Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ndmaovcl Structured version   Visualization version   GIF version

Theorem ndmaovcl 43752
Description: The "closure" of an operation outside its domain, when the operation's value is a set in contrast to ndmovcl 7317 where it is required that the domain contains the empty set (∅ ∈ 𝑆). (Contributed by Alexander van der Vekens, 26-May-2017.)
Hypotheses
Ref Expression
ndmaov.1 dom 𝐹 = (𝑆 × 𝑆)
ndmaovcl.2 ((𝐴𝑆𝐵𝑆) → ((𝐴𝐹𝐵)) ∈ 𝑆)
ndmaovcl.3 ((𝐴𝐹𝐵)) ∈ V
Assertion
Ref Expression
ndmaovcl ((𝐴𝐹𝐵)) ∈ 𝑆

Proof of Theorem ndmaovcl
StepHypRef Expression
1 ndmaovcl.2 . 2 ((𝐴𝑆𝐵𝑆) → ((𝐴𝐹𝐵)) ∈ 𝑆)
2 opelxp 5559 . . 3 (⟨𝐴, 𝐵⟩ ∈ (𝑆 × 𝑆) ↔ (𝐴𝑆𝐵𝑆))
3 ndmaov.1 . . . . . 6 dom 𝐹 = (𝑆 × 𝑆)
43eqcomi 2810 . . . . 5 (𝑆 × 𝑆) = dom 𝐹
54eleq2i 2884 . . . 4 (⟨𝐴, 𝐵⟩ ∈ (𝑆 × 𝑆) ↔ ⟨𝐴, 𝐵⟩ ∈ dom 𝐹)
6 ndmaovcl.3 . . . . 5 ((𝐴𝐹𝐵)) ∈ V
7 ndmaov 43732 . . . . 5 (¬ ⟨𝐴, 𝐵⟩ ∈ dom 𝐹 → ((𝐴𝐹𝐵)) = V)
8 eleq1 2880 . . . . . . 7 ( ((𝐴𝐹𝐵)) = V → ( ((𝐴𝐹𝐵)) ∈ V ↔ V ∈ V))
98biimpd 232 . . . . . 6 ( ((𝐴𝐹𝐵)) = V → ( ((𝐴𝐹𝐵)) ∈ V → V ∈ V))
10 vprc 5186 . . . . . . 7 ¬ V ∈ V
1110pm2.21i 119 . . . . . 6 (V ∈ V → ((𝐴𝐹𝐵)) ∈ 𝑆)
129, 11syl6com 37 . . . . 5 ( ((𝐴𝐹𝐵)) ∈ V → ( ((𝐴𝐹𝐵)) = V → ((𝐴𝐹𝐵)) ∈ 𝑆))
136, 7, 12mpsyl 68 . . . 4 (¬ ⟨𝐴, 𝐵⟩ ∈ dom 𝐹 → ((𝐴𝐹𝐵)) ∈ 𝑆)
145, 13sylnbi 333 . . 3 (¬ ⟨𝐴, 𝐵⟩ ∈ (𝑆 × 𝑆) → ((𝐴𝐹𝐵)) ∈ 𝑆)
152, 14sylnbir 334 . 2 (¬ (𝐴𝑆𝐵𝑆) → ((𝐴𝐹𝐵)) ∈ 𝑆)
161, 15pm2.61i 185 1 ((𝐴𝐹𝐵)) ∈ 𝑆
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399   = wceq 1538  wcel 2112  Vcvv 3444  cop 4534   × cxp 5521  dom cdm 5523   ((caov 43667
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-ral 3114  df-rex 3115  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-nul 4247  df-if 4429  df-sn 4529  df-pr 4531  df-op 4535  df-uni 4804  df-int 4842  df-br 5034  df-opab 5096  df-id 5428  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-res 5535  df-iota 6287  df-fun 6330  df-fv 6336  df-aiota 43635  df-dfat 43668  df-afv 43669  df-aov 43670
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator