|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > ranklim | Structured version Visualization version GIF version | ||
| Description: The rank of a set belongs to a limit ordinal iff the rank of its power set does. (Contributed by NM, 18-Sep-2006.) | 
| Ref | Expression | 
|---|---|
| ranklim | ⊢ (Lim 𝐵 → ((rank‘𝐴) ∈ 𝐵 ↔ (rank‘𝒫 𝐴) ∈ 𝐵)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | limsuc 7871 | . . . 4 ⊢ (Lim 𝐵 → ((rank‘𝐴) ∈ 𝐵 ↔ suc (rank‘𝐴) ∈ 𝐵)) | |
| 2 | 1 | adantl 481 | . . 3 ⊢ ((𝐴 ∈ V ∧ Lim 𝐵) → ((rank‘𝐴) ∈ 𝐵 ↔ suc (rank‘𝐴) ∈ 𝐵)) | 
| 3 | pweq 4613 | . . . . . . . 8 ⊢ (𝑥 = 𝐴 → 𝒫 𝑥 = 𝒫 𝐴) | |
| 4 | 3 | fveq2d 6909 | . . . . . . 7 ⊢ (𝑥 = 𝐴 → (rank‘𝒫 𝑥) = (rank‘𝒫 𝐴)) | 
| 5 | fveq2 6905 | . . . . . . . 8 ⊢ (𝑥 = 𝐴 → (rank‘𝑥) = (rank‘𝐴)) | |
| 6 | suceq 6449 | . . . . . . . 8 ⊢ ((rank‘𝑥) = (rank‘𝐴) → suc (rank‘𝑥) = suc (rank‘𝐴)) | |
| 7 | 5, 6 | syl 17 | . . . . . . 7 ⊢ (𝑥 = 𝐴 → suc (rank‘𝑥) = suc (rank‘𝐴)) | 
| 8 | 4, 7 | eqeq12d 2752 | . . . . . 6 ⊢ (𝑥 = 𝐴 → ((rank‘𝒫 𝑥) = suc (rank‘𝑥) ↔ (rank‘𝒫 𝐴) = suc (rank‘𝐴))) | 
| 9 | vex 3483 | . . . . . . 7 ⊢ 𝑥 ∈ V | |
| 10 | 9 | rankpw 9884 | . . . . . 6 ⊢ (rank‘𝒫 𝑥) = suc (rank‘𝑥) | 
| 11 | 8, 10 | vtoclg 3553 | . . . . 5 ⊢ (𝐴 ∈ V → (rank‘𝒫 𝐴) = suc (rank‘𝐴)) | 
| 12 | 11 | eleq1d 2825 | . . . 4 ⊢ (𝐴 ∈ V → ((rank‘𝒫 𝐴) ∈ 𝐵 ↔ suc (rank‘𝐴) ∈ 𝐵)) | 
| 13 | 12 | adantr 480 | . . 3 ⊢ ((𝐴 ∈ V ∧ Lim 𝐵) → ((rank‘𝒫 𝐴) ∈ 𝐵 ↔ suc (rank‘𝐴) ∈ 𝐵)) | 
| 14 | 2, 13 | bitr4d 282 | . 2 ⊢ ((𝐴 ∈ V ∧ Lim 𝐵) → ((rank‘𝐴) ∈ 𝐵 ↔ (rank‘𝒫 𝐴) ∈ 𝐵)) | 
| 15 | fvprc 6897 | . . . . 5 ⊢ (¬ 𝐴 ∈ V → (rank‘𝐴) = ∅) | |
| 16 | pwexb 7787 | . . . . . 6 ⊢ (𝐴 ∈ V ↔ 𝒫 𝐴 ∈ V) | |
| 17 | fvprc 6897 | . . . . . 6 ⊢ (¬ 𝒫 𝐴 ∈ V → (rank‘𝒫 𝐴) = ∅) | |
| 18 | 16, 17 | sylnbi 330 | . . . . 5 ⊢ (¬ 𝐴 ∈ V → (rank‘𝒫 𝐴) = ∅) | 
| 19 | 15, 18 | eqtr4d 2779 | . . . 4 ⊢ (¬ 𝐴 ∈ V → (rank‘𝐴) = (rank‘𝒫 𝐴)) | 
| 20 | 19 | eleq1d 2825 | . . 3 ⊢ (¬ 𝐴 ∈ V → ((rank‘𝐴) ∈ 𝐵 ↔ (rank‘𝒫 𝐴) ∈ 𝐵)) | 
| 21 | 20 | adantr 480 | . 2 ⊢ ((¬ 𝐴 ∈ V ∧ Lim 𝐵) → ((rank‘𝐴) ∈ 𝐵 ↔ (rank‘𝒫 𝐴) ∈ 𝐵)) | 
| 22 | 14, 21 | pm2.61ian 811 | 1 ⊢ (Lim 𝐵 → ((rank‘𝐴) ∈ 𝐵 ↔ (rank‘𝒫 𝐴) ∈ 𝐵)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∈ wcel 2107 Vcvv 3479 ∅c0 4332 𝒫 cpw 4599 Lim wlim 6384 suc csuc 6385 ‘cfv 6560 rankcrnk 9804 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-rep 5278 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 ax-reg 9633 ax-inf2 9682 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-pss 3970 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-int 4946 df-iun 4992 df-br 5143 df-opab 5205 df-mpt 5225 df-tr 5259 df-id 5577 df-eprel 5583 df-po 5591 df-so 5592 df-fr 5636 df-we 5638 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-pred 6320 df-ord 6386 df-on 6387 df-lim 6388 df-suc 6389 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-ov 7435 df-om 7889 df-2nd 8016 df-frecs 8307 df-wrecs 8338 df-recs 8412 df-rdg 8451 df-r1 9805 df-rank 9806 | 
| This theorem is referenced by: rankxplim 9920 | 
| Copyright terms: Public domain | W3C validator |