MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ndmovcom Structured version   Visualization version   GIF version

Theorem ndmovcom 7597
Description: Any operation is commutative outside its domain. (Contributed by NM, 24-Aug-1995.)
Hypothesis
Ref Expression
ndmov.1 dom 𝐹 = (𝑆 × 𝑆)
Assertion
Ref Expression
ndmovcom (¬ (𝐴𝑆𝐵𝑆) → (𝐴𝐹𝐵) = (𝐵𝐹𝐴))

Proof of Theorem ndmovcom
StepHypRef Expression
1 ndmov.1 . . 3 dom 𝐹 = (𝑆 × 𝑆)
21ndmov 7594 . 2 (¬ (𝐴𝑆𝐵𝑆) → (𝐴𝐹𝐵) = ∅)
3 ancom 460 . . 3 ((𝐴𝑆𝐵𝑆) ↔ (𝐵𝑆𝐴𝑆))
41ndmov 7594 . . 3 (¬ (𝐵𝑆𝐴𝑆) → (𝐵𝐹𝐴) = ∅)
53, 4sylnbi 330 . 2 (¬ (𝐴𝑆𝐵𝑆) → (𝐵𝐹𝐴) = ∅)
62, 5eqtr4d 2774 1 (¬ (𝐴𝑆𝐵𝑆) → (𝐴𝐹𝐵) = (𝐵𝐹𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2105  c0 4322   × cxp 5674  dom cdm 5676  (class class class)co 7412
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-xp 5682  df-dm 5686  df-iota 6495  df-fv 6551  df-ov 7415
This theorem is referenced by:  addcompi  10892  mulcompi  10894  addcompq  10948  addcomnq  10949  mulcompq  10950  mulcomnq  10951  addcompr  11019  mulcompr  11021  addcomsr  11085  mulcomsr  11087  addcomgi  43518
  Copyright terms: Public domain W3C validator