| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ndmovcom | Structured version Visualization version GIF version | ||
| Description: Any operation is commutative outside its domain. (Contributed by NM, 24-Aug-1995.) |
| Ref | Expression |
|---|---|
| ndmov.1 | ⊢ dom 𝐹 = (𝑆 × 𝑆) |
| Ref | Expression |
|---|---|
| ndmovcom | ⊢ (¬ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → (𝐴𝐹𝐵) = (𝐵𝐹𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ndmov.1 | . . 3 ⊢ dom 𝐹 = (𝑆 × 𝑆) | |
| 2 | 1 | ndmov 7525 | . 2 ⊢ (¬ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → (𝐴𝐹𝐵) = ∅) |
| 3 | ancom 460 | . . 3 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ↔ (𝐵 ∈ 𝑆 ∧ 𝐴 ∈ 𝑆)) | |
| 4 | 1 | ndmov 7525 | . . 3 ⊢ (¬ (𝐵 ∈ 𝑆 ∧ 𝐴 ∈ 𝑆) → (𝐵𝐹𝐴) = ∅) |
| 5 | 3, 4 | sylnbi 330 | . 2 ⊢ (¬ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → (𝐵𝐹𝐴) = ∅) |
| 6 | 2, 5 | eqtr4d 2768 | 1 ⊢ (¬ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → (𝐴𝐹𝐵) = (𝐵𝐹𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2110 ∅c0 4281 × cxp 5612 dom cdm 5614 (class class class)co 7341 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3394 df-v 3436 df-dif 3903 df-un 3905 df-ss 3917 df-nul 4282 df-if 4474 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-br 5090 df-opab 5152 df-xp 5620 df-dm 5624 df-iota 6433 df-fv 6485 df-ov 7344 |
| This theorem is referenced by: addcompi 10777 mulcompi 10779 addcompq 10833 addcomnq 10834 mulcompq 10835 mulcomnq 10836 addcompr 10904 mulcompr 10906 addcomsr 10970 mulcomsr 10972 addcomgi 44467 |
| Copyright terms: Public domain | W3C validator |