| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ndmaovcl | Structured version Visualization version GIF version | ||
| Description: The "closure" of an operation outside its domain, when the operation's value is a set in contrast to ndmovcl 7531 where it is required that the domain contains the empty set (∅ ∈ 𝑆). (Contributed by Alexander van der Vekens, 26-May-2017.) |
| Ref | Expression |
|---|---|
| ndmaov.1 | ⊢ dom 𝐹 = (𝑆 × 𝑆) |
| ndmaovcl.2 | ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → ((𝐴𝐹𝐵)) ∈ 𝑆) |
| ndmaovcl.3 | ⊢ ((𝐴𝐹𝐵)) ∈ V |
| Ref | Expression |
|---|---|
| ndmaovcl | ⊢ ((𝐴𝐹𝐵)) ∈ 𝑆 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ndmaovcl.2 | . 2 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → ((𝐴𝐹𝐵)) ∈ 𝑆) | |
| 2 | opelxp 5650 | . . 3 ⊢ (〈𝐴, 𝐵〉 ∈ (𝑆 × 𝑆) ↔ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆)) | |
| 3 | ndmaov.1 | . . . . . 6 ⊢ dom 𝐹 = (𝑆 × 𝑆) | |
| 4 | 3 | eqcomi 2740 | . . . . 5 ⊢ (𝑆 × 𝑆) = dom 𝐹 |
| 5 | 4 | eleq2i 2823 | . . . 4 ⊢ (〈𝐴, 𝐵〉 ∈ (𝑆 × 𝑆) ↔ 〈𝐴, 𝐵〉 ∈ dom 𝐹) |
| 6 | ndmaovcl.3 | . . . . 5 ⊢ ((𝐴𝐹𝐵)) ∈ V | |
| 7 | ndmaov 47222 | . . . . 5 ⊢ (¬ 〈𝐴, 𝐵〉 ∈ dom 𝐹 → ((𝐴𝐹𝐵)) = V) | |
| 8 | eleq1 2819 | . . . . . . 7 ⊢ ( ((𝐴𝐹𝐵)) = V → ( ((𝐴𝐹𝐵)) ∈ V ↔ V ∈ V)) | |
| 9 | 8 | biimpd 229 | . . . . . 6 ⊢ ( ((𝐴𝐹𝐵)) = V → ( ((𝐴𝐹𝐵)) ∈ V → V ∈ V)) |
| 10 | vprc 5251 | . . . . . . 7 ⊢ ¬ V ∈ V | |
| 11 | 10 | pm2.21i 119 | . . . . . 6 ⊢ (V ∈ V → ((𝐴𝐹𝐵)) ∈ 𝑆) |
| 12 | 9, 11 | syl6com 37 | . . . . 5 ⊢ ( ((𝐴𝐹𝐵)) ∈ V → ( ((𝐴𝐹𝐵)) = V → ((𝐴𝐹𝐵)) ∈ 𝑆)) |
| 13 | 6, 7, 12 | mpsyl 68 | . . . 4 ⊢ (¬ 〈𝐴, 𝐵〉 ∈ dom 𝐹 → ((𝐴𝐹𝐵)) ∈ 𝑆) |
| 14 | 5, 13 | sylnbi 330 | . . 3 ⊢ (¬ 〈𝐴, 𝐵〉 ∈ (𝑆 × 𝑆) → ((𝐴𝐹𝐵)) ∈ 𝑆) |
| 15 | 2, 14 | sylnbir 331 | . 2 ⊢ (¬ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → ((𝐴𝐹𝐵)) ∈ 𝑆) |
| 16 | 1, 15 | pm2.61i 182 | 1 ⊢ ((𝐴𝐹𝐵)) ∈ 𝑆 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 Vcvv 3436 〈cop 4579 × cxp 5612 dom cdm 5614 ((caov 47157 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-int 4896 df-br 5090 df-opab 5152 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-res 5626 df-iota 6437 df-fun 6483 df-fv 6489 df-aiota 47124 df-dfat 47158 df-afv 47159 df-aov 47160 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |