MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ndmovcom Structured version   Visualization version   GIF version

Theorem ndmovcom 7579
Description: Any operation is commutative outside its domain. (Contributed by NM, 24-Aug-1995.)
Hypothesis
Ref Expression
ndmov.1 dom 𝐹 = (𝑆 × 𝑆)
Assertion
Ref Expression
ndmovcom (¬ (𝐴𝑆𝐵𝑆) → (𝐴𝐹𝐵) = (𝐵𝐹𝐴))

Proof of Theorem ndmovcom
StepHypRef Expression
1 ndmov.1 . . 3 dom 𝐹 = (𝑆 × 𝑆)
21ndmov 7576 . 2 (¬ (𝐴𝑆𝐵𝑆) → (𝐴𝐹𝐵) = ∅)
3 ancom 460 . . 3 ((𝐴𝑆𝐵𝑆) ↔ (𝐵𝑆𝐴𝑆))
41ndmov 7576 . . 3 (¬ (𝐵𝑆𝐴𝑆) → (𝐵𝐹𝐴) = ∅)
53, 4sylnbi 330 . 2 (¬ (𝐴𝑆𝐵𝑆) → (𝐵𝐹𝐴) = ∅)
62, 5eqtr4d 2768 1 (¬ (𝐴𝑆𝐵𝑆) → (𝐴𝐹𝐵) = (𝐵𝐹𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  c0 4299   × cxp 5639  dom cdm 5641  (class class class)co 7390
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-xp 5647  df-dm 5651  df-iota 6467  df-fv 6522  df-ov 7393
This theorem is referenced by:  addcompi  10854  mulcompi  10856  addcompq  10910  addcomnq  10911  mulcompq  10912  mulcomnq  10913  addcompr  10981  mulcompr  10983  addcomsr  11047  mulcomsr  11049  addcomgi  44452
  Copyright terms: Public domain W3C validator