MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1mavmul Structured version   Visualization version   GIF version

Theorem 1mavmul 22042
Description: Multiplication of the identity NxN matrix with an N-dimensional vector results in the vector itself. (Contributed by AV, 9-Feb-2019.) (Revised by AV, 23-Feb-2019.)
Hypotheses
Ref Expression
1mavmul.a 𝐴 = (𝑁 Mat 𝑅)
1mavmul.b 𝐵 = (Base‘𝑅)
1mavmul.t · = (𝑅 maVecMul ⟨𝑁, 𝑁⟩)
1mavmul.r (𝜑𝑅 ∈ Ring)
1mavmul.n (𝜑𝑁 ∈ Fin)
1mavmul.y (𝜑𝑌 ∈ (𝐵m 𝑁))
Assertion
Ref Expression
1mavmul (𝜑 → ((1r𝐴) · 𝑌) = 𝑌)

Proof of Theorem 1mavmul
Dummy variables 𝑖 𝑗 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1mavmul.a . . 3 𝐴 = (𝑁 Mat 𝑅)
2 1mavmul.t . . 3 · = (𝑅 maVecMul ⟨𝑁, 𝑁⟩)
3 1mavmul.b . . 3 𝐵 = (Base‘𝑅)
4 eqid 2733 . . 3 (.r𝑅) = (.r𝑅)
5 1mavmul.r . . 3 (𝜑𝑅 ∈ Ring)
6 1mavmul.n . . 3 (𝜑𝑁 ∈ Fin)
7 eqid 2733 . . . . 5 (Base‘𝐴) = (Base‘𝐴)
81fveq2i 6892 . . . . 5 (1r𝐴) = (1r‘(𝑁 Mat 𝑅))
91, 7, 8mat1bas 21943 . . . 4 ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) → (1r𝐴) ∈ (Base‘𝐴))
105, 6, 9syl2anc 585 . . 3 (𝜑 → (1r𝐴) ∈ (Base‘𝐴))
11 1mavmul.y . . 3 (𝜑𝑌 ∈ (𝐵m 𝑁))
121, 2, 3, 4, 5, 6, 10, 11mavmulval 22039 . 2 (𝜑 → ((1r𝐴) · 𝑌) = (𝑖𝑁 ↦ (𝑅 Σg (𝑗𝑁 ↦ ((𝑖(1r𝐴)𝑗)(.r𝑅)(𝑌𝑗))))))
13 eqid 2733 . . . . . . . . . 10 (1r𝑅) = (1r𝑅)
14 eqid 2733 . . . . . . . . . 10 (0g𝑅) = (0g𝑅)
151, 13, 14mat1 21941 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (1r𝐴) = (𝑥𝑁, 𝑦𝑁 ↦ if(𝑥 = 𝑦, (1r𝑅), (0g𝑅))))
166, 5, 15syl2anc 585 . . . . . . . 8 (𝜑 → (1r𝐴) = (𝑥𝑁, 𝑦𝑁 ↦ if(𝑥 = 𝑦, (1r𝑅), (0g𝑅))))
1716oveqdr 7434 . . . . . . 7 ((𝜑𝑖𝑁) → (𝑖(1r𝐴)𝑗) = (𝑖(𝑥𝑁, 𝑦𝑁 ↦ if(𝑥 = 𝑦, (1r𝑅), (0g𝑅)))𝑗))
1817oveq1d 7421 . . . . . 6 ((𝜑𝑖𝑁) → ((𝑖(1r𝐴)𝑗)(.r𝑅)(𝑌𝑗)) = ((𝑖(𝑥𝑁, 𝑦𝑁 ↦ if(𝑥 = 𝑦, (1r𝑅), (0g𝑅)))𝑗)(.r𝑅)(𝑌𝑗)))
1918mpteq2dv 5250 . . . . 5 ((𝜑𝑖𝑁) → (𝑗𝑁 ↦ ((𝑖(1r𝐴)𝑗)(.r𝑅)(𝑌𝑗))) = (𝑗𝑁 ↦ ((𝑖(𝑥𝑁, 𝑦𝑁 ↦ if(𝑥 = 𝑦, (1r𝑅), (0g𝑅)))𝑗)(.r𝑅)(𝑌𝑗))))
2019oveq2d 7422 . . . 4 ((𝜑𝑖𝑁) → (𝑅 Σg (𝑗𝑁 ↦ ((𝑖(1r𝐴)𝑗)(.r𝑅)(𝑌𝑗)))) = (𝑅 Σg (𝑗𝑁 ↦ ((𝑖(𝑥𝑁, 𝑦𝑁 ↦ if(𝑥 = 𝑦, (1r𝑅), (0g𝑅)))𝑗)(.r𝑅)(𝑌𝑗)))))
21 eqidd 2734 . . . . . . . . 9 (((𝜑𝑖𝑁) ∧ 𝑗𝑁) → (𝑥𝑁, 𝑦𝑁 ↦ if(𝑥 = 𝑦, (1r𝑅), (0g𝑅))) = (𝑥𝑁, 𝑦𝑁 ↦ if(𝑥 = 𝑦, (1r𝑅), (0g𝑅))))
22 eqeq12 2750 . . . . . . . . . . 11 ((𝑥 = 𝑖𝑦 = 𝑗) → (𝑥 = 𝑦𝑖 = 𝑗))
2322ifbid 4551 . . . . . . . . . 10 ((𝑥 = 𝑖𝑦 = 𝑗) → if(𝑥 = 𝑦, (1r𝑅), (0g𝑅)) = if(𝑖 = 𝑗, (1r𝑅), (0g𝑅)))
2423adantl 483 . . . . . . . . 9 ((((𝜑𝑖𝑁) ∧ 𝑗𝑁) ∧ (𝑥 = 𝑖𝑦 = 𝑗)) → if(𝑥 = 𝑦, (1r𝑅), (0g𝑅)) = if(𝑖 = 𝑗, (1r𝑅), (0g𝑅)))
25 simpr 486 . . . . . . . . . 10 ((𝜑𝑖𝑁) → 𝑖𝑁)
2625adantr 482 . . . . . . . . 9 (((𝜑𝑖𝑁) ∧ 𝑗𝑁) → 𝑖𝑁)
27 simpr 486 . . . . . . . . 9 (((𝜑𝑖𝑁) ∧ 𝑗𝑁) → 𝑗𝑁)
28 fvexd 6904 . . . . . . . . . 10 (((𝜑𝑖𝑁) ∧ 𝑗𝑁) → (1r𝑅) ∈ V)
29 fvexd 6904 . . . . . . . . . 10 (((𝜑𝑖𝑁) ∧ 𝑗𝑁) → (0g𝑅) ∈ V)
3028, 29ifcld 4574 . . . . . . . . 9 (((𝜑𝑖𝑁) ∧ 𝑗𝑁) → if(𝑖 = 𝑗, (1r𝑅), (0g𝑅)) ∈ V)
3121, 24, 26, 27, 30ovmpod 7557 . . . . . . . 8 (((𝜑𝑖𝑁) ∧ 𝑗𝑁) → (𝑖(𝑥𝑁, 𝑦𝑁 ↦ if(𝑥 = 𝑦, (1r𝑅), (0g𝑅)))𝑗) = if(𝑖 = 𝑗, (1r𝑅), (0g𝑅)))
3231oveq1d 7421 . . . . . . 7 (((𝜑𝑖𝑁) ∧ 𝑗𝑁) → ((𝑖(𝑥𝑁, 𝑦𝑁 ↦ if(𝑥 = 𝑦, (1r𝑅), (0g𝑅)))𝑗)(.r𝑅)(𝑌𝑗)) = (if(𝑖 = 𝑗, (1r𝑅), (0g𝑅))(.r𝑅)(𝑌𝑗)))
33 iftrue 4534 . . . . . . . . . . . 12 (𝑖 = 𝑗 → if(𝑖 = 𝑗, (1r𝑅), (0g𝑅)) = (1r𝑅))
3433adantr 482 . . . . . . . . . . 11 ((𝑖 = 𝑗 ∧ ((𝜑𝑖𝑁) ∧ 𝑗𝑁)) → if(𝑖 = 𝑗, (1r𝑅), (0g𝑅)) = (1r𝑅))
3534oveq1d 7421 . . . . . . . . . 10 ((𝑖 = 𝑗 ∧ ((𝜑𝑖𝑁) ∧ 𝑗𝑁)) → (if(𝑖 = 𝑗, (1r𝑅), (0g𝑅))(.r𝑅)(𝑌𝑗)) = ((1r𝑅)(.r𝑅)(𝑌𝑗)))
365adantr 482 . . . . . . . . . . . . 13 ((𝜑𝑖𝑁) → 𝑅 ∈ Ring)
3736adantr 482 . . . . . . . . . . . 12 (((𝜑𝑖𝑁) ∧ 𝑗𝑁) → 𝑅 ∈ Ring)
383fvexi 6903 . . . . . . . . . . . . . . . . . 18 𝐵 ∈ V
3938a1i 11 . . . . . . . . . . . . . . . . 17 (𝜑𝐵 ∈ V)
4039, 6elmapd 8831 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑌 ∈ (𝐵m 𝑁) ↔ 𝑌:𝑁𝐵))
41 ffvelcdm 7081 . . . . . . . . . . . . . . . . 17 ((𝑌:𝑁𝐵𝑗𝑁) → (𝑌𝑗) ∈ 𝐵)
4241ex 414 . . . . . . . . . . . . . . . 16 (𝑌:𝑁𝐵 → (𝑗𝑁 → (𝑌𝑗) ∈ 𝐵))
4340, 42syl6bi 253 . . . . . . . . . . . . . . 15 (𝜑 → (𝑌 ∈ (𝐵m 𝑁) → (𝑗𝑁 → (𝑌𝑗) ∈ 𝐵)))
4411, 43mpd 15 . . . . . . . . . . . . . 14 (𝜑 → (𝑗𝑁 → (𝑌𝑗) ∈ 𝐵))
4544adantr 482 . . . . . . . . . . . . 13 ((𝜑𝑖𝑁) → (𝑗𝑁 → (𝑌𝑗) ∈ 𝐵))
4645imp 408 . . . . . . . . . . . 12 (((𝜑𝑖𝑁) ∧ 𝑗𝑁) → (𝑌𝑗) ∈ 𝐵)
473, 4, 13ringlidm 20080 . . . . . . . . . . . 12 ((𝑅 ∈ Ring ∧ (𝑌𝑗) ∈ 𝐵) → ((1r𝑅)(.r𝑅)(𝑌𝑗)) = (𝑌𝑗))
4837, 46, 47syl2anc 585 . . . . . . . . . . 11 (((𝜑𝑖𝑁) ∧ 𝑗𝑁) → ((1r𝑅)(.r𝑅)(𝑌𝑗)) = (𝑌𝑗))
4948adantl 483 . . . . . . . . . 10 ((𝑖 = 𝑗 ∧ ((𝜑𝑖𝑁) ∧ 𝑗𝑁)) → ((1r𝑅)(.r𝑅)(𝑌𝑗)) = (𝑌𝑗))
50 fveq2 6889 . . . . . . . . . . . 12 (𝑗 = 𝑖 → (𝑌𝑗) = (𝑌𝑖))
5150equcoms 2024 . . . . . . . . . . 11 (𝑖 = 𝑗 → (𝑌𝑗) = (𝑌𝑖))
5251adantr 482 . . . . . . . . . 10 ((𝑖 = 𝑗 ∧ ((𝜑𝑖𝑁) ∧ 𝑗𝑁)) → (𝑌𝑗) = (𝑌𝑖))
5335, 49, 523eqtrd 2777 . . . . . . . . 9 ((𝑖 = 𝑗 ∧ ((𝜑𝑖𝑁) ∧ 𝑗𝑁)) → (if(𝑖 = 𝑗, (1r𝑅), (0g𝑅))(.r𝑅)(𝑌𝑗)) = (𝑌𝑖))
54 iftrue 4534 . . . . . . . . . . 11 (𝑗 = 𝑖 → if(𝑗 = 𝑖, (𝑌𝑖), (0g𝑅)) = (𝑌𝑖))
5554equcoms 2024 . . . . . . . . . 10 (𝑖 = 𝑗 → if(𝑗 = 𝑖, (𝑌𝑖), (0g𝑅)) = (𝑌𝑖))
5655adantr 482 . . . . . . . . 9 ((𝑖 = 𝑗 ∧ ((𝜑𝑖𝑁) ∧ 𝑗𝑁)) → if(𝑗 = 𝑖, (𝑌𝑖), (0g𝑅)) = (𝑌𝑖))
5753, 56eqtr4d 2776 . . . . . . . 8 ((𝑖 = 𝑗 ∧ ((𝜑𝑖𝑁) ∧ 𝑗𝑁)) → (if(𝑖 = 𝑗, (1r𝑅), (0g𝑅))(.r𝑅)(𝑌𝑗)) = if(𝑗 = 𝑖, (𝑌𝑖), (0g𝑅)))
58 iffalse 4537 . . . . . . . . . . 11 𝑖 = 𝑗 → if(𝑖 = 𝑗, (1r𝑅), (0g𝑅)) = (0g𝑅))
5958oveq1d 7421 . . . . . . . . . 10 𝑖 = 𝑗 → (if(𝑖 = 𝑗, (1r𝑅), (0g𝑅))(.r𝑅)(𝑌𝑗)) = ((0g𝑅)(.r𝑅)(𝑌𝑗)))
6059adantr 482 . . . . . . . . 9 ((¬ 𝑖 = 𝑗 ∧ ((𝜑𝑖𝑁) ∧ 𝑗𝑁)) → (if(𝑖 = 𝑗, (1r𝑅), (0g𝑅))(.r𝑅)(𝑌𝑗)) = ((0g𝑅)(.r𝑅)(𝑌𝑗)))
613, 4, 14ringlz 20101 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ (𝑌𝑗) ∈ 𝐵) → ((0g𝑅)(.r𝑅)(𝑌𝑗)) = (0g𝑅))
6237, 46, 61syl2anc 585 . . . . . . . . . 10 (((𝜑𝑖𝑁) ∧ 𝑗𝑁) → ((0g𝑅)(.r𝑅)(𝑌𝑗)) = (0g𝑅))
6362adantl 483 . . . . . . . . 9 ((¬ 𝑖 = 𝑗 ∧ ((𝜑𝑖𝑁) ∧ 𝑗𝑁)) → ((0g𝑅)(.r𝑅)(𝑌𝑗)) = (0g𝑅))
64 eqcom 2740 . . . . . . . . . . . 12 (𝑖 = 𝑗𝑗 = 𝑖)
65 iffalse 4537 . . . . . . . . . . . 12 𝑗 = 𝑖 → if(𝑗 = 𝑖, (𝑌𝑖), (0g𝑅)) = (0g𝑅))
6664, 65sylnbi 330 . . . . . . . . . . 11 𝑖 = 𝑗 → if(𝑗 = 𝑖, (𝑌𝑖), (0g𝑅)) = (0g𝑅))
6766eqcomd 2739 . . . . . . . . . 10 𝑖 = 𝑗 → (0g𝑅) = if(𝑗 = 𝑖, (𝑌𝑖), (0g𝑅)))
6867adantr 482 . . . . . . . . 9 ((¬ 𝑖 = 𝑗 ∧ ((𝜑𝑖𝑁) ∧ 𝑗𝑁)) → (0g𝑅) = if(𝑗 = 𝑖, (𝑌𝑖), (0g𝑅)))
6960, 63, 683eqtrd 2777 . . . . . . . 8 ((¬ 𝑖 = 𝑗 ∧ ((𝜑𝑖𝑁) ∧ 𝑗𝑁)) → (if(𝑖 = 𝑗, (1r𝑅), (0g𝑅))(.r𝑅)(𝑌𝑗)) = if(𝑗 = 𝑖, (𝑌𝑖), (0g𝑅)))
7057, 69pm2.61ian 811 . . . . . . 7 (((𝜑𝑖𝑁) ∧ 𝑗𝑁) → (if(𝑖 = 𝑗, (1r𝑅), (0g𝑅))(.r𝑅)(𝑌𝑗)) = if(𝑗 = 𝑖, (𝑌𝑖), (0g𝑅)))
7132, 70eqtrd 2773 . . . . . 6 (((𝜑𝑖𝑁) ∧ 𝑗𝑁) → ((𝑖(𝑥𝑁, 𝑦𝑁 ↦ if(𝑥 = 𝑦, (1r𝑅), (0g𝑅)))𝑗)(.r𝑅)(𝑌𝑗)) = if(𝑗 = 𝑖, (𝑌𝑖), (0g𝑅)))
7271mpteq2dva 5248 . . . . 5 ((𝜑𝑖𝑁) → (𝑗𝑁 ↦ ((𝑖(𝑥𝑁, 𝑦𝑁 ↦ if(𝑥 = 𝑦, (1r𝑅), (0g𝑅)))𝑗)(.r𝑅)(𝑌𝑗))) = (𝑗𝑁 ↦ if(𝑗 = 𝑖, (𝑌𝑖), (0g𝑅))))
7372oveq2d 7422 . . . 4 ((𝜑𝑖𝑁) → (𝑅 Σg (𝑗𝑁 ↦ ((𝑖(𝑥𝑁, 𝑦𝑁 ↦ if(𝑥 = 𝑦, (1r𝑅), (0g𝑅)))𝑗)(.r𝑅)(𝑌𝑗)))) = (𝑅 Σg (𝑗𝑁 ↦ if(𝑗 = 𝑖, (𝑌𝑖), (0g𝑅)))))
74 ringmnd 20060 . . . . . . 7 (𝑅 ∈ Ring → 𝑅 ∈ Mnd)
755, 74syl 17 . . . . . 6 (𝜑𝑅 ∈ Mnd)
7675adantr 482 . . . . 5 ((𝜑𝑖𝑁) → 𝑅 ∈ Mnd)
776adantr 482 . . . . 5 ((𝜑𝑖𝑁) → 𝑁 ∈ Fin)
78 eqid 2733 . . . . 5 (𝑗𝑁 ↦ if(𝑗 = 𝑖, (𝑌𝑖), (0g𝑅))) = (𝑗𝑁 ↦ if(𝑗 = 𝑖, (𝑌𝑖), (0g𝑅)))
79 ffvelcdm 7081 . . . . . . . . . 10 ((𝑌:𝑁𝐵𝑖𝑁) → (𝑌𝑖) ∈ 𝐵)
8079, 3eleqtrdi 2844 . . . . . . . . 9 ((𝑌:𝑁𝐵𝑖𝑁) → (𝑌𝑖) ∈ (Base‘𝑅))
8180ex 414 . . . . . . . 8 (𝑌:𝑁𝐵 → (𝑖𝑁 → (𝑌𝑖) ∈ (Base‘𝑅)))
8240, 81syl6bi 253 . . . . . . 7 (𝜑 → (𝑌 ∈ (𝐵m 𝑁) → (𝑖𝑁 → (𝑌𝑖) ∈ (Base‘𝑅))))
8311, 82mpd 15 . . . . . 6 (𝜑 → (𝑖𝑁 → (𝑌𝑖) ∈ (Base‘𝑅)))
8483imp 408 . . . . 5 ((𝜑𝑖𝑁) → (𝑌𝑖) ∈ (Base‘𝑅))
8514, 76, 77, 25, 78, 84gsummptif1n0 19829 . . . 4 ((𝜑𝑖𝑁) → (𝑅 Σg (𝑗𝑁 ↦ if(𝑗 = 𝑖, (𝑌𝑖), (0g𝑅)))) = (𝑌𝑖))
8620, 73, 853eqtrd 2777 . . 3 ((𝜑𝑖𝑁) → (𝑅 Σg (𝑗𝑁 ↦ ((𝑖(1r𝐴)𝑗)(.r𝑅)(𝑌𝑗)))) = (𝑌𝑖))
8786mpteq2dva 5248 . 2 (𝜑 → (𝑖𝑁 ↦ (𝑅 Σg (𝑗𝑁 ↦ ((𝑖(1r𝐴)𝑗)(.r𝑅)(𝑌𝑗))))) = (𝑖𝑁 ↦ (𝑌𝑖)))
88 ffn 6715 . . . . 5 (𝑌:𝑁𝐵𝑌 Fn 𝑁)
8940, 88syl6bi 253 . . . 4 (𝜑 → (𝑌 ∈ (𝐵m 𝑁) → 𝑌 Fn 𝑁))
9011, 89mpd 15 . . 3 (𝜑𝑌 Fn 𝑁)
91 eqcom 2740 . . . 4 ((𝑖𝑁 ↦ (𝑌𝑖)) = 𝑌𝑌 = (𝑖𝑁 ↦ (𝑌𝑖)))
92 dffn5 6948 . . . 4 (𝑌 Fn 𝑁𝑌 = (𝑖𝑁 ↦ (𝑌𝑖)))
9391, 92bitr4i 278 . . 3 ((𝑖𝑁 ↦ (𝑌𝑖)) = 𝑌𝑌 Fn 𝑁)
9490, 93sylibr 233 . 2 (𝜑 → (𝑖𝑁 ↦ (𝑌𝑖)) = 𝑌)
9512, 87, 943eqtrd 2777 1 (𝜑 → ((1r𝐴) · 𝑌) = 𝑌)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 397   = wceq 1542  wcel 2107  Vcvv 3475  ifcif 4528  cop 4634  cmpt 5231   Fn wfn 6536  wf 6537  cfv 6541  (class class class)co 7406  cmpo 7408  m cmap 8817  Fincfn 8936  Basecbs 17141  .rcmulr 17195  0gc0g 17382   Σg cgsu 17383  Mndcmnd 18622  1rcur 19999  Ringcrg 20050   Mat cmat 21899   maVecMul cmvmul 22034
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7722  ax-cnex 11163  ax-resscn 11164  ax-1cn 11165  ax-icn 11166  ax-addcl 11167  ax-addrcl 11168  ax-mulcl 11169  ax-mulrcl 11170  ax-mulcom 11171  ax-addass 11172  ax-mulass 11173  ax-distr 11174  ax-i2m1 11175  ax-1ne0 11176  ax-1rid 11177  ax-rnegex 11178  ax-rrecex 11179  ax-cnre 11180  ax-pre-lttri 11181  ax-pre-lttrn 11182  ax-pre-ltadd 11183  ax-pre-mulgt0 11184
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-tp 4633  df-op 4635  df-ot 4637  df-uni 4909  df-int 4951  df-iun 4999  df-iin 5000  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-se 5632  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6298  df-ord 6365  df-on 6366  df-lim 6367  df-suc 6368  df-iota 6493  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-isom 6550  df-riota 7362  df-ov 7409  df-oprab 7410  df-mpo 7411  df-of 7667  df-om 7853  df-1st 7972  df-2nd 7973  df-supp 8144  df-frecs 8263  df-wrecs 8294  df-recs 8368  df-rdg 8407  df-1o 8463  df-er 8700  df-map 8819  df-ixp 8889  df-en 8937  df-dom 8938  df-sdom 8939  df-fin 8940  df-fsupp 9359  df-sup 9434  df-oi 9502  df-card 9931  df-pnf 11247  df-mnf 11248  df-xr 11249  df-ltxr 11250  df-le 11251  df-sub 11443  df-neg 11444  df-nn 12210  df-2 12272  df-3 12273  df-4 12274  df-5 12275  df-6 12276  df-7 12277  df-8 12278  df-9 12279  df-n0 12470  df-z 12556  df-dec 12675  df-uz 12820  df-fz 13482  df-fzo 13625  df-seq 13964  df-hash 14288  df-struct 17077  df-sets 17094  df-slot 17112  df-ndx 17124  df-base 17142  df-ress 17171  df-plusg 17207  df-mulr 17208  df-sca 17210  df-vsca 17211  df-ip 17212  df-tset 17213  df-ple 17214  df-ds 17216  df-hom 17218  df-cco 17219  df-0g 17384  df-gsum 17385  df-prds 17390  df-pws 17392  df-mre 17527  df-mrc 17528  df-acs 17530  df-mgm 18558  df-sgrp 18607  df-mnd 18623  df-mhm 18668  df-submnd 18669  df-grp 18819  df-minusg 18820  df-sbg 18821  df-mulg 18946  df-subg 18998  df-ghm 19085  df-cntz 19176  df-cmn 19645  df-abl 19646  df-mgp 19983  df-ur 20000  df-ring 20052  df-subrg 20354  df-lmod 20466  df-lss 20536  df-sra 20778  df-rgmod 20779  df-dsmm 21279  df-frlm 21294  df-mamu 21878  df-mat 21900  df-mvmul 22035
This theorem is referenced by:  slesolinv  22174  slesolinvbi  22175
  Copyright terms: Public domain W3C validator