MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ranklim Structured version   Visualization version   GIF version

Theorem ranklim 9845
Description: The rank of a set belongs to a limit ordinal iff the rank of its power set does. (Contributed by NM, 18-Sep-2006.)
Assertion
Ref Expression
ranklim (Lim 𝐡 β†’ ((rankβ€˜π΄) ∈ 𝐡 ↔ (rankβ€˜π’« 𝐴) ∈ 𝐡))

Proof of Theorem ranklim
Dummy variable π‘₯ is distinct from all other variables.
StepHypRef Expression
1 limsuc 7842 . . . 4 (Lim 𝐡 β†’ ((rankβ€˜π΄) ∈ 𝐡 ↔ suc (rankβ€˜π΄) ∈ 𝐡))
21adantl 481 . . 3 ((𝐴 ∈ V ∧ Lim 𝐡) β†’ ((rankβ€˜π΄) ∈ 𝐡 ↔ suc (rankβ€˜π΄) ∈ 𝐡))
3 pweq 4616 . . . . . . . 8 (π‘₯ = 𝐴 β†’ 𝒫 π‘₯ = 𝒫 𝐴)
43fveq2d 6895 . . . . . . 7 (π‘₯ = 𝐴 β†’ (rankβ€˜π’« π‘₯) = (rankβ€˜π’« 𝐴))
5 fveq2 6891 . . . . . . . 8 (π‘₯ = 𝐴 β†’ (rankβ€˜π‘₯) = (rankβ€˜π΄))
6 suceq 6430 . . . . . . . 8 ((rankβ€˜π‘₯) = (rankβ€˜π΄) β†’ suc (rankβ€˜π‘₯) = suc (rankβ€˜π΄))
75, 6syl 17 . . . . . . 7 (π‘₯ = 𝐴 β†’ suc (rankβ€˜π‘₯) = suc (rankβ€˜π΄))
84, 7eqeq12d 2747 . . . . . 6 (π‘₯ = 𝐴 β†’ ((rankβ€˜π’« π‘₯) = suc (rankβ€˜π‘₯) ↔ (rankβ€˜π’« 𝐴) = suc (rankβ€˜π΄)))
9 vex 3477 . . . . . . 7 π‘₯ ∈ V
109rankpw 9844 . . . . . 6 (rankβ€˜π’« π‘₯) = suc (rankβ€˜π‘₯)
118, 10vtoclg 3542 . . . . 5 (𝐴 ∈ V β†’ (rankβ€˜π’« 𝐴) = suc (rankβ€˜π΄))
1211eleq1d 2817 . . . 4 (𝐴 ∈ V β†’ ((rankβ€˜π’« 𝐴) ∈ 𝐡 ↔ suc (rankβ€˜π΄) ∈ 𝐡))
1312adantr 480 . . 3 ((𝐴 ∈ V ∧ Lim 𝐡) β†’ ((rankβ€˜π’« 𝐴) ∈ 𝐡 ↔ suc (rankβ€˜π΄) ∈ 𝐡))
142, 13bitr4d 282 . 2 ((𝐴 ∈ V ∧ Lim 𝐡) β†’ ((rankβ€˜π΄) ∈ 𝐡 ↔ (rankβ€˜π’« 𝐴) ∈ 𝐡))
15 fvprc 6883 . . . . 5 (Β¬ 𝐴 ∈ V β†’ (rankβ€˜π΄) = βˆ…)
16 pwexb 7757 . . . . . 6 (𝐴 ∈ V ↔ 𝒫 𝐴 ∈ V)
17 fvprc 6883 . . . . . 6 (Β¬ 𝒫 𝐴 ∈ V β†’ (rankβ€˜π’« 𝐴) = βˆ…)
1816, 17sylnbi 330 . . . . 5 (Β¬ 𝐴 ∈ V β†’ (rankβ€˜π’« 𝐴) = βˆ…)
1915, 18eqtr4d 2774 . . . 4 (Β¬ 𝐴 ∈ V β†’ (rankβ€˜π΄) = (rankβ€˜π’« 𝐴))
2019eleq1d 2817 . . 3 (Β¬ 𝐴 ∈ V β†’ ((rankβ€˜π΄) ∈ 𝐡 ↔ (rankβ€˜π’« 𝐴) ∈ 𝐡))
2120adantr 480 . 2 ((Β¬ 𝐴 ∈ V ∧ Lim 𝐡) β†’ ((rankβ€˜π΄) ∈ 𝐡 ↔ (rankβ€˜π’« 𝐴) ∈ 𝐡))
2214, 21pm2.61ian 809 1 (Lim 𝐡 β†’ ((rankβ€˜π΄) ∈ 𝐡 ↔ (rankβ€˜π’« 𝐴) ∈ 𝐡))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ↔ wb 205   ∧ wa 395   = wceq 1540   ∈ wcel 2105  Vcvv 3473  βˆ…c0 4322  π’« cpw 4602  Lim wlim 6365  suc csuc 6366  β€˜cfv 6543  rankcrnk 9764
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729  ax-reg 9593  ax-inf2 9642
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7415  df-om 7860  df-2nd 7980  df-frecs 8272  df-wrecs 8303  df-recs 8377  df-rdg 8416  df-r1 9765  df-rank 9766
This theorem is referenced by:  rankxplim  9880
  Copyright terms: Public domain W3C validator