MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ranklim Structured version   Visualization version   GIF version

Theorem ranklim 9885
Description: The rank of a set belongs to a limit ordinal iff the rank of its power set does. (Contributed by NM, 18-Sep-2006.)
Assertion
Ref Expression
ranklim (Lim 𝐵 → ((rank‘𝐴) ∈ 𝐵 ↔ (rank‘𝒫 𝐴) ∈ 𝐵))

Proof of Theorem ranklim
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 limsuc 7871 . . . 4 (Lim 𝐵 → ((rank‘𝐴) ∈ 𝐵 ↔ suc (rank‘𝐴) ∈ 𝐵))
21adantl 481 . . 3 ((𝐴 ∈ V ∧ Lim 𝐵) → ((rank‘𝐴) ∈ 𝐵 ↔ suc (rank‘𝐴) ∈ 𝐵))
3 pweq 4613 . . . . . . . 8 (𝑥 = 𝐴 → 𝒫 𝑥 = 𝒫 𝐴)
43fveq2d 6909 . . . . . . 7 (𝑥 = 𝐴 → (rank‘𝒫 𝑥) = (rank‘𝒫 𝐴))
5 fveq2 6905 . . . . . . . 8 (𝑥 = 𝐴 → (rank‘𝑥) = (rank‘𝐴))
6 suceq 6449 . . . . . . . 8 ((rank‘𝑥) = (rank‘𝐴) → suc (rank‘𝑥) = suc (rank‘𝐴))
75, 6syl 17 . . . . . . 7 (𝑥 = 𝐴 → suc (rank‘𝑥) = suc (rank‘𝐴))
84, 7eqeq12d 2752 . . . . . 6 (𝑥 = 𝐴 → ((rank‘𝒫 𝑥) = suc (rank‘𝑥) ↔ (rank‘𝒫 𝐴) = suc (rank‘𝐴)))
9 vex 3483 . . . . . . 7 𝑥 ∈ V
109rankpw 9884 . . . . . 6 (rank‘𝒫 𝑥) = suc (rank‘𝑥)
118, 10vtoclg 3553 . . . . 5 (𝐴 ∈ V → (rank‘𝒫 𝐴) = suc (rank‘𝐴))
1211eleq1d 2825 . . . 4 (𝐴 ∈ V → ((rank‘𝒫 𝐴) ∈ 𝐵 ↔ suc (rank‘𝐴) ∈ 𝐵))
1312adantr 480 . . 3 ((𝐴 ∈ V ∧ Lim 𝐵) → ((rank‘𝒫 𝐴) ∈ 𝐵 ↔ suc (rank‘𝐴) ∈ 𝐵))
142, 13bitr4d 282 . 2 ((𝐴 ∈ V ∧ Lim 𝐵) → ((rank‘𝐴) ∈ 𝐵 ↔ (rank‘𝒫 𝐴) ∈ 𝐵))
15 fvprc 6897 . . . . 5 𝐴 ∈ V → (rank‘𝐴) = ∅)
16 pwexb 7787 . . . . . 6 (𝐴 ∈ V ↔ 𝒫 𝐴 ∈ V)
17 fvprc 6897 . . . . . 6 (¬ 𝒫 𝐴 ∈ V → (rank‘𝒫 𝐴) = ∅)
1816, 17sylnbi 330 . . . . 5 𝐴 ∈ V → (rank‘𝒫 𝐴) = ∅)
1915, 18eqtr4d 2779 . . . 4 𝐴 ∈ V → (rank‘𝐴) = (rank‘𝒫 𝐴))
2019eleq1d 2825 . . 3 𝐴 ∈ V → ((rank‘𝐴) ∈ 𝐵 ↔ (rank‘𝒫 𝐴) ∈ 𝐵))
2120adantr 480 . 2 ((¬ 𝐴 ∈ V ∧ Lim 𝐵) → ((rank‘𝐴) ∈ 𝐵 ↔ (rank‘𝒫 𝐴) ∈ 𝐵))
2214, 21pm2.61ian 811 1 (Lim 𝐵 → ((rank‘𝐴) ∈ 𝐵 ↔ (rank‘𝒫 𝐴) ∈ 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1539  wcel 2107  Vcvv 3479  c0 4332  𝒫 cpw 4599  Lim wlim 6384  suc csuc 6385  cfv 6560  rankcrnk 9804
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-reg 9633  ax-inf2 9682
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-ral 3061  df-rex 3070  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-int 4946  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-ov 7435  df-om 7889  df-2nd 8016  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-r1 9805  df-rank 9806
This theorem is referenced by:  rankxplim  9920
  Copyright terms: Public domain W3C validator