MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rankuni Structured version   Visualization version   GIF version

Theorem rankuni 9479
Description: The rank of a union. Part of Exercise 4 of [Kunen] p. 107. (Contributed by NM, 15-Sep-2006.) (Revised by Mario Carneiro, 17-Nov-2014.)
Assertion
Ref Expression
rankuni (rank‘ 𝐴) = (rank‘𝐴)

Proof of Theorem rankuni
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 unieq 4830 . . . . 5 (𝑥 = 𝐴 𝑥 = 𝐴)
21fveq2d 6721 . . . 4 (𝑥 = 𝐴 → (rank‘ 𝑥) = (rank‘ 𝐴))
3 fveq2 6717 . . . . 5 (𝑥 = 𝐴 → (rank‘𝑥) = (rank‘𝐴))
43unieqd 4833 . . . 4 (𝑥 = 𝐴 (rank‘𝑥) = (rank‘𝐴))
52, 4eqeq12d 2753 . . 3 (𝑥 = 𝐴 → ((rank‘ 𝑥) = (rank‘𝑥) ↔ (rank‘ 𝐴) = (rank‘𝐴)))
6 vex 3412 . . . . . . 7 𝑥 ∈ V
76rankuni2 9471 . . . . . 6 (rank‘ 𝑥) = 𝑧𝑥 (rank‘𝑧)
8 fvex 6730 . . . . . . 7 (rank‘𝑧) ∈ V
98dfiun2 4942 . . . . . 6 𝑧𝑥 (rank‘𝑧) = {𝑦 ∣ ∃𝑧𝑥 𝑦 = (rank‘𝑧)}
107, 9eqtri 2765 . . . . 5 (rank‘ 𝑥) = {𝑦 ∣ ∃𝑧𝑥 𝑦 = (rank‘𝑧)}
11 df-rex 3067 . . . . . . . 8 (∃𝑧𝑥 𝑦 = (rank‘𝑧) ↔ ∃𝑧(𝑧𝑥𝑦 = (rank‘𝑧)))
126rankel 9455 . . . . . . . . . . 11 (𝑧𝑥 → (rank‘𝑧) ∈ (rank‘𝑥))
1312anim1i 618 . . . . . . . . . 10 ((𝑧𝑥𝑦 = (rank‘𝑧)) → ((rank‘𝑧) ∈ (rank‘𝑥) ∧ 𝑦 = (rank‘𝑧)))
1413eximi 1842 . . . . . . . . 9 (∃𝑧(𝑧𝑥𝑦 = (rank‘𝑧)) → ∃𝑧((rank‘𝑧) ∈ (rank‘𝑥) ∧ 𝑦 = (rank‘𝑧)))
15 19.42v 1962 . . . . . . . . . 10 (∃𝑧(𝑦 ∈ (rank‘𝑥) ∧ 𝑦 = (rank‘𝑧)) ↔ (𝑦 ∈ (rank‘𝑥) ∧ ∃𝑧 𝑦 = (rank‘𝑧)))
16 eleq1 2825 . . . . . . . . . . . 12 (𝑦 = (rank‘𝑧) → (𝑦 ∈ (rank‘𝑥) ↔ (rank‘𝑧) ∈ (rank‘𝑥)))
1716pm5.32ri 579 . . . . . . . . . . 11 ((𝑦 ∈ (rank‘𝑥) ∧ 𝑦 = (rank‘𝑧)) ↔ ((rank‘𝑧) ∈ (rank‘𝑥) ∧ 𝑦 = (rank‘𝑧)))
1817exbii 1855 . . . . . . . . . 10 (∃𝑧(𝑦 ∈ (rank‘𝑥) ∧ 𝑦 = (rank‘𝑧)) ↔ ∃𝑧((rank‘𝑧) ∈ (rank‘𝑥) ∧ 𝑦 = (rank‘𝑧)))
19 simpl 486 . . . . . . . . . . 11 ((𝑦 ∈ (rank‘𝑥) ∧ ∃𝑧 𝑦 = (rank‘𝑧)) → 𝑦 ∈ (rank‘𝑥))
20 rankon 9411 . . . . . . . . . . . . . . . . 17 (rank‘𝑥) ∈ On
2120oneli 6321 . . . . . . . . . . . . . . . 16 (𝑦 ∈ (rank‘𝑥) → 𝑦 ∈ On)
22 r1fnon 9383 . . . . . . . . . . . . . . . . 17 𝑅1 Fn On
23 fndm 6481 . . . . . . . . . . . . . . . . 17 (𝑅1 Fn On → dom 𝑅1 = On)
2422, 23ax-mp 5 . . . . . . . . . . . . . . . 16 dom 𝑅1 = On
2521, 24eleqtrrdi 2849 . . . . . . . . . . . . . . 15 (𝑦 ∈ (rank‘𝑥) → 𝑦 ∈ dom 𝑅1)
26 rankr1id 9478 . . . . . . . . . . . . . . 15 (𝑦 ∈ dom 𝑅1 ↔ (rank‘(𝑅1𝑦)) = 𝑦)
2725, 26sylib 221 . . . . . . . . . . . . . 14 (𝑦 ∈ (rank‘𝑥) → (rank‘(𝑅1𝑦)) = 𝑦)
2827eqcomd 2743 . . . . . . . . . . . . 13 (𝑦 ∈ (rank‘𝑥) → 𝑦 = (rank‘(𝑅1𝑦)))
29 fvex 6730 . . . . . . . . . . . . . 14 (𝑅1𝑦) ∈ V
30 fveq2 6717 . . . . . . . . . . . . . . 15 (𝑧 = (𝑅1𝑦) → (rank‘𝑧) = (rank‘(𝑅1𝑦)))
3130eqeq2d 2748 . . . . . . . . . . . . . 14 (𝑧 = (𝑅1𝑦) → (𝑦 = (rank‘𝑧) ↔ 𝑦 = (rank‘(𝑅1𝑦))))
3229, 31spcev 3521 . . . . . . . . . . . . 13 (𝑦 = (rank‘(𝑅1𝑦)) → ∃𝑧 𝑦 = (rank‘𝑧))
3328, 32syl 17 . . . . . . . . . . . 12 (𝑦 ∈ (rank‘𝑥) → ∃𝑧 𝑦 = (rank‘𝑧))
3433ancli 552 . . . . . . . . . . 11 (𝑦 ∈ (rank‘𝑥) → (𝑦 ∈ (rank‘𝑥) ∧ ∃𝑧 𝑦 = (rank‘𝑧)))
3519, 34impbii 212 . . . . . . . . . 10 ((𝑦 ∈ (rank‘𝑥) ∧ ∃𝑧 𝑦 = (rank‘𝑧)) ↔ 𝑦 ∈ (rank‘𝑥))
3615, 18, 353bitr3i 304 . . . . . . . . 9 (∃𝑧((rank‘𝑧) ∈ (rank‘𝑥) ∧ 𝑦 = (rank‘𝑧)) ↔ 𝑦 ∈ (rank‘𝑥))
3714, 36sylib 221 . . . . . . . 8 (∃𝑧(𝑧𝑥𝑦 = (rank‘𝑧)) → 𝑦 ∈ (rank‘𝑥))
3811, 37sylbi 220 . . . . . . 7 (∃𝑧𝑥 𝑦 = (rank‘𝑧) → 𝑦 ∈ (rank‘𝑥))
3938abssi 3983 . . . . . 6 {𝑦 ∣ ∃𝑧𝑥 𝑦 = (rank‘𝑧)} ⊆ (rank‘𝑥)
4039unissi 4828 . . . . 5 {𝑦 ∣ ∃𝑧𝑥 𝑦 = (rank‘𝑧)} ⊆ (rank‘𝑥)
4110, 40eqsstri 3935 . . . 4 (rank‘ 𝑥) ⊆ (rank‘𝑥)
42 pwuni 4858 . . . . . . . 8 𝑥 ⊆ 𝒫 𝑥
43 vuniex 7527 . . . . . . . . . 10 𝑥 ∈ V
4443pwex 5273 . . . . . . . . 9 𝒫 𝑥 ∈ V
4544rankss 9465 . . . . . . . 8 (𝑥 ⊆ 𝒫 𝑥 → (rank‘𝑥) ⊆ (rank‘𝒫 𝑥))
4642, 45ax-mp 5 . . . . . . 7 (rank‘𝑥) ⊆ (rank‘𝒫 𝑥)
4743rankpw 9459 . . . . . . 7 (rank‘𝒫 𝑥) = suc (rank‘ 𝑥)
4846, 47sseqtri 3937 . . . . . 6 (rank‘𝑥) ⊆ suc (rank‘ 𝑥)
4948unissi 4828 . . . . 5 (rank‘𝑥) ⊆ suc (rank‘ 𝑥)
50 rankon 9411 . . . . . 6 (rank‘ 𝑥) ∈ On
5150onunisuci 6327 . . . . 5 suc (rank‘ 𝑥) = (rank‘ 𝑥)
5249, 51sseqtri 3937 . . . 4 (rank‘𝑥) ⊆ (rank‘ 𝑥)
5341, 52eqssi 3917 . . 3 (rank‘ 𝑥) = (rank‘𝑥)
545, 53vtoclg 3481 . 2 (𝐴 ∈ V → (rank‘ 𝐴) = (rank‘𝐴))
55 uniexb 7549 . . . . 5 (𝐴 ∈ V ↔ 𝐴 ∈ V)
56 fvprc 6709 . . . . 5 𝐴 ∈ V → (rank‘ 𝐴) = ∅)
5755, 56sylnbi 333 . . . 4 𝐴 ∈ V → (rank‘ 𝐴) = ∅)
58 uni0 4849 . . . 4 ∅ = ∅
5957, 58eqtr4di 2796 . . 3 𝐴 ∈ V → (rank‘ 𝐴) = ∅)
60 fvprc 6709 . . . 4 𝐴 ∈ V → (rank‘𝐴) = ∅)
6160unieqd 4833 . . 3 𝐴 ∈ V → (rank‘𝐴) = ∅)
6259, 61eqtr4d 2780 . 2 𝐴 ∈ V → (rank‘ 𝐴) = (rank‘𝐴))
6354, 62pm2.61i 185 1 (rank‘ 𝐴) = (rank‘𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 399   = wceq 1543  wex 1787  wcel 2110  {cab 2714  wrex 3062  Vcvv 3408  wss 3866  c0 4237  𝒫 cpw 4513   cuni 4819   ciun 4904  dom cdm 5551  Oncon0 6213  suc csuc 6215   Fn wfn 6375  cfv 6380  𝑅1cr1 9378  rankcrnk 9379
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-reg 9208  ax-inf2 9256
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-int 4860  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-om 7645  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-r1 9380  df-rank 9381
This theorem is referenced by:  rankuniss  9482  rankbnd2  9485  rankxplim2  9496  rankxplim3  9497  rankxpsuc  9498  r1limwun  10350  hfuni  34223
  Copyright terms: Public domain W3C validator