Step | Hyp | Ref
| Expression |
1 | | limsuc 7842 |
. . . 4
β’ (Lim
π΅ β ((rankβπ΄) β π΅ β suc (rankβπ΄) β π΅)) |
2 | 1 | adantl 481 |
. . 3
β’ ((π΄ β V β§ Lim π΅) β ((rankβπ΄) β π΅ β suc (rankβπ΄) β π΅)) |
3 | | pweq 4616 |
. . . . . . . 8
β’ (π₯ = π΄ β π« π₯ = π« π΄) |
4 | 3 | fveq2d 6895 |
. . . . . . 7
β’ (π₯ = π΄ β (rankβπ« π₯) = (rankβπ« π΄)) |
5 | | fveq2 6891 |
. . . . . . . 8
β’ (π₯ = π΄ β (rankβπ₯) = (rankβπ΄)) |
6 | | suceq 6430 |
. . . . . . . 8
β’
((rankβπ₯) =
(rankβπ΄) β suc
(rankβπ₯) = suc
(rankβπ΄)) |
7 | 5, 6 | syl 17 |
. . . . . . 7
β’ (π₯ = π΄ β suc (rankβπ₯) = suc (rankβπ΄)) |
8 | 4, 7 | eqeq12d 2747 |
. . . . . 6
β’ (π₯ = π΄ β ((rankβπ« π₯) = suc (rankβπ₯) β (rankβπ«
π΄) = suc (rankβπ΄))) |
9 | | vex 3477 |
. . . . . . 7
β’ π₯ β V |
10 | 9 | rankpw 9844 |
. . . . . 6
β’
(rankβπ« π₯) = suc (rankβπ₯) |
11 | 8, 10 | vtoclg 3542 |
. . . . 5
β’ (π΄ β V β
(rankβπ« π΄) =
suc (rankβπ΄)) |
12 | 11 | eleq1d 2817 |
. . . 4
β’ (π΄ β V β
((rankβπ« π΄)
β π΅ β suc
(rankβπ΄) β π΅)) |
13 | 12 | adantr 480 |
. . 3
β’ ((π΄ β V β§ Lim π΅) β ((rankβπ«
π΄) β π΅ β suc (rankβπ΄) β π΅)) |
14 | 2, 13 | bitr4d 282 |
. 2
β’ ((π΄ β V β§ Lim π΅) β ((rankβπ΄) β π΅ β (rankβπ« π΄) β π΅)) |
15 | | fvprc 6883 |
. . . . 5
β’ (Β¬
π΄ β V β
(rankβπ΄) =
β
) |
16 | | pwexb 7757 |
. . . . . 6
β’ (π΄ β V β π« π΄ β V) |
17 | | fvprc 6883 |
. . . . . 6
β’ (Β¬
π« π΄ β V β
(rankβπ« π΄) =
β
) |
18 | 16, 17 | sylnbi 330 |
. . . . 5
β’ (Β¬
π΄ β V β
(rankβπ« π΄) =
β
) |
19 | 15, 18 | eqtr4d 2774 |
. . . 4
β’ (Β¬
π΄ β V β
(rankβπ΄) =
(rankβπ« π΄)) |
20 | 19 | eleq1d 2817 |
. . 3
β’ (Β¬
π΄ β V β
((rankβπ΄) β
π΅ β
(rankβπ« π΄)
β π΅)) |
21 | 20 | adantr 480 |
. 2
β’ ((Β¬
π΄ β V β§ Lim π΅) β ((rankβπ΄) β π΅ β (rankβπ« π΄) β π΅)) |
22 | 14, 21 | pm2.61ian 809 |
1
β’ (Lim
π΅ β ((rankβπ΄) β π΅ β (rankβπ« π΄) β π΅)) |