Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-rest10b Structured version   Visualization version   GIF version

Theorem bj-rest10b 34379
Description: Alternate version of bj-rest10 34378. (Contributed by BJ, 27-Apr-2021.)
Assertion
Ref Expression
bj-rest10b (𝑋 ∈ (𝑉 ∖ {∅}) → (𝑋t ∅) = {∅})

Proof of Theorem bj-rest10b
StepHypRef Expression
1 eldif 3945 . . 3 (𝑋 ∈ (𝑉 ∖ {∅}) ↔ (𝑋𝑉 ∧ ¬ 𝑋 ∈ {∅}))
2 0ex 5210 . . . . . 6 ∅ ∈ V
32elsn2 4603 . . . . 5 (𝑋 ∈ {∅} ↔ 𝑋 = ∅)
4 neqne 3024 . . . . 5 𝑋 = ∅ → 𝑋 ≠ ∅)
53, 4sylnbi 332 . . . 4 𝑋 ∈ {∅} → 𝑋 ≠ ∅)
65anim2i 618 . . 3 ((𝑋𝑉 ∧ ¬ 𝑋 ∈ {∅}) → (𝑋𝑉𝑋 ≠ ∅))
71, 6sylbi 219 . 2 (𝑋 ∈ (𝑉 ∖ {∅}) → (𝑋𝑉𝑋 ≠ ∅))
8 bj-rest10 34378 . . 3 (𝑋𝑉 → (𝑋 ≠ ∅ → (𝑋t ∅) = {∅}))
98imp 409 . 2 ((𝑋𝑉𝑋 ≠ ∅) → (𝑋t ∅) = {∅})
107, 9syl 17 1 (𝑋 ∈ (𝑉 ∖ {∅}) → (𝑋t ∅) = {∅})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398   = wceq 1533  wcel 2110  wne 3016  cdif 3932  c0 4290  {csn 4566  (class class class)co 7155  t crest 16693
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5189  ax-sep 5202  ax-nul 5209  ax-pr 5329  ax-un 7460
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4838  df-iun 4920  df-br 5066  df-opab 5128  df-mpt 5146  df-id 5459  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-ov 7158  df-oprab 7159  df-mpo 7160  df-rest 16695
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator