![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ndmaovcl | Structured version Visualization version GIF version |
Description: The "closure" of an operation outside its domain, when the operation's value is a set in contrast to ndmovcl 7635 where it is required that the domain contains the empty set (∅ ∈ 𝑆). (Contributed by Alexander van der Vekens, 26-May-2017.) |
Ref | Expression |
---|---|
ndmaov.1 | ⊢ dom 𝐹 = (𝑆 × 𝑆) |
ndmaovcl.2 | ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → ((𝐴𝐹𝐵)) ∈ 𝑆) |
ndmaovcl.3 | ⊢ ((𝐴𝐹𝐵)) ∈ V |
Ref | Expression |
---|---|
ndmaovcl | ⊢ ((𝐴𝐹𝐵)) ∈ 𝑆 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ndmaovcl.2 | . 2 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → ((𝐴𝐹𝐵)) ∈ 𝑆) | |
2 | opelxp 5736 | . . 3 ⊢ (〈𝐴, 𝐵〉 ∈ (𝑆 × 𝑆) ↔ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆)) | |
3 | ndmaov.1 | . . . . . 6 ⊢ dom 𝐹 = (𝑆 × 𝑆) | |
4 | 3 | eqcomi 2749 | . . . . 5 ⊢ (𝑆 × 𝑆) = dom 𝐹 |
5 | 4 | eleq2i 2836 | . . . 4 ⊢ (〈𝐴, 𝐵〉 ∈ (𝑆 × 𝑆) ↔ 〈𝐴, 𝐵〉 ∈ dom 𝐹) |
6 | ndmaovcl.3 | . . . . 5 ⊢ ((𝐴𝐹𝐵)) ∈ V | |
7 | ndmaov 47098 | . . . . 5 ⊢ (¬ 〈𝐴, 𝐵〉 ∈ dom 𝐹 → ((𝐴𝐹𝐵)) = V) | |
8 | eleq1 2832 | . . . . . . 7 ⊢ ( ((𝐴𝐹𝐵)) = V → ( ((𝐴𝐹𝐵)) ∈ V ↔ V ∈ V)) | |
9 | 8 | biimpd 229 | . . . . . 6 ⊢ ( ((𝐴𝐹𝐵)) = V → ( ((𝐴𝐹𝐵)) ∈ V → V ∈ V)) |
10 | vprc 5333 | . . . . . . 7 ⊢ ¬ V ∈ V | |
11 | 10 | pm2.21i 119 | . . . . . 6 ⊢ (V ∈ V → ((𝐴𝐹𝐵)) ∈ 𝑆) |
12 | 9, 11 | syl6com 37 | . . . . 5 ⊢ ( ((𝐴𝐹𝐵)) ∈ V → ( ((𝐴𝐹𝐵)) = V → ((𝐴𝐹𝐵)) ∈ 𝑆)) |
13 | 6, 7, 12 | mpsyl 68 | . . . 4 ⊢ (¬ 〈𝐴, 𝐵〉 ∈ dom 𝐹 → ((𝐴𝐹𝐵)) ∈ 𝑆) |
14 | 5, 13 | sylnbi 330 | . . 3 ⊢ (¬ 〈𝐴, 𝐵〉 ∈ (𝑆 × 𝑆) → ((𝐴𝐹𝐵)) ∈ 𝑆) |
15 | 2, 14 | sylnbir 331 | . 2 ⊢ (¬ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → ((𝐴𝐹𝐵)) ∈ 𝑆) |
16 | 1, 15 | pm2.61i 182 | 1 ⊢ ((𝐴𝐹𝐵)) ∈ 𝑆 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 Vcvv 3488 〈cop 4654 × cxp 5698 dom cdm 5700 ((caov 47033 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-br 5167 df-opab 5229 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-res 5712 df-iota 6525 df-fun 6575 df-fv 6581 df-aiota 47000 df-dfat 47034 df-afv 47035 df-aov 47036 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |