MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ndmovcom Structured version   Visualization version   GIF version

Theorem ndmovcom 7539
Description: Any operation is commutative outside its domain. (Contributed by NM, 24-Aug-1995.)
Hypothesis
Ref Expression
ndmov.1 dom 𝐹 = (𝑆 × 𝑆)
Assertion
Ref Expression
ndmovcom (¬ (𝐴𝑆𝐵𝑆) → (𝐴𝐹𝐵) = (𝐵𝐹𝐴))

Proof of Theorem ndmovcom
StepHypRef Expression
1 ndmov.1 . . 3 dom 𝐹 = (𝑆 × 𝑆)
21ndmov 7536 . 2 (¬ (𝐴𝑆𝐵𝑆) → (𝐴𝐹𝐵) = ∅)
3 ancom 460 . . 3 ((𝐴𝑆𝐵𝑆) ↔ (𝐵𝑆𝐴𝑆))
41ndmov 7536 . . 3 (¬ (𝐵𝑆𝐴𝑆) → (𝐵𝐹𝐴) = ∅)
53, 4sylnbi 330 . 2 (¬ (𝐴𝑆𝐵𝑆) → (𝐵𝐹𝐴) = ∅)
62, 5eqtr4d 2769 1 (¬ (𝐴𝑆𝐵𝑆) → (𝐴𝐹𝐵) = (𝐵𝐹𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1541  wcel 2111  c0 4282   × cxp 5617  dom cdm 5619  (class class class)co 7352
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5236  ax-nul 5246  ax-pr 5372
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-ss 3914  df-nul 4283  df-if 4475  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-opab 5156  df-xp 5625  df-dm 5629  df-iota 6443  df-fv 6495  df-ov 7355
This theorem is referenced by:  addcompi  10791  mulcompi  10793  addcompq  10847  addcomnq  10848  mulcompq  10849  mulcomnq  10850  addcompr  10918  mulcompr  10920  addcomsr  10984  mulcomsr  10986  addcomgi  44553
  Copyright terms: Public domain W3C validator