Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ndmaovcl Structured version   Visualization version   GIF version

Theorem ndmaovcl 44695
Description: The "closure" of an operation outside its domain, when the operation's value is a set in contrast to ndmovcl 7457 where it is required that the domain contains the empty set (∅ ∈ 𝑆). (Contributed by Alexander van der Vekens, 26-May-2017.)
Hypotheses
Ref Expression
ndmaov.1 dom 𝐹 = (𝑆 × 𝑆)
ndmaovcl.2 ((𝐴𝑆𝐵𝑆) → ((𝐴𝐹𝐵)) ∈ 𝑆)
ndmaovcl.3 ((𝐴𝐹𝐵)) ∈ V
Assertion
Ref Expression
ndmaovcl ((𝐴𝐹𝐵)) ∈ 𝑆

Proof of Theorem ndmaovcl
StepHypRef Expression
1 ndmaovcl.2 . 2 ((𝐴𝑆𝐵𝑆) → ((𝐴𝐹𝐵)) ∈ 𝑆)
2 opelxp 5625 . . 3 (⟨𝐴, 𝐵⟩ ∈ (𝑆 × 𝑆) ↔ (𝐴𝑆𝐵𝑆))
3 ndmaov.1 . . . . . 6 dom 𝐹 = (𝑆 × 𝑆)
43eqcomi 2747 . . . . 5 (𝑆 × 𝑆) = dom 𝐹
54eleq2i 2830 . . . 4 (⟨𝐴, 𝐵⟩ ∈ (𝑆 × 𝑆) ↔ ⟨𝐴, 𝐵⟩ ∈ dom 𝐹)
6 ndmaovcl.3 . . . . 5 ((𝐴𝐹𝐵)) ∈ V
7 ndmaov 44675 . . . . 5 (¬ ⟨𝐴, 𝐵⟩ ∈ dom 𝐹 → ((𝐴𝐹𝐵)) = V)
8 eleq1 2826 . . . . . . 7 ( ((𝐴𝐹𝐵)) = V → ( ((𝐴𝐹𝐵)) ∈ V ↔ V ∈ V))
98biimpd 228 . . . . . 6 ( ((𝐴𝐹𝐵)) = V → ( ((𝐴𝐹𝐵)) ∈ V → V ∈ V))
10 vprc 5239 . . . . . . 7 ¬ V ∈ V
1110pm2.21i 119 . . . . . 6 (V ∈ V → ((𝐴𝐹𝐵)) ∈ 𝑆)
129, 11syl6com 37 . . . . 5 ( ((𝐴𝐹𝐵)) ∈ V → ( ((𝐴𝐹𝐵)) = V → ((𝐴𝐹𝐵)) ∈ 𝑆))
136, 7, 12mpsyl 68 . . . 4 (¬ ⟨𝐴, 𝐵⟩ ∈ dom 𝐹 → ((𝐴𝐹𝐵)) ∈ 𝑆)
145, 13sylnbi 330 . . 3 (¬ ⟨𝐴, 𝐵⟩ ∈ (𝑆 × 𝑆) → ((𝐴𝐹𝐵)) ∈ 𝑆)
152, 14sylnbir 331 . 2 (¬ (𝐴𝑆𝐵𝑆) → ((𝐴𝐹𝐵)) ∈ 𝑆)
161, 15pm2.61i 182 1 ((𝐴𝐹𝐵)) ∈ 𝑆
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396   = wceq 1539  wcel 2106  Vcvv 3432  cop 4567   × cxp 5587  dom cdm 5589   ((caov 44610
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-br 5075  df-opab 5137  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-res 5601  df-iota 6391  df-fun 6435  df-fv 6441  df-aiota 44577  df-dfat 44611  df-afv 44612  df-aov 44613
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator