Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-rest10b Structured version   Visualization version   GIF version

Theorem bj-rest10b 35187
Description: Alternate version of bj-rest10 35186. (Contributed by BJ, 27-Apr-2021.)
Assertion
Ref Expression
bj-rest10b (𝑋 ∈ (𝑉 ∖ {∅}) → (𝑋t ∅) = {∅})

Proof of Theorem bj-rest10b
StepHypRef Expression
1 eldif 3893 . . 3 (𝑋 ∈ (𝑉 ∖ {∅}) ↔ (𝑋𝑉 ∧ ¬ 𝑋 ∈ {∅}))
2 0ex 5226 . . . . . 6 ∅ ∈ V
32elsn2 4597 . . . . 5 (𝑋 ∈ {∅} ↔ 𝑋 = ∅)
4 neqne 2950 . . . . 5 𝑋 = ∅ → 𝑋 ≠ ∅)
53, 4sylnbi 329 . . . 4 𝑋 ∈ {∅} → 𝑋 ≠ ∅)
65anim2i 616 . . 3 ((𝑋𝑉 ∧ ¬ 𝑋 ∈ {∅}) → (𝑋𝑉𝑋 ≠ ∅))
71, 6sylbi 216 . 2 (𝑋 ∈ (𝑉 ∖ {∅}) → (𝑋𝑉𝑋 ≠ ∅))
8 bj-rest10 35186 . . 3 (𝑋𝑉 → (𝑋 ≠ ∅ → (𝑋t ∅) = {∅}))
98imp 406 . 2 ((𝑋𝑉𝑋 ≠ ∅) → (𝑋t ∅) = {∅})
107, 9syl 17 1 (𝑋 ∈ (𝑉 ∖ {∅}) → (𝑋t ∅) = {∅})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1539  wcel 2108  wne 2942  cdif 3880  c0 4253  {csn 4558  (class class class)co 7255  t crest 17048
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-rest 17050
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator