐴) = βˆͺ (rankβ€˜π΄))
6354, 62pm2.61i 182 1 (rankβ€˜βˆͺ 𝐴) = βˆͺ (rankβ€˜π΄)
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   ∧ wa 394   = wceq 1539  βˆƒwex 1779   ∈ wcel 2104  {cab 2707  βˆƒwrex 3068  Vcvv 3472   βŠ† wss 3947  βˆ…c0 4321  π’« cpw 4601  βˆͺ cuni 4907  βˆͺ ciun 4996  dom cdm 5675  Oncon0 6363  suc csuc 6365   Fn wfn 6537  β€˜cfv 6542  π‘…1cr1 9759  rankcrnk 9760
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7727  ax-reg 9589  ax-inf2 9638
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-ov 7414  df-om 7858  df-2nd 7978  df-frecs 8268  df-wrecs 8299  df-recs 8373  df-rdg 8412  df-r1 9761  df-rank 9762
This theorem is referenced by:  rankuniss  9863  rankbnd2  9866  rankxplim2  9877  rankxplim3  9878  rankxpsuc  9879  r1limwun  10733  hfuni  35460
  Copyright terms: Public domain W3C validator