| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ranklim | Structured version Visualization version GIF version | ||
| Description: The rank of a set belongs to a limit ordinal iff the rank of its power set does. (Contributed by NM, 18-Sep-2006.) |
| Ref | Expression |
|---|---|
| ranklim | ⊢ (Lim 𝐵 → ((rank‘𝐴) ∈ 𝐵 ↔ (rank‘𝒫 𝐴) ∈ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | limsuc 7785 | . . . 4 ⊢ (Lim 𝐵 → ((rank‘𝐴) ∈ 𝐵 ↔ suc (rank‘𝐴) ∈ 𝐵)) | |
| 2 | 1 | adantl 481 | . . 3 ⊢ ((𝐴 ∈ V ∧ Lim 𝐵) → ((rank‘𝐴) ∈ 𝐵 ↔ suc (rank‘𝐴) ∈ 𝐵)) |
| 3 | pweq 4563 | . . . . . . . 8 ⊢ (𝑥 = 𝐴 → 𝒫 𝑥 = 𝒫 𝐴) | |
| 4 | 3 | fveq2d 6832 | . . . . . . 7 ⊢ (𝑥 = 𝐴 → (rank‘𝒫 𝑥) = (rank‘𝒫 𝐴)) |
| 5 | fveq2 6828 | . . . . . . . 8 ⊢ (𝑥 = 𝐴 → (rank‘𝑥) = (rank‘𝐴)) | |
| 6 | suceq 6380 | . . . . . . . 8 ⊢ ((rank‘𝑥) = (rank‘𝐴) → suc (rank‘𝑥) = suc (rank‘𝐴)) | |
| 7 | 5, 6 | syl 17 | . . . . . . 7 ⊢ (𝑥 = 𝐴 → suc (rank‘𝑥) = suc (rank‘𝐴)) |
| 8 | 4, 7 | eqeq12d 2747 | . . . . . 6 ⊢ (𝑥 = 𝐴 → ((rank‘𝒫 𝑥) = suc (rank‘𝑥) ↔ (rank‘𝒫 𝐴) = suc (rank‘𝐴))) |
| 9 | vex 3440 | . . . . . . 7 ⊢ 𝑥 ∈ V | |
| 10 | 9 | rankpw 9742 | . . . . . 6 ⊢ (rank‘𝒫 𝑥) = suc (rank‘𝑥) |
| 11 | 8, 10 | vtoclg 3507 | . . . . 5 ⊢ (𝐴 ∈ V → (rank‘𝒫 𝐴) = suc (rank‘𝐴)) |
| 12 | 11 | eleq1d 2816 | . . . 4 ⊢ (𝐴 ∈ V → ((rank‘𝒫 𝐴) ∈ 𝐵 ↔ suc (rank‘𝐴) ∈ 𝐵)) |
| 13 | 12 | adantr 480 | . . 3 ⊢ ((𝐴 ∈ V ∧ Lim 𝐵) → ((rank‘𝒫 𝐴) ∈ 𝐵 ↔ suc (rank‘𝐴) ∈ 𝐵)) |
| 14 | 2, 13 | bitr4d 282 | . 2 ⊢ ((𝐴 ∈ V ∧ Lim 𝐵) → ((rank‘𝐴) ∈ 𝐵 ↔ (rank‘𝒫 𝐴) ∈ 𝐵)) |
| 15 | fvprc 6820 | . . . . 5 ⊢ (¬ 𝐴 ∈ V → (rank‘𝐴) = ∅) | |
| 16 | pwexb 7705 | . . . . . 6 ⊢ (𝐴 ∈ V ↔ 𝒫 𝐴 ∈ V) | |
| 17 | fvprc 6820 | . . . . . 6 ⊢ (¬ 𝒫 𝐴 ∈ V → (rank‘𝒫 𝐴) = ∅) | |
| 18 | 16, 17 | sylnbi 330 | . . . . 5 ⊢ (¬ 𝐴 ∈ V → (rank‘𝒫 𝐴) = ∅) |
| 19 | 15, 18 | eqtr4d 2769 | . . . 4 ⊢ (¬ 𝐴 ∈ V → (rank‘𝐴) = (rank‘𝒫 𝐴)) |
| 20 | 19 | eleq1d 2816 | . . 3 ⊢ (¬ 𝐴 ∈ V → ((rank‘𝐴) ∈ 𝐵 ↔ (rank‘𝒫 𝐴) ∈ 𝐵)) |
| 21 | 20 | adantr 480 | . 2 ⊢ ((¬ 𝐴 ∈ V ∧ Lim 𝐵) → ((rank‘𝐴) ∈ 𝐵 ↔ (rank‘𝒫 𝐴) ∈ 𝐵)) |
| 22 | 14, 21 | pm2.61ian 811 | 1 ⊢ (Lim 𝐵 → ((rank‘𝐴) ∈ 𝐵 ↔ (rank‘𝒫 𝐴) ∈ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ∅c0 4282 𝒫 cpw 4549 Lim wlim 6313 suc csuc 6314 ‘cfv 6487 rankcrnk 9662 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-reg 9484 ax-inf2 9537 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6254 df-ord 6315 df-on 6316 df-lim 6317 df-suc 6318 df-iota 6443 df-fun 6489 df-fn 6490 df-f 6491 df-f1 6492 df-fo 6493 df-f1o 6494 df-fv 6495 df-ov 7355 df-om 7803 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-r1 9663 df-rank 9664 |
| This theorem is referenced by: rankxplim 9778 |
| Copyright terms: Public domain | W3C validator |