Step | Hyp | Ref
| Expression |
1 | | 1mavmul.a |
. . 3
⊢ 𝐴 = (𝑁 Mat 𝑅) |
2 | | 1mavmul.t |
. . 3
⊢ · =
(𝑅 maVecMul 〈𝑁, 𝑁〉) |
3 | | 1mavmul.b |
. . 3
⊢ 𝐵 = (Base‘𝑅) |
4 | | eqid 2738 |
. . 3
⊢
(.r‘𝑅) = (.r‘𝑅) |
5 | | 1mavmul.r |
. . 3
⊢ (𝜑 → 𝑅 ∈ Ring) |
6 | | 1mavmul.n |
. . 3
⊢ (𝜑 → 𝑁 ∈ Fin) |
7 | | eqid 2738 |
. . . . 5
⊢
(Base‘𝐴) =
(Base‘𝐴) |
8 | 1 | fveq2i 6777 |
. . . . 5
⊢
(1r‘𝐴) = (1r‘(𝑁 Mat 𝑅)) |
9 | 1, 7, 8 | mat1bas 21598 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) →
(1r‘𝐴)
∈ (Base‘𝐴)) |
10 | 5, 6, 9 | syl2anc 584 |
. . 3
⊢ (𝜑 → (1r‘𝐴) ∈ (Base‘𝐴)) |
11 | | 1mavmul.y |
. . 3
⊢ (𝜑 → 𝑌 ∈ (𝐵 ↑m 𝑁)) |
12 | 1, 2, 3, 4, 5, 6, 10, 11 | mavmulval 21694 |
. 2
⊢ (𝜑 →
((1r‘𝐴)
·
𝑌) = (𝑖 ∈ 𝑁 ↦ (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖(1r‘𝐴)𝑗)(.r‘𝑅)(𝑌‘𝑗)))))) |
13 | | eqid 2738 |
. . . . . . . . . 10
⊢
(1r‘𝑅) = (1r‘𝑅) |
14 | | eqid 2738 |
. . . . . . . . . 10
⊢
(0g‘𝑅) = (0g‘𝑅) |
15 | 1, 13, 14 | mat1 21596 |
. . . . . . . . 9
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) →
(1r‘𝐴) =
(𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ if(𝑥 = 𝑦, (1r‘𝑅), (0g‘𝑅)))) |
16 | 6, 5, 15 | syl2anc 584 |
. . . . . . . 8
⊢ (𝜑 → (1r‘𝐴) = (𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ if(𝑥 = 𝑦, (1r‘𝑅), (0g‘𝑅)))) |
17 | 16 | oveqdr 7303 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑁) → (𝑖(1r‘𝐴)𝑗) = (𝑖(𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ if(𝑥 = 𝑦, (1r‘𝑅), (0g‘𝑅)))𝑗)) |
18 | 17 | oveq1d 7290 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑁) → ((𝑖(1r‘𝐴)𝑗)(.r‘𝑅)(𝑌‘𝑗)) = ((𝑖(𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ if(𝑥 = 𝑦, (1r‘𝑅), (0g‘𝑅)))𝑗)(.r‘𝑅)(𝑌‘𝑗))) |
19 | 18 | mpteq2dv 5176 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑁) → (𝑗 ∈ 𝑁 ↦ ((𝑖(1r‘𝐴)𝑗)(.r‘𝑅)(𝑌‘𝑗))) = (𝑗 ∈ 𝑁 ↦ ((𝑖(𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ if(𝑥 = 𝑦, (1r‘𝑅), (0g‘𝑅)))𝑗)(.r‘𝑅)(𝑌‘𝑗)))) |
20 | 19 | oveq2d 7291 |
. . . 4
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑁) → (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖(1r‘𝐴)𝑗)(.r‘𝑅)(𝑌‘𝑗)))) = (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖(𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ if(𝑥 = 𝑦, (1r‘𝑅), (0g‘𝑅)))𝑗)(.r‘𝑅)(𝑌‘𝑗))))) |
21 | | eqidd 2739 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑁) ∧ 𝑗 ∈ 𝑁) → (𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ if(𝑥 = 𝑦, (1r‘𝑅), (0g‘𝑅))) = (𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ if(𝑥 = 𝑦, (1r‘𝑅), (0g‘𝑅)))) |
22 | | eqeq12 2755 |
. . . . . . . . . . 11
⊢ ((𝑥 = 𝑖 ∧ 𝑦 = 𝑗) → (𝑥 = 𝑦 ↔ 𝑖 = 𝑗)) |
23 | 22 | ifbid 4482 |
. . . . . . . . . 10
⊢ ((𝑥 = 𝑖 ∧ 𝑦 = 𝑗) → if(𝑥 = 𝑦, (1r‘𝑅), (0g‘𝑅)) = if(𝑖 = 𝑗, (1r‘𝑅), (0g‘𝑅))) |
24 | 23 | adantl 482 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑖 ∈ 𝑁) ∧ 𝑗 ∈ 𝑁) ∧ (𝑥 = 𝑖 ∧ 𝑦 = 𝑗)) → if(𝑥 = 𝑦, (1r‘𝑅), (0g‘𝑅)) = if(𝑖 = 𝑗, (1r‘𝑅), (0g‘𝑅))) |
25 | | simpr 485 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑁) → 𝑖 ∈ 𝑁) |
26 | 25 | adantr 481 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑁) ∧ 𝑗 ∈ 𝑁) → 𝑖 ∈ 𝑁) |
27 | | simpr 485 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑁) ∧ 𝑗 ∈ 𝑁) → 𝑗 ∈ 𝑁) |
28 | | fvexd 6789 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑁) ∧ 𝑗 ∈ 𝑁) → (1r‘𝑅) ∈ V) |
29 | | fvexd 6789 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑁) ∧ 𝑗 ∈ 𝑁) → (0g‘𝑅) ∈ V) |
30 | 28, 29 | ifcld 4505 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑁) ∧ 𝑗 ∈ 𝑁) → if(𝑖 = 𝑗, (1r‘𝑅), (0g‘𝑅)) ∈ V) |
31 | 21, 24, 26, 27, 30 | ovmpod 7425 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑁) ∧ 𝑗 ∈ 𝑁) → (𝑖(𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ if(𝑥 = 𝑦, (1r‘𝑅), (0g‘𝑅)))𝑗) = if(𝑖 = 𝑗, (1r‘𝑅), (0g‘𝑅))) |
32 | 31 | oveq1d 7290 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑁) ∧ 𝑗 ∈ 𝑁) → ((𝑖(𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ if(𝑥 = 𝑦, (1r‘𝑅), (0g‘𝑅)))𝑗)(.r‘𝑅)(𝑌‘𝑗)) = (if(𝑖 = 𝑗, (1r‘𝑅), (0g‘𝑅))(.r‘𝑅)(𝑌‘𝑗))) |
33 | | iftrue 4465 |
. . . . . . . . . . . 12
⊢ (𝑖 = 𝑗 → if(𝑖 = 𝑗, (1r‘𝑅), (0g‘𝑅)) = (1r‘𝑅)) |
34 | 33 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝑖 = 𝑗 ∧ ((𝜑 ∧ 𝑖 ∈ 𝑁) ∧ 𝑗 ∈ 𝑁)) → if(𝑖 = 𝑗, (1r‘𝑅), (0g‘𝑅)) = (1r‘𝑅)) |
35 | 34 | oveq1d 7290 |
. . . . . . . . . 10
⊢ ((𝑖 = 𝑗 ∧ ((𝜑 ∧ 𝑖 ∈ 𝑁) ∧ 𝑗 ∈ 𝑁)) → (if(𝑖 = 𝑗, (1r‘𝑅), (0g‘𝑅))(.r‘𝑅)(𝑌‘𝑗)) = ((1r‘𝑅)(.r‘𝑅)(𝑌‘𝑗))) |
36 | 5 | adantr 481 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑁) → 𝑅 ∈ Ring) |
37 | 36 | adantr 481 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑁) ∧ 𝑗 ∈ 𝑁) → 𝑅 ∈ Ring) |
38 | 3 | fvexi 6788 |
. . . . . . . . . . . . . . . . . 18
⊢ 𝐵 ∈ V |
39 | 38 | a1i 11 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝐵 ∈ V) |
40 | 39, 6 | elmapd 8629 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝑌 ∈ (𝐵 ↑m 𝑁) ↔ 𝑌:𝑁⟶𝐵)) |
41 | | ffvelrn 6959 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑌:𝑁⟶𝐵 ∧ 𝑗 ∈ 𝑁) → (𝑌‘𝑗) ∈ 𝐵) |
42 | 41 | ex 413 |
. . . . . . . . . . . . . . . 16
⊢ (𝑌:𝑁⟶𝐵 → (𝑗 ∈ 𝑁 → (𝑌‘𝑗) ∈ 𝐵)) |
43 | 40, 42 | syl6bi 252 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝑌 ∈ (𝐵 ↑m 𝑁) → (𝑗 ∈ 𝑁 → (𝑌‘𝑗) ∈ 𝐵))) |
44 | 11, 43 | mpd 15 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑗 ∈ 𝑁 → (𝑌‘𝑗) ∈ 𝐵)) |
45 | 44 | adantr 481 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑁) → (𝑗 ∈ 𝑁 → (𝑌‘𝑗) ∈ 𝐵)) |
46 | 45 | imp 407 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑁) ∧ 𝑗 ∈ 𝑁) → (𝑌‘𝑗) ∈ 𝐵) |
47 | 3, 4, 13 | ringlidm 19810 |
. . . . . . . . . . . 12
⊢ ((𝑅 ∈ Ring ∧ (𝑌‘𝑗) ∈ 𝐵) → ((1r‘𝑅)(.r‘𝑅)(𝑌‘𝑗)) = (𝑌‘𝑗)) |
48 | 37, 46, 47 | syl2anc 584 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑁) ∧ 𝑗 ∈ 𝑁) → ((1r‘𝑅)(.r‘𝑅)(𝑌‘𝑗)) = (𝑌‘𝑗)) |
49 | 48 | adantl 482 |
. . . . . . . . . 10
⊢ ((𝑖 = 𝑗 ∧ ((𝜑 ∧ 𝑖 ∈ 𝑁) ∧ 𝑗 ∈ 𝑁)) → ((1r‘𝑅)(.r‘𝑅)(𝑌‘𝑗)) = (𝑌‘𝑗)) |
50 | | fveq2 6774 |
. . . . . . . . . . . 12
⊢ (𝑗 = 𝑖 → (𝑌‘𝑗) = (𝑌‘𝑖)) |
51 | 50 | equcoms 2023 |
. . . . . . . . . . 11
⊢ (𝑖 = 𝑗 → (𝑌‘𝑗) = (𝑌‘𝑖)) |
52 | 51 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝑖 = 𝑗 ∧ ((𝜑 ∧ 𝑖 ∈ 𝑁) ∧ 𝑗 ∈ 𝑁)) → (𝑌‘𝑗) = (𝑌‘𝑖)) |
53 | 35, 49, 52 | 3eqtrd 2782 |
. . . . . . . . 9
⊢ ((𝑖 = 𝑗 ∧ ((𝜑 ∧ 𝑖 ∈ 𝑁) ∧ 𝑗 ∈ 𝑁)) → (if(𝑖 = 𝑗, (1r‘𝑅), (0g‘𝑅))(.r‘𝑅)(𝑌‘𝑗)) = (𝑌‘𝑖)) |
54 | | iftrue 4465 |
. . . . . . . . . . 11
⊢ (𝑗 = 𝑖 → if(𝑗 = 𝑖, (𝑌‘𝑖), (0g‘𝑅)) = (𝑌‘𝑖)) |
55 | 54 | equcoms 2023 |
. . . . . . . . . 10
⊢ (𝑖 = 𝑗 → if(𝑗 = 𝑖, (𝑌‘𝑖), (0g‘𝑅)) = (𝑌‘𝑖)) |
56 | 55 | adantr 481 |
. . . . . . . . 9
⊢ ((𝑖 = 𝑗 ∧ ((𝜑 ∧ 𝑖 ∈ 𝑁) ∧ 𝑗 ∈ 𝑁)) → if(𝑗 = 𝑖, (𝑌‘𝑖), (0g‘𝑅)) = (𝑌‘𝑖)) |
57 | 53, 56 | eqtr4d 2781 |
. . . . . . . 8
⊢ ((𝑖 = 𝑗 ∧ ((𝜑 ∧ 𝑖 ∈ 𝑁) ∧ 𝑗 ∈ 𝑁)) → (if(𝑖 = 𝑗, (1r‘𝑅), (0g‘𝑅))(.r‘𝑅)(𝑌‘𝑗)) = if(𝑗 = 𝑖, (𝑌‘𝑖), (0g‘𝑅))) |
58 | | iffalse 4468 |
. . . . . . . . . . 11
⊢ (¬
𝑖 = 𝑗 → if(𝑖 = 𝑗, (1r‘𝑅), (0g‘𝑅)) = (0g‘𝑅)) |
59 | 58 | oveq1d 7290 |
. . . . . . . . . 10
⊢ (¬
𝑖 = 𝑗 → (if(𝑖 = 𝑗, (1r‘𝑅), (0g‘𝑅))(.r‘𝑅)(𝑌‘𝑗)) = ((0g‘𝑅)(.r‘𝑅)(𝑌‘𝑗))) |
60 | 59 | adantr 481 |
. . . . . . . . 9
⊢ ((¬
𝑖 = 𝑗 ∧ ((𝜑 ∧ 𝑖 ∈ 𝑁) ∧ 𝑗 ∈ 𝑁)) → (if(𝑖 = 𝑗, (1r‘𝑅), (0g‘𝑅))(.r‘𝑅)(𝑌‘𝑗)) = ((0g‘𝑅)(.r‘𝑅)(𝑌‘𝑗))) |
61 | 3, 4, 14 | ringlz 19826 |
. . . . . . . . . . 11
⊢ ((𝑅 ∈ Ring ∧ (𝑌‘𝑗) ∈ 𝐵) → ((0g‘𝑅)(.r‘𝑅)(𝑌‘𝑗)) = (0g‘𝑅)) |
62 | 37, 46, 61 | syl2anc 584 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑁) ∧ 𝑗 ∈ 𝑁) → ((0g‘𝑅)(.r‘𝑅)(𝑌‘𝑗)) = (0g‘𝑅)) |
63 | 62 | adantl 482 |
. . . . . . . . 9
⊢ ((¬
𝑖 = 𝑗 ∧ ((𝜑 ∧ 𝑖 ∈ 𝑁) ∧ 𝑗 ∈ 𝑁)) → ((0g‘𝑅)(.r‘𝑅)(𝑌‘𝑗)) = (0g‘𝑅)) |
64 | | eqcom 2745 |
. . . . . . . . . . . 12
⊢ (𝑖 = 𝑗 ↔ 𝑗 = 𝑖) |
65 | | iffalse 4468 |
. . . . . . . . . . . 12
⊢ (¬
𝑗 = 𝑖 → if(𝑗 = 𝑖, (𝑌‘𝑖), (0g‘𝑅)) = (0g‘𝑅)) |
66 | 64, 65 | sylnbi 330 |
. . . . . . . . . . 11
⊢ (¬
𝑖 = 𝑗 → if(𝑗 = 𝑖, (𝑌‘𝑖), (0g‘𝑅)) = (0g‘𝑅)) |
67 | 66 | eqcomd 2744 |
. . . . . . . . . 10
⊢ (¬
𝑖 = 𝑗 → (0g‘𝑅) = if(𝑗 = 𝑖, (𝑌‘𝑖), (0g‘𝑅))) |
68 | 67 | adantr 481 |
. . . . . . . . 9
⊢ ((¬
𝑖 = 𝑗 ∧ ((𝜑 ∧ 𝑖 ∈ 𝑁) ∧ 𝑗 ∈ 𝑁)) → (0g‘𝑅) = if(𝑗 = 𝑖, (𝑌‘𝑖), (0g‘𝑅))) |
69 | 60, 63, 68 | 3eqtrd 2782 |
. . . . . . . 8
⊢ ((¬
𝑖 = 𝑗 ∧ ((𝜑 ∧ 𝑖 ∈ 𝑁) ∧ 𝑗 ∈ 𝑁)) → (if(𝑖 = 𝑗, (1r‘𝑅), (0g‘𝑅))(.r‘𝑅)(𝑌‘𝑗)) = if(𝑗 = 𝑖, (𝑌‘𝑖), (0g‘𝑅))) |
70 | 57, 69 | pm2.61ian 809 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑁) ∧ 𝑗 ∈ 𝑁) → (if(𝑖 = 𝑗, (1r‘𝑅), (0g‘𝑅))(.r‘𝑅)(𝑌‘𝑗)) = if(𝑗 = 𝑖, (𝑌‘𝑖), (0g‘𝑅))) |
71 | 32, 70 | eqtrd 2778 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑁) ∧ 𝑗 ∈ 𝑁) → ((𝑖(𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ if(𝑥 = 𝑦, (1r‘𝑅), (0g‘𝑅)))𝑗)(.r‘𝑅)(𝑌‘𝑗)) = if(𝑗 = 𝑖, (𝑌‘𝑖), (0g‘𝑅))) |
72 | 71 | mpteq2dva 5174 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑁) → (𝑗 ∈ 𝑁 ↦ ((𝑖(𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ if(𝑥 = 𝑦, (1r‘𝑅), (0g‘𝑅)))𝑗)(.r‘𝑅)(𝑌‘𝑗))) = (𝑗 ∈ 𝑁 ↦ if(𝑗 = 𝑖, (𝑌‘𝑖), (0g‘𝑅)))) |
73 | 72 | oveq2d 7291 |
. . . 4
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑁) → (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖(𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ if(𝑥 = 𝑦, (1r‘𝑅), (0g‘𝑅)))𝑗)(.r‘𝑅)(𝑌‘𝑗)))) = (𝑅 Σg (𝑗 ∈ 𝑁 ↦ if(𝑗 = 𝑖, (𝑌‘𝑖), (0g‘𝑅))))) |
74 | | ringmnd 19793 |
. . . . . . 7
⊢ (𝑅 ∈ Ring → 𝑅 ∈ Mnd) |
75 | 5, 74 | syl 17 |
. . . . . 6
⊢ (𝜑 → 𝑅 ∈ Mnd) |
76 | 75 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑁) → 𝑅 ∈ Mnd) |
77 | 6 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑁) → 𝑁 ∈ Fin) |
78 | | eqid 2738 |
. . . . 5
⊢ (𝑗 ∈ 𝑁 ↦ if(𝑗 = 𝑖, (𝑌‘𝑖), (0g‘𝑅))) = (𝑗 ∈ 𝑁 ↦ if(𝑗 = 𝑖, (𝑌‘𝑖), (0g‘𝑅))) |
79 | | ffvelrn 6959 |
. . . . . . . . . 10
⊢ ((𝑌:𝑁⟶𝐵 ∧ 𝑖 ∈ 𝑁) → (𝑌‘𝑖) ∈ 𝐵) |
80 | 79, 3 | eleqtrdi 2849 |
. . . . . . . . 9
⊢ ((𝑌:𝑁⟶𝐵 ∧ 𝑖 ∈ 𝑁) → (𝑌‘𝑖) ∈ (Base‘𝑅)) |
81 | 80 | ex 413 |
. . . . . . . 8
⊢ (𝑌:𝑁⟶𝐵 → (𝑖 ∈ 𝑁 → (𝑌‘𝑖) ∈ (Base‘𝑅))) |
82 | 40, 81 | syl6bi 252 |
. . . . . . 7
⊢ (𝜑 → (𝑌 ∈ (𝐵 ↑m 𝑁) → (𝑖 ∈ 𝑁 → (𝑌‘𝑖) ∈ (Base‘𝑅)))) |
83 | 11, 82 | mpd 15 |
. . . . . 6
⊢ (𝜑 → (𝑖 ∈ 𝑁 → (𝑌‘𝑖) ∈ (Base‘𝑅))) |
84 | 83 | imp 407 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑁) → (𝑌‘𝑖) ∈ (Base‘𝑅)) |
85 | 14, 76, 77, 25, 78, 84 | gsummptif1n0 19567 |
. . . 4
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑁) → (𝑅 Σg (𝑗 ∈ 𝑁 ↦ if(𝑗 = 𝑖, (𝑌‘𝑖), (0g‘𝑅)))) = (𝑌‘𝑖)) |
86 | 20, 73, 85 | 3eqtrd 2782 |
. . 3
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑁) → (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖(1r‘𝐴)𝑗)(.r‘𝑅)(𝑌‘𝑗)))) = (𝑌‘𝑖)) |
87 | 86 | mpteq2dva 5174 |
. 2
⊢ (𝜑 → (𝑖 ∈ 𝑁 ↦ (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖(1r‘𝐴)𝑗)(.r‘𝑅)(𝑌‘𝑗))))) = (𝑖 ∈ 𝑁 ↦ (𝑌‘𝑖))) |
88 | | ffn 6600 |
. . . . 5
⊢ (𝑌:𝑁⟶𝐵 → 𝑌 Fn 𝑁) |
89 | 40, 88 | syl6bi 252 |
. . . 4
⊢ (𝜑 → (𝑌 ∈ (𝐵 ↑m 𝑁) → 𝑌 Fn 𝑁)) |
90 | 11, 89 | mpd 15 |
. . 3
⊢ (𝜑 → 𝑌 Fn 𝑁) |
91 | | eqcom 2745 |
. . . 4
⊢ ((𝑖 ∈ 𝑁 ↦ (𝑌‘𝑖)) = 𝑌 ↔ 𝑌 = (𝑖 ∈ 𝑁 ↦ (𝑌‘𝑖))) |
92 | | dffn5 6828 |
. . . 4
⊢ (𝑌 Fn 𝑁 ↔ 𝑌 = (𝑖 ∈ 𝑁 ↦ (𝑌‘𝑖))) |
93 | 91, 92 | bitr4i 277 |
. . 3
⊢ ((𝑖 ∈ 𝑁 ↦ (𝑌‘𝑖)) = 𝑌 ↔ 𝑌 Fn 𝑁) |
94 | 90, 93 | sylibr 233 |
. 2
⊢ (𝜑 → (𝑖 ∈ 𝑁 ↦ (𝑌‘𝑖)) = 𝑌) |
95 | 12, 87, 94 | 3eqtrd 2782 |
1
⊢ (𝜑 →
((1r‘𝐴)
·
𝑌) = 𝑌) |