| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ranklim | Structured version Visualization version GIF version | ||
| Description: The rank of a set belongs to a limit ordinal iff the rank of its power set does. (Contributed by NM, 18-Sep-2006.) |
| Ref | Expression |
|---|---|
| ranklim | ⊢ (Lim 𝐵 → ((rank‘𝐴) ∈ 𝐵 ↔ (rank‘𝒫 𝐴) ∈ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | limsuc 7825 | . . . 4 ⊢ (Lim 𝐵 → ((rank‘𝐴) ∈ 𝐵 ↔ suc (rank‘𝐴) ∈ 𝐵)) | |
| 2 | 1 | adantl 481 | . . 3 ⊢ ((𝐴 ∈ V ∧ Lim 𝐵) → ((rank‘𝐴) ∈ 𝐵 ↔ suc (rank‘𝐴) ∈ 𝐵)) |
| 3 | pweq 4577 | . . . . . . . 8 ⊢ (𝑥 = 𝐴 → 𝒫 𝑥 = 𝒫 𝐴) | |
| 4 | 3 | fveq2d 6862 | . . . . . . 7 ⊢ (𝑥 = 𝐴 → (rank‘𝒫 𝑥) = (rank‘𝒫 𝐴)) |
| 5 | fveq2 6858 | . . . . . . . 8 ⊢ (𝑥 = 𝐴 → (rank‘𝑥) = (rank‘𝐴)) | |
| 6 | suceq 6400 | . . . . . . . 8 ⊢ ((rank‘𝑥) = (rank‘𝐴) → suc (rank‘𝑥) = suc (rank‘𝐴)) | |
| 7 | 5, 6 | syl 17 | . . . . . . 7 ⊢ (𝑥 = 𝐴 → suc (rank‘𝑥) = suc (rank‘𝐴)) |
| 8 | 4, 7 | eqeq12d 2745 | . . . . . 6 ⊢ (𝑥 = 𝐴 → ((rank‘𝒫 𝑥) = suc (rank‘𝑥) ↔ (rank‘𝒫 𝐴) = suc (rank‘𝐴))) |
| 9 | vex 3451 | . . . . . . 7 ⊢ 𝑥 ∈ V | |
| 10 | 9 | rankpw 9796 | . . . . . 6 ⊢ (rank‘𝒫 𝑥) = suc (rank‘𝑥) |
| 11 | 8, 10 | vtoclg 3520 | . . . . 5 ⊢ (𝐴 ∈ V → (rank‘𝒫 𝐴) = suc (rank‘𝐴)) |
| 12 | 11 | eleq1d 2813 | . . . 4 ⊢ (𝐴 ∈ V → ((rank‘𝒫 𝐴) ∈ 𝐵 ↔ suc (rank‘𝐴) ∈ 𝐵)) |
| 13 | 12 | adantr 480 | . . 3 ⊢ ((𝐴 ∈ V ∧ Lim 𝐵) → ((rank‘𝒫 𝐴) ∈ 𝐵 ↔ suc (rank‘𝐴) ∈ 𝐵)) |
| 14 | 2, 13 | bitr4d 282 | . 2 ⊢ ((𝐴 ∈ V ∧ Lim 𝐵) → ((rank‘𝐴) ∈ 𝐵 ↔ (rank‘𝒫 𝐴) ∈ 𝐵)) |
| 15 | fvprc 6850 | . . . . 5 ⊢ (¬ 𝐴 ∈ V → (rank‘𝐴) = ∅) | |
| 16 | pwexb 7742 | . . . . . 6 ⊢ (𝐴 ∈ V ↔ 𝒫 𝐴 ∈ V) | |
| 17 | fvprc 6850 | . . . . . 6 ⊢ (¬ 𝒫 𝐴 ∈ V → (rank‘𝒫 𝐴) = ∅) | |
| 18 | 16, 17 | sylnbi 330 | . . . . 5 ⊢ (¬ 𝐴 ∈ V → (rank‘𝒫 𝐴) = ∅) |
| 19 | 15, 18 | eqtr4d 2767 | . . . 4 ⊢ (¬ 𝐴 ∈ V → (rank‘𝐴) = (rank‘𝒫 𝐴)) |
| 20 | 19 | eleq1d 2813 | . . 3 ⊢ (¬ 𝐴 ∈ V → ((rank‘𝐴) ∈ 𝐵 ↔ (rank‘𝒫 𝐴) ∈ 𝐵)) |
| 21 | 20 | adantr 480 | . 2 ⊢ ((¬ 𝐴 ∈ V ∧ Lim 𝐵) → ((rank‘𝐴) ∈ 𝐵 ↔ (rank‘𝒫 𝐴) ∈ 𝐵)) |
| 22 | 14, 21 | pm2.61ian 811 | 1 ⊢ (Lim 𝐵 → ((rank‘𝐴) ∈ 𝐵 ↔ (rank‘𝒫 𝐴) ∈ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3447 ∅c0 4296 𝒫 cpw 4563 Lim wlim 6333 suc csuc 6334 ‘cfv 6511 rankcrnk 9716 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-reg 9545 ax-inf2 9594 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-om 7843 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-r1 9717 df-rank 9718 |
| This theorem is referenced by: rankxplim 9832 |
| Copyright terms: Public domain | W3C validator |