| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ndmovcom | Structured version Visualization version GIF version | ||
| Description: Any operation is commutative outside its domain. (Contributed by NM, 24-Aug-1995.) |
| Ref | Expression |
|---|---|
| ndmov.1 | ⊢ dom 𝐹 = (𝑆 × 𝑆) |
| Ref | Expression |
|---|---|
| ndmovcom | ⊢ (¬ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → (𝐴𝐹𝐵) = (𝐵𝐹𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ndmov.1 | . . 3 ⊢ dom 𝐹 = (𝑆 × 𝑆) | |
| 2 | 1 | ndmov 7536 | . 2 ⊢ (¬ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → (𝐴𝐹𝐵) = ∅) |
| 3 | ancom 460 | . . 3 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ↔ (𝐵 ∈ 𝑆 ∧ 𝐴 ∈ 𝑆)) | |
| 4 | 1 | ndmov 7536 | . . 3 ⊢ (¬ (𝐵 ∈ 𝑆 ∧ 𝐴 ∈ 𝑆) → (𝐵𝐹𝐴) = ∅) |
| 5 | 3, 4 | sylnbi 330 | . 2 ⊢ (¬ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → (𝐵𝐹𝐴) = ∅) |
| 6 | 2, 5 | eqtr4d 2769 | 1 ⊢ (¬ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → (𝐴𝐹𝐵) = (𝐵𝐹𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∅c0 4282 × cxp 5617 dom cdm 5619 (class class class)co 7352 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5236 ax-nul 5246 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-xp 5625 df-dm 5629 df-iota 6443 df-fv 6495 df-ov 7355 |
| This theorem is referenced by: addcompi 10791 mulcompi 10793 addcompq 10847 addcomnq 10848 mulcompq 10849 mulcomnq 10850 addcompr 10918 mulcompr 10920 addcomsr 10984 mulcomsr 10986 addcomgi 44553 |
| Copyright terms: Public domain | W3C validator |