| Step | Hyp | Ref
| Expression |
| 1 | | 1mavmul.a |
. . 3
⊢ 𝐴 = (𝑁 Mat 𝑅) |
| 2 | | 1mavmul.t |
. . 3
⊢ · =
(𝑅 maVecMul 〈𝑁, 𝑁〉) |
| 3 | | 1mavmul.b |
. . 3
⊢ 𝐵 = (Base‘𝑅) |
| 4 | | eqid 2735 |
. . 3
⊢
(.r‘𝑅) = (.r‘𝑅) |
| 5 | | 1mavmul.r |
. . 3
⊢ (𝜑 → 𝑅 ∈ Ring) |
| 6 | | 1mavmul.n |
. . 3
⊢ (𝜑 → 𝑁 ∈ Fin) |
| 7 | | eqid 2735 |
. . . . 5
⊢
(Base‘𝐴) =
(Base‘𝐴) |
| 8 | 1 | fveq2i 6879 |
. . . . 5
⊢
(1r‘𝐴) = (1r‘(𝑁 Mat 𝑅)) |
| 9 | 1, 7, 8 | mat1bas 22387 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) →
(1r‘𝐴)
∈ (Base‘𝐴)) |
| 10 | 5, 6, 9 | syl2anc 584 |
. . 3
⊢ (𝜑 → (1r‘𝐴) ∈ (Base‘𝐴)) |
| 11 | | 1mavmul.y |
. . 3
⊢ (𝜑 → 𝑌 ∈ (𝐵 ↑m 𝑁)) |
| 12 | 1, 2, 3, 4, 5, 6, 10, 11 | mavmulval 22483 |
. 2
⊢ (𝜑 →
((1r‘𝐴)
·
𝑌) = (𝑖 ∈ 𝑁 ↦ (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖(1r‘𝐴)𝑗)(.r‘𝑅)(𝑌‘𝑗)))))) |
| 13 | | eqid 2735 |
. . . . . . . . . 10
⊢
(1r‘𝑅) = (1r‘𝑅) |
| 14 | | eqid 2735 |
. . . . . . . . . 10
⊢
(0g‘𝑅) = (0g‘𝑅) |
| 15 | 1, 13, 14 | mat1 22385 |
. . . . . . . . 9
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) →
(1r‘𝐴) =
(𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ if(𝑥 = 𝑦, (1r‘𝑅), (0g‘𝑅)))) |
| 16 | 6, 5, 15 | syl2anc 584 |
. . . . . . . 8
⊢ (𝜑 → (1r‘𝐴) = (𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ if(𝑥 = 𝑦, (1r‘𝑅), (0g‘𝑅)))) |
| 17 | 16 | oveqdr 7433 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑁) → (𝑖(1r‘𝐴)𝑗) = (𝑖(𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ if(𝑥 = 𝑦, (1r‘𝑅), (0g‘𝑅)))𝑗)) |
| 18 | 17 | oveq1d 7420 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑁) → ((𝑖(1r‘𝐴)𝑗)(.r‘𝑅)(𝑌‘𝑗)) = ((𝑖(𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ if(𝑥 = 𝑦, (1r‘𝑅), (0g‘𝑅)))𝑗)(.r‘𝑅)(𝑌‘𝑗))) |
| 19 | 18 | mpteq2dv 5215 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑁) → (𝑗 ∈ 𝑁 ↦ ((𝑖(1r‘𝐴)𝑗)(.r‘𝑅)(𝑌‘𝑗))) = (𝑗 ∈ 𝑁 ↦ ((𝑖(𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ if(𝑥 = 𝑦, (1r‘𝑅), (0g‘𝑅)))𝑗)(.r‘𝑅)(𝑌‘𝑗)))) |
| 20 | 19 | oveq2d 7421 |
. . . 4
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑁) → (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖(1r‘𝐴)𝑗)(.r‘𝑅)(𝑌‘𝑗)))) = (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖(𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ if(𝑥 = 𝑦, (1r‘𝑅), (0g‘𝑅)))𝑗)(.r‘𝑅)(𝑌‘𝑗))))) |
| 21 | | eqidd 2736 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑁) ∧ 𝑗 ∈ 𝑁) → (𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ if(𝑥 = 𝑦, (1r‘𝑅), (0g‘𝑅))) = (𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ if(𝑥 = 𝑦, (1r‘𝑅), (0g‘𝑅)))) |
| 22 | | eqeq12 2752 |
. . . . . . . . . . 11
⊢ ((𝑥 = 𝑖 ∧ 𝑦 = 𝑗) → (𝑥 = 𝑦 ↔ 𝑖 = 𝑗)) |
| 23 | 22 | ifbid 4524 |
. . . . . . . . . 10
⊢ ((𝑥 = 𝑖 ∧ 𝑦 = 𝑗) → if(𝑥 = 𝑦, (1r‘𝑅), (0g‘𝑅)) = if(𝑖 = 𝑗, (1r‘𝑅), (0g‘𝑅))) |
| 24 | 23 | adantl 481 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑖 ∈ 𝑁) ∧ 𝑗 ∈ 𝑁) ∧ (𝑥 = 𝑖 ∧ 𝑦 = 𝑗)) → if(𝑥 = 𝑦, (1r‘𝑅), (0g‘𝑅)) = if(𝑖 = 𝑗, (1r‘𝑅), (0g‘𝑅))) |
| 25 | | simpr 484 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑁) → 𝑖 ∈ 𝑁) |
| 26 | 25 | adantr 480 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑁) ∧ 𝑗 ∈ 𝑁) → 𝑖 ∈ 𝑁) |
| 27 | | simpr 484 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑁) ∧ 𝑗 ∈ 𝑁) → 𝑗 ∈ 𝑁) |
| 28 | | fvexd 6891 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑁) ∧ 𝑗 ∈ 𝑁) → (1r‘𝑅) ∈ V) |
| 29 | | fvexd 6891 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑁) ∧ 𝑗 ∈ 𝑁) → (0g‘𝑅) ∈ V) |
| 30 | 28, 29 | ifcld 4547 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑁) ∧ 𝑗 ∈ 𝑁) → if(𝑖 = 𝑗, (1r‘𝑅), (0g‘𝑅)) ∈ V) |
| 31 | 21, 24, 26, 27, 30 | ovmpod 7559 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑁) ∧ 𝑗 ∈ 𝑁) → (𝑖(𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ if(𝑥 = 𝑦, (1r‘𝑅), (0g‘𝑅)))𝑗) = if(𝑖 = 𝑗, (1r‘𝑅), (0g‘𝑅))) |
| 32 | 31 | oveq1d 7420 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑁) ∧ 𝑗 ∈ 𝑁) → ((𝑖(𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ if(𝑥 = 𝑦, (1r‘𝑅), (0g‘𝑅)))𝑗)(.r‘𝑅)(𝑌‘𝑗)) = (if(𝑖 = 𝑗, (1r‘𝑅), (0g‘𝑅))(.r‘𝑅)(𝑌‘𝑗))) |
| 33 | | iftrue 4506 |
. . . . . . . . . . . 12
⊢ (𝑖 = 𝑗 → if(𝑖 = 𝑗, (1r‘𝑅), (0g‘𝑅)) = (1r‘𝑅)) |
| 34 | 33 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝑖 = 𝑗 ∧ ((𝜑 ∧ 𝑖 ∈ 𝑁) ∧ 𝑗 ∈ 𝑁)) → if(𝑖 = 𝑗, (1r‘𝑅), (0g‘𝑅)) = (1r‘𝑅)) |
| 35 | 34 | oveq1d 7420 |
. . . . . . . . . 10
⊢ ((𝑖 = 𝑗 ∧ ((𝜑 ∧ 𝑖 ∈ 𝑁) ∧ 𝑗 ∈ 𝑁)) → (if(𝑖 = 𝑗, (1r‘𝑅), (0g‘𝑅))(.r‘𝑅)(𝑌‘𝑗)) = ((1r‘𝑅)(.r‘𝑅)(𝑌‘𝑗))) |
| 36 | 5 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑁) → 𝑅 ∈ Ring) |
| 37 | 36 | adantr 480 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑁) ∧ 𝑗 ∈ 𝑁) → 𝑅 ∈ Ring) |
| 38 | 3 | fvexi 6890 |
. . . . . . . . . . . . . . . . . 18
⊢ 𝐵 ∈ V |
| 39 | 38 | a1i 11 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝐵 ∈ V) |
| 40 | 39, 6 | elmapd 8854 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝑌 ∈ (𝐵 ↑m 𝑁) ↔ 𝑌:𝑁⟶𝐵)) |
| 41 | | ffvelcdm 7071 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑌:𝑁⟶𝐵 ∧ 𝑗 ∈ 𝑁) → (𝑌‘𝑗) ∈ 𝐵) |
| 42 | 41 | ex 412 |
. . . . . . . . . . . . . . . 16
⊢ (𝑌:𝑁⟶𝐵 → (𝑗 ∈ 𝑁 → (𝑌‘𝑗) ∈ 𝐵)) |
| 43 | 40, 42 | biimtrdi 253 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝑌 ∈ (𝐵 ↑m 𝑁) → (𝑗 ∈ 𝑁 → (𝑌‘𝑗) ∈ 𝐵))) |
| 44 | 11, 43 | mpd 15 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑗 ∈ 𝑁 → (𝑌‘𝑗) ∈ 𝐵)) |
| 45 | 44 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑁) → (𝑗 ∈ 𝑁 → (𝑌‘𝑗) ∈ 𝐵)) |
| 46 | 45 | imp 406 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑁) ∧ 𝑗 ∈ 𝑁) → (𝑌‘𝑗) ∈ 𝐵) |
| 47 | 3, 4, 13 | ringlidm 20229 |
. . . . . . . . . . . 12
⊢ ((𝑅 ∈ Ring ∧ (𝑌‘𝑗) ∈ 𝐵) → ((1r‘𝑅)(.r‘𝑅)(𝑌‘𝑗)) = (𝑌‘𝑗)) |
| 48 | 37, 46, 47 | syl2anc 584 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑁) ∧ 𝑗 ∈ 𝑁) → ((1r‘𝑅)(.r‘𝑅)(𝑌‘𝑗)) = (𝑌‘𝑗)) |
| 49 | 48 | adantl 481 |
. . . . . . . . . 10
⊢ ((𝑖 = 𝑗 ∧ ((𝜑 ∧ 𝑖 ∈ 𝑁) ∧ 𝑗 ∈ 𝑁)) → ((1r‘𝑅)(.r‘𝑅)(𝑌‘𝑗)) = (𝑌‘𝑗)) |
| 50 | | fveq2 6876 |
. . . . . . . . . . . 12
⊢ (𝑗 = 𝑖 → (𝑌‘𝑗) = (𝑌‘𝑖)) |
| 51 | 50 | equcoms 2019 |
. . . . . . . . . . 11
⊢ (𝑖 = 𝑗 → (𝑌‘𝑗) = (𝑌‘𝑖)) |
| 52 | 51 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝑖 = 𝑗 ∧ ((𝜑 ∧ 𝑖 ∈ 𝑁) ∧ 𝑗 ∈ 𝑁)) → (𝑌‘𝑗) = (𝑌‘𝑖)) |
| 53 | 35, 49, 52 | 3eqtrd 2774 |
. . . . . . . . 9
⊢ ((𝑖 = 𝑗 ∧ ((𝜑 ∧ 𝑖 ∈ 𝑁) ∧ 𝑗 ∈ 𝑁)) → (if(𝑖 = 𝑗, (1r‘𝑅), (0g‘𝑅))(.r‘𝑅)(𝑌‘𝑗)) = (𝑌‘𝑖)) |
| 54 | | iftrue 4506 |
. . . . . . . . . . 11
⊢ (𝑗 = 𝑖 → if(𝑗 = 𝑖, (𝑌‘𝑖), (0g‘𝑅)) = (𝑌‘𝑖)) |
| 55 | 54 | equcoms 2019 |
. . . . . . . . . 10
⊢ (𝑖 = 𝑗 → if(𝑗 = 𝑖, (𝑌‘𝑖), (0g‘𝑅)) = (𝑌‘𝑖)) |
| 56 | 55 | adantr 480 |
. . . . . . . . 9
⊢ ((𝑖 = 𝑗 ∧ ((𝜑 ∧ 𝑖 ∈ 𝑁) ∧ 𝑗 ∈ 𝑁)) → if(𝑗 = 𝑖, (𝑌‘𝑖), (0g‘𝑅)) = (𝑌‘𝑖)) |
| 57 | 53, 56 | eqtr4d 2773 |
. . . . . . . 8
⊢ ((𝑖 = 𝑗 ∧ ((𝜑 ∧ 𝑖 ∈ 𝑁) ∧ 𝑗 ∈ 𝑁)) → (if(𝑖 = 𝑗, (1r‘𝑅), (0g‘𝑅))(.r‘𝑅)(𝑌‘𝑗)) = if(𝑗 = 𝑖, (𝑌‘𝑖), (0g‘𝑅))) |
| 58 | | iffalse 4509 |
. . . . . . . . . . 11
⊢ (¬
𝑖 = 𝑗 → if(𝑖 = 𝑗, (1r‘𝑅), (0g‘𝑅)) = (0g‘𝑅)) |
| 59 | 58 | oveq1d 7420 |
. . . . . . . . . 10
⊢ (¬
𝑖 = 𝑗 → (if(𝑖 = 𝑗, (1r‘𝑅), (0g‘𝑅))(.r‘𝑅)(𝑌‘𝑗)) = ((0g‘𝑅)(.r‘𝑅)(𝑌‘𝑗))) |
| 60 | 59 | adantr 480 |
. . . . . . . . 9
⊢ ((¬
𝑖 = 𝑗 ∧ ((𝜑 ∧ 𝑖 ∈ 𝑁) ∧ 𝑗 ∈ 𝑁)) → (if(𝑖 = 𝑗, (1r‘𝑅), (0g‘𝑅))(.r‘𝑅)(𝑌‘𝑗)) = ((0g‘𝑅)(.r‘𝑅)(𝑌‘𝑗))) |
| 61 | 3, 4, 14 | ringlz 20253 |
. . . . . . . . . . 11
⊢ ((𝑅 ∈ Ring ∧ (𝑌‘𝑗) ∈ 𝐵) → ((0g‘𝑅)(.r‘𝑅)(𝑌‘𝑗)) = (0g‘𝑅)) |
| 62 | 37, 46, 61 | syl2anc 584 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑁) ∧ 𝑗 ∈ 𝑁) → ((0g‘𝑅)(.r‘𝑅)(𝑌‘𝑗)) = (0g‘𝑅)) |
| 63 | 62 | adantl 481 |
. . . . . . . . 9
⊢ ((¬
𝑖 = 𝑗 ∧ ((𝜑 ∧ 𝑖 ∈ 𝑁) ∧ 𝑗 ∈ 𝑁)) → ((0g‘𝑅)(.r‘𝑅)(𝑌‘𝑗)) = (0g‘𝑅)) |
| 64 | | eqcom 2742 |
. . . . . . . . . . . 12
⊢ (𝑖 = 𝑗 ↔ 𝑗 = 𝑖) |
| 65 | | iffalse 4509 |
. . . . . . . . . . . 12
⊢ (¬
𝑗 = 𝑖 → if(𝑗 = 𝑖, (𝑌‘𝑖), (0g‘𝑅)) = (0g‘𝑅)) |
| 66 | 64, 65 | sylnbi 330 |
. . . . . . . . . . 11
⊢ (¬
𝑖 = 𝑗 → if(𝑗 = 𝑖, (𝑌‘𝑖), (0g‘𝑅)) = (0g‘𝑅)) |
| 67 | 66 | eqcomd 2741 |
. . . . . . . . . 10
⊢ (¬
𝑖 = 𝑗 → (0g‘𝑅) = if(𝑗 = 𝑖, (𝑌‘𝑖), (0g‘𝑅))) |
| 68 | 67 | adantr 480 |
. . . . . . . . 9
⊢ ((¬
𝑖 = 𝑗 ∧ ((𝜑 ∧ 𝑖 ∈ 𝑁) ∧ 𝑗 ∈ 𝑁)) → (0g‘𝑅) = if(𝑗 = 𝑖, (𝑌‘𝑖), (0g‘𝑅))) |
| 69 | 60, 63, 68 | 3eqtrd 2774 |
. . . . . . . 8
⊢ ((¬
𝑖 = 𝑗 ∧ ((𝜑 ∧ 𝑖 ∈ 𝑁) ∧ 𝑗 ∈ 𝑁)) → (if(𝑖 = 𝑗, (1r‘𝑅), (0g‘𝑅))(.r‘𝑅)(𝑌‘𝑗)) = if(𝑗 = 𝑖, (𝑌‘𝑖), (0g‘𝑅))) |
| 70 | 57, 69 | pm2.61ian 811 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑁) ∧ 𝑗 ∈ 𝑁) → (if(𝑖 = 𝑗, (1r‘𝑅), (0g‘𝑅))(.r‘𝑅)(𝑌‘𝑗)) = if(𝑗 = 𝑖, (𝑌‘𝑖), (0g‘𝑅))) |
| 71 | 32, 70 | eqtrd 2770 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑁) ∧ 𝑗 ∈ 𝑁) → ((𝑖(𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ if(𝑥 = 𝑦, (1r‘𝑅), (0g‘𝑅)))𝑗)(.r‘𝑅)(𝑌‘𝑗)) = if(𝑗 = 𝑖, (𝑌‘𝑖), (0g‘𝑅))) |
| 72 | 71 | mpteq2dva 5214 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑁) → (𝑗 ∈ 𝑁 ↦ ((𝑖(𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ if(𝑥 = 𝑦, (1r‘𝑅), (0g‘𝑅)))𝑗)(.r‘𝑅)(𝑌‘𝑗))) = (𝑗 ∈ 𝑁 ↦ if(𝑗 = 𝑖, (𝑌‘𝑖), (0g‘𝑅)))) |
| 73 | 72 | oveq2d 7421 |
. . . 4
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑁) → (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖(𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ if(𝑥 = 𝑦, (1r‘𝑅), (0g‘𝑅)))𝑗)(.r‘𝑅)(𝑌‘𝑗)))) = (𝑅 Σg (𝑗 ∈ 𝑁 ↦ if(𝑗 = 𝑖, (𝑌‘𝑖), (0g‘𝑅))))) |
| 74 | | ringmnd 20203 |
. . . . . . 7
⊢ (𝑅 ∈ Ring → 𝑅 ∈ Mnd) |
| 75 | 5, 74 | syl 17 |
. . . . . 6
⊢ (𝜑 → 𝑅 ∈ Mnd) |
| 76 | 75 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑁) → 𝑅 ∈ Mnd) |
| 77 | 6 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑁) → 𝑁 ∈ Fin) |
| 78 | | eqid 2735 |
. . . . 5
⊢ (𝑗 ∈ 𝑁 ↦ if(𝑗 = 𝑖, (𝑌‘𝑖), (0g‘𝑅))) = (𝑗 ∈ 𝑁 ↦ if(𝑗 = 𝑖, (𝑌‘𝑖), (0g‘𝑅))) |
| 79 | | ffvelcdm 7071 |
. . . . . . . . . 10
⊢ ((𝑌:𝑁⟶𝐵 ∧ 𝑖 ∈ 𝑁) → (𝑌‘𝑖) ∈ 𝐵) |
| 80 | 79, 3 | eleqtrdi 2844 |
. . . . . . . . 9
⊢ ((𝑌:𝑁⟶𝐵 ∧ 𝑖 ∈ 𝑁) → (𝑌‘𝑖) ∈ (Base‘𝑅)) |
| 81 | 80 | ex 412 |
. . . . . . . 8
⊢ (𝑌:𝑁⟶𝐵 → (𝑖 ∈ 𝑁 → (𝑌‘𝑖) ∈ (Base‘𝑅))) |
| 82 | 40, 81 | biimtrdi 253 |
. . . . . . 7
⊢ (𝜑 → (𝑌 ∈ (𝐵 ↑m 𝑁) → (𝑖 ∈ 𝑁 → (𝑌‘𝑖) ∈ (Base‘𝑅)))) |
| 83 | 11, 82 | mpd 15 |
. . . . . 6
⊢ (𝜑 → (𝑖 ∈ 𝑁 → (𝑌‘𝑖) ∈ (Base‘𝑅))) |
| 84 | 83 | imp 406 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑁) → (𝑌‘𝑖) ∈ (Base‘𝑅)) |
| 85 | 14, 76, 77, 25, 78, 84 | gsummptif1n0 19947 |
. . . 4
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑁) → (𝑅 Σg (𝑗 ∈ 𝑁 ↦ if(𝑗 = 𝑖, (𝑌‘𝑖), (0g‘𝑅)))) = (𝑌‘𝑖)) |
| 86 | 20, 73, 85 | 3eqtrd 2774 |
. . 3
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑁) → (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖(1r‘𝐴)𝑗)(.r‘𝑅)(𝑌‘𝑗)))) = (𝑌‘𝑖)) |
| 87 | 86 | mpteq2dva 5214 |
. 2
⊢ (𝜑 → (𝑖 ∈ 𝑁 ↦ (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖(1r‘𝐴)𝑗)(.r‘𝑅)(𝑌‘𝑗))))) = (𝑖 ∈ 𝑁 ↦ (𝑌‘𝑖))) |
| 88 | | ffn 6706 |
. . . . 5
⊢ (𝑌:𝑁⟶𝐵 → 𝑌 Fn 𝑁) |
| 89 | 40, 88 | biimtrdi 253 |
. . . 4
⊢ (𝜑 → (𝑌 ∈ (𝐵 ↑m 𝑁) → 𝑌 Fn 𝑁)) |
| 90 | 11, 89 | mpd 15 |
. . 3
⊢ (𝜑 → 𝑌 Fn 𝑁) |
| 91 | | eqcom 2742 |
. . . 4
⊢ ((𝑖 ∈ 𝑁 ↦ (𝑌‘𝑖)) = 𝑌 ↔ 𝑌 = (𝑖 ∈ 𝑁 ↦ (𝑌‘𝑖))) |
| 92 | | dffn5 6937 |
. . . 4
⊢ (𝑌 Fn 𝑁 ↔ 𝑌 = (𝑖 ∈ 𝑁 ↦ (𝑌‘𝑖))) |
| 93 | 91, 92 | bitr4i 278 |
. . 3
⊢ ((𝑖 ∈ 𝑁 ↦ (𝑌‘𝑖)) = 𝑌 ↔ 𝑌 Fn 𝑁) |
| 94 | 90, 93 | sylibr 234 |
. 2
⊢ (𝜑 → (𝑖 ∈ 𝑁 ↦ (𝑌‘𝑖)) = 𝑌) |
| 95 | 12, 87, 94 | 3eqtrd 2774 |
1
⊢ (𝜑 →
((1r‘𝐴)
·
𝑌) = 𝑌) |