MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ndmovcom Structured version   Visualization version   GIF version

Theorem ndmovcom 7528
Description: Any operation is commutative outside its domain. (Contributed by NM, 24-Aug-1995.)
Hypothesis
Ref Expression
ndmov.1 dom 𝐹 = (𝑆 × 𝑆)
Assertion
Ref Expression
ndmovcom (¬ (𝐴𝑆𝐵𝑆) → (𝐴𝐹𝐵) = (𝐵𝐹𝐴))

Proof of Theorem ndmovcom
StepHypRef Expression
1 ndmov.1 . . 3 dom 𝐹 = (𝑆 × 𝑆)
21ndmov 7525 . 2 (¬ (𝐴𝑆𝐵𝑆) → (𝐴𝐹𝐵) = ∅)
3 ancom 460 . . 3 ((𝐴𝑆𝐵𝑆) ↔ (𝐵𝑆𝐴𝑆))
41ndmov 7525 . . 3 (¬ (𝐵𝑆𝐴𝑆) → (𝐵𝐹𝐴) = ∅)
53, 4sylnbi 330 . 2 (¬ (𝐴𝑆𝐵𝑆) → (𝐵𝐹𝐴) = ∅)
62, 5eqtr4d 2768 1 (¬ (𝐴𝑆𝐵𝑆) → (𝐴𝐹𝐵) = (𝐵𝐹𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1541  wcel 2110  c0 4281   × cxp 5612  dom cdm 5614  (class class class)co 7341
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-rex 3055  df-rab 3394  df-v 3436  df-dif 3903  df-un 3905  df-ss 3917  df-nul 4282  df-if 4474  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-br 5090  df-opab 5152  df-xp 5620  df-dm 5624  df-iota 6433  df-fv 6485  df-ov 7344
This theorem is referenced by:  addcompi  10777  mulcompi  10779  addcompq  10833  addcomnq  10834  mulcompq  10835  mulcomnq  10836  addcompr  10904  mulcompr  10906  addcomsr  10970  mulcomsr  10972  addcomgi  44467
  Copyright terms: Public domain W3C validator