MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1mavmul Structured version   Visualization version   GIF version

Theorem 1mavmul 22461
Description: Multiplication of the identity NxN matrix with an N-dimensional vector results in the vector itself. (Contributed by AV, 9-Feb-2019.) (Revised by AV, 23-Feb-2019.)
Hypotheses
Ref Expression
1mavmul.a 𝐴 = (𝑁 Mat 𝑅)
1mavmul.b 𝐵 = (Base‘𝑅)
1mavmul.t · = (𝑅 maVecMul ⟨𝑁, 𝑁⟩)
1mavmul.r (𝜑𝑅 ∈ Ring)
1mavmul.n (𝜑𝑁 ∈ Fin)
1mavmul.y (𝜑𝑌 ∈ (𝐵m 𝑁))
Assertion
Ref Expression
1mavmul (𝜑 → ((1r𝐴) · 𝑌) = 𝑌)

Proof of Theorem 1mavmul
Dummy variables 𝑖 𝑗 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1mavmul.a . . 3 𝐴 = (𝑁 Mat 𝑅)
2 1mavmul.t . . 3 · = (𝑅 maVecMul ⟨𝑁, 𝑁⟩)
3 1mavmul.b . . 3 𝐵 = (Base‘𝑅)
4 eqid 2731 . . 3 (.r𝑅) = (.r𝑅)
5 1mavmul.r . . 3 (𝜑𝑅 ∈ Ring)
6 1mavmul.n . . 3 (𝜑𝑁 ∈ Fin)
7 eqid 2731 . . . . 5 (Base‘𝐴) = (Base‘𝐴)
81fveq2i 6825 . . . . 5 (1r𝐴) = (1r‘(𝑁 Mat 𝑅))
91, 7, 8mat1bas 22362 . . . 4 ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) → (1r𝐴) ∈ (Base‘𝐴))
105, 6, 9syl2anc 584 . . 3 (𝜑 → (1r𝐴) ∈ (Base‘𝐴))
11 1mavmul.y . . 3 (𝜑𝑌 ∈ (𝐵m 𝑁))
121, 2, 3, 4, 5, 6, 10, 11mavmulval 22458 . 2 (𝜑 → ((1r𝐴) · 𝑌) = (𝑖𝑁 ↦ (𝑅 Σg (𝑗𝑁 ↦ ((𝑖(1r𝐴)𝑗)(.r𝑅)(𝑌𝑗))))))
13 eqid 2731 . . . . . . . . . 10 (1r𝑅) = (1r𝑅)
14 eqid 2731 . . . . . . . . . 10 (0g𝑅) = (0g𝑅)
151, 13, 14mat1 22360 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (1r𝐴) = (𝑥𝑁, 𝑦𝑁 ↦ if(𝑥 = 𝑦, (1r𝑅), (0g𝑅))))
166, 5, 15syl2anc 584 . . . . . . . 8 (𝜑 → (1r𝐴) = (𝑥𝑁, 𝑦𝑁 ↦ if(𝑥 = 𝑦, (1r𝑅), (0g𝑅))))
1716oveqdr 7374 . . . . . . 7 ((𝜑𝑖𝑁) → (𝑖(1r𝐴)𝑗) = (𝑖(𝑥𝑁, 𝑦𝑁 ↦ if(𝑥 = 𝑦, (1r𝑅), (0g𝑅)))𝑗))
1817oveq1d 7361 . . . . . 6 ((𝜑𝑖𝑁) → ((𝑖(1r𝐴)𝑗)(.r𝑅)(𝑌𝑗)) = ((𝑖(𝑥𝑁, 𝑦𝑁 ↦ if(𝑥 = 𝑦, (1r𝑅), (0g𝑅)))𝑗)(.r𝑅)(𝑌𝑗)))
1918mpteq2dv 5185 . . . . 5 ((𝜑𝑖𝑁) → (𝑗𝑁 ↦ ((𝑖(1r𝐴)𝑗)(.r𝑅)(𝑌𝑗))) = (𝑗𝑁 ↦ ((𝑖(𝑥𝑁, 𝑦𝑁 ↦ if(𝑥 = 𝑦, (1r𝑅), (0g𝑅)))𝑗)(.r𝑅)(𝑌𝑗))))
2019oveq2d 7362 . . . 4 ((𝜑𝑖𝑁) → (𝑅 Σg (𝑗𝑁 ↦ ((𝑖(1r𝐴)𝑗)(.r𝑅)(𝑌𝑗)))) = (𝑅 Σg (𝑗𝑁 ↦ ((𝑖(𝑥𝑁, 𝑦𝑁 ↦ if(𝑥 = 𝑦, (1r𝑅), (0g𝑅)))𝑗)(.r𝑅)(𝑌𝑗)))))
21 eqidd 2732 . . . . . . . . 9 (((𝜑𝑖𝑁) ∧ 𝑗𝑁) → (𝑥𝑁, 𝑦𝑁 ↦ if(𝑥 = 𝑦, (1r𝑅), (0g𝑅))) = (𝑥𝑁, 𝑦𝑁 ↦ if(𝑥 = 𝑦, (1r𝑅), (0g𝑅))))
22 eqeq12 2748 . . . . . . . . . . 11 ((𝑥 = 𝑖𝑦 = 𝑗) → (𝑥 = 𝑦𝑖 = 𝑗))
2322ifbid 4499 . . . . . . . . . 10 ((𝑥 = 𝑖𝑦 = 𝑗) → if(𝑥 = 𝑦, (1r𝑅), (0g𝑅)) = if(𝑖 = 𝑗, (1r𝑅), (0g𝑅)))
2423adantl 481 . . . . . . . . 9 ((((𝜑𝑖𝑁) ∧ 𝑗𝑁) ∧ (𝑥 = 𝑖𝑦 = 𝑗)) → if(𝑥 = 𝑦, (1r𝑅), (0g𝑅)) = if(𝑖 = 𝑗, (1r𝑅), (0g𝑅)))
25 simpr 484 . . . . . . . . . 10 ((𝜑𝑖𝑁) → 𝑖𝑁)
2625adantr 480 . . . . . . . . 9 (((𝜑𝑖𝑁) ∧ 𝑗𝑁) → 𝑖𝑁)
27 simpr 484 . . . . . . . . 9 (((𝜑𝑖𝑁) ∧ 𝑗𝑁) → 𝑗𝑁)
28 fvexd 6837 . . . . . . . . . 10 (((𝜑𝑖𝑁) ∧ 𝑗𝑁) → (1r𝑅) ∈ V)
29 fvexd 6837 . . . . . . . . . 10 (((𝜑𝑖𝑁) ∧ 𝑗𝑁) → (0g𝑅) ∈ V)
3028, 29ifcld 4522 . . . . . . . . 9 (((𝜑𝑖𝑁) ∧ 𝑗𝑁) → if(𝑖 = 𝑗, (1r𝑅), (0g𝑅)) ∈ V)
3121, 24, 26, 27, 30ovmpod 7498 . . . . . . . 8 (((𝜑𝑖𝑁) ∧ 𝑗𝑁) → (𝑖(𝑥𝑁, 𝑦𝑁 ↦ if(𝑥 = 𝑦, (1r𝑅), (0g𝑅)))𝑗) = if(𝑖 = 𝑗, (1r𝑅), (0g𝑅)))
3231oveq1d 7361 . . . . . . 7 (((𝜑𝑖𝑁) ∧ 𝑗𝑁) → ((𝑖(𝑥𝑁, 𝑦𝑁 ↦ if(𝑥 = 𝑦, (1r𝑅), (0g𝑅)))𝑗)(.r𝑅)(𝑌𝑗)) = (if(𝑖 = 𝑗, (1r𝑅), (0g𝑅))(.r𝑅)(𝑌𝑗)))
33 iftrue 4481 . . . . . . . . . . . 12 (𝑖 = 𝑗 → if(𝑖 = 𝑗, (1r𝑅), (0g𝑅)) = (1r𝑅))
3433adantr 480 . . . . . . . . . . 11 ((𝑖 = 𝑗 ∧ ((𝜑𝑖𝑁) ∧ 𝑗𝑁)) → if(𝑖 = 𝑗, (1r𝑅), (0g𝑅)) = (1r𝑅))
3534oveq1d 7361 . . . . . . . . . 10 ((𝑖 = 𝑗 ∧ ((𝜑𝑖𝑁) ∧ 𝑗𝑁)) → (if(𝑖 = 𝑗, (1r𝑅), (0g𝑅))(.r𝑅)(𝑌𝑗)) = ((1r𝑅)(.r𝑅)(𝑌𝑗)))
365adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑖𝑁) → 𝑅 ∈ Ring)
3736adantr 480 . . . . . . . . . . . 12 (((𝜑𝑖𝑁) ∧ 𝑗𝑁) → 𝑅 ∈ Ring)
383fvexi 6836 . . . . . . . . . . . . . . . . . 18 𝐵 ∈ V
3938a1i 11 . . . . . . . . . . . . . . . . 17 (𝜑𝐵 ∈ V)
4039, 6elmapd 8764 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑌 ∈ (𝐵m 𝑁) ↔ 𝑌:𝑁𝐵))
41 ffvelcdm 7014 . . . . . . . . . . . . . . . . 17 ((𝑌:𝑁𝐵𝑗𝑁) → (𝑌𝑗) ∈ 𝐵)
4241ex 412 . . . . . . . . . . . . . . . 16 (𝑌:𝑁𝐵 → (𝑗𝑁 → (𝑌𝑗) ∈ 𝐵))
4340, 42biimtrdi 253 . . . . . . . . . . . . . . 15 (𝜑 → (𝑌 ∈ (𝐵m 𝑁) → (𝑗𝑁 → (𝑌𝑗) ∈ 𝐵)))
4411, 43mpd 15 . . . . . . . . . . . . . 14 (𝜑 → (𝑗𝑁 → (𝑌𝑗) ∈ 𝐵))
4544adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑖𝑁) → (𝑗𝑁 → (𝑌𝑗) ∈ 𝐵))
4645imp 406 . . . . . . . . . . . 12 (((𝜑𝑖𝑁) ∧ 𝑗𝑁) → (𝑌𝑗) ∈ 𝐵)
473, 4, 13ringlidm 20185 . . . . . . . . . . . 12 ((𝑅 ∈ Ring ∧ (𝑌𝑗) ∈ 𝐵) → ((1r𝑅)(.r𝑅)(𝑌𝑗)) = (𝑌𝑗))
4837, 46, 47syl2anc 584 . . . . . . . . . . 11 (((𝜑𝑖𝑁) ∧ 𝑗𝑁) → ((1r𝑅)(.r𝑅)(𝑌𝑗)) = (𝑌𝑗))
4948adantl 481 . . . . . . . . . 10 ((𝑖 = 𝑗 ∧ ((𝜑𝑖𝑁) ∧ 𝑗𝑁)) → ((1r𝑅)(.r𝑅)(𝑌𝑗)) = (𝑌𝑗))
50 fveq2 6822 . . . . . . . . . . . 12 (𝑗 = 𝑖 → (𝑌𝑗) = (𝑌𝑖))
5150equcoms 2021 . . . . . . . . . . 11 (𝑖 = 𝑗 → (𝑌𝑗) = (𝑌𝑖))
5251adantr 480 . . . . . . . . . 10 ((𝑖 = 𝑗 ∧ ((𝜑𝑖𝑁) ∧ 𝑗𝑁)) → (𝑌𝑗) = (𝑌𝑖))
5335, 49, 523eqtrd 2770 . . . . . . . . 9 ((𝑖 = 𝑗 ∧ ((𝜑𝑖𝑁) ∧ 𝑗𝑁)) → (if(𝑖 = 𝑗, (1r𝑅), (0g𝑅))(.r𝑅)(𝑌𝑗)) = (𝑌𝑖))
54 iftrue 4481 . . . . . . . . . . 11 (𝑗 = 𝑖 → if(𝑗 = 𝑖, (𝑌𝑖), (0g𝑅)) = (𝑌𝑖))
5554equcoms 2021 . . . . . . . . . 10 (𝑖 = 𝑗 → if(𝑗 = 𝑖, (𝑌𝑖), (0g𝑅)) = (𝑌𝑖))
5655adantr 480 . . . . . . . . 9 ((𝑖 = 𝑗 ∧ ((𝜑𝑖𝑁) ∧ 𝑗𝑁)) → if(𝑗 = 𝑖, (𝑌𝑖), (0g𝑅)) = (𝑌𝑖))
5753, 56eqtr4d 2769 . . . . . . . 8 ((𝑖 = 𝑗 ∧ ((𝜑𝑖𝑁) ∧ 𝑗𝑁)) → (if(𝑖 = 𝑗, (1r𝑅), (0g𝑅))(.r𝑅)(𝑌𝑗)) = if(𝑗 = 𝑖, (𝑌𝑖), (0g𝑅)))
58 iffalse 4484 . . . . . . . . . . 11 𝑖 = 𝑗 → if(𝑖 = 𝑗, (1r𝑅), (0g𝑅)) = (0g𝑅))
5958oveq1d 7361 . . . . . . . . . 10 𝑖 = 𝑗 → (if(𝑖 = 𝑗, (1r𝑅), (0g𝑅))(.r𝑅)(𝑌𝑗)) = ((0g𝑅)(.r𝑅)(𝑌𝑗)))
6059adantr 480 . . . . . . . . 9 ((¬ 𝑖 = 𝑗 ∧ ((𝜑𝑖𝑁) ∧ 𝑗𝑁)) → (if(𝑖 = 𝑗, (1r𝑅), (0g𝑅))(.r𝑅)(𝑌𝑗)) = ((0g𝑅)(.r𝑅)(𝑌𝑗)))
613, 4, 14ringlz 20209 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ (𝑌𝑗) ∈ 𝐵) → ((0g𝑅)(.r𝑅)(𝑌𝑗)) = (0g𝑅))
6237, 46, 61syl2anc 584 . . . . . . . . . 10 (((𝜑𝑖𝑁) ∧ 𝑗𝑁) → ((0g𝑅)(.r𝑅)(𝑌𝑗)) = (0g𝑅))
6362adantl 481 . . . . . . . . 9 ((¬ 𝑖 = 𝑗 ∧ ((𝜑𝑖𝑁) ∧ 𝑗𝑁)) → ((0g𝑅)(.r𝑅)(𝑌𝑗)) = (0g𝑅))
64 eqcom 2738 . . . . . . . . . . . 12 (𝑖 = 𝑗𝑗 = 𝑖)
65 iffalse 4484 . . . . . . . . . . . 12 𝑗 = 𝑖 → if(𝑗 = 𝑖, (𝑌𝑖), (0g𝑅)) = (0g𝑅))
6664, 65sylnbi 330 . . . . . . . . . . 11 𝑖 = 𝑗 → if(𝑗 = 𝑖, (𝑌𝑖), (0g𝑅)) = (0g𝑅))
6766eqcomd 2737 . . . . . . . . . 10 𝑖 = 𝑗 → (0g𝑅) = if(𝑗 = 𝑖, (𝑌𝑖), (0g𝑅)))
6867adantr 480 . . . . . . . . 9 ((¬ 𝑖 = 𝑗 ∧ ((𝜑𝑖𝑁) ∧ 𝑗𝑁)) → (0g𝑅) = if(𝑗 = 𝑖, (𝑌𝑖), (0g𝑅)))
6960, 63, 683eqtrd 2770 . . . . . . . 8 ((¬ 𝑖 = 𝑗 ∧ ((𝜑𝑖𝑁) ∧ 𝑗𝑁)) → (if(𝑖 = 𝑗, (1r𝑅), (0g𝑅))(.r𝑅)(𝑌𝑗)) = if(𝑗 = 𝑖, (𝑌𝑖), (0g𝑅)))
7057, 69pm2.61ian 811 . . . . . . 7 (((𝜑𝑖𝑁) ∧ 𝑗𝑁) → (if(𝑖 = 𝑗, (1r𝑅), (0g𝑅))(.r𝑅)(𝑌𝑗)) = if(𝑗 = 𝑖, (𝑌𝑖), (0g𝑅)))
7132, 70eqtrd 2766 . . . . . 6 (((𝜑𝑖𝑁) ∧ 𝑗𝑁) → ((𝑖(𝑥𝑁, 𝑦𝑁 ↦ if(𝑥 = 𝑦, (1r𝑅), (0g𝑅)))𝑗)(.r𝑅)(𝑌𝑗)) = if(𝑗 = 𝑖, (𝑌𝑖), (0g𝑅)))
7271mpteq2dva 5184 . . . . 5 ((𝜑𝑖𝑁) → (𝑗𝑁 ↦ ((𝑖(𝑥𝑁, 𝑦𝑁 ↦ if(𝑥 = 𝑦, (1r𝑅), (0g𝑅)))𝑗)(.r𝑅)(𝑌𝑗))) = (𝑗𝑁 ↦ if(𝑗 = 𝑖, (𝑌𝑖), (0g𝑅))))
7372oveq2d 7362 . . . 4 ((𝜑𝑖𝑁) → (𝑅 Σg (𝑗𝑁 ↦ ((𝑖(𝑥𝑁, 𝑦𝑁 ↦ if(𝑥 = 𝑦, (1r𝑅), (0g𝑅)))𝑗)(.r𝑅)(𝑌𝑗)))) = (𝑅 Σg (𝑗𝑁 ↦ if(𝑗 = 𝑖, (𝑌𝑖), (0g𝑅)))))
74 ringmnd 20159 . . . . . . 7 (𝑅 ∈ Ring → 𝑅 ∈ Mnd)
755, 74syl 17 . . . . . 6 (𝜑𝑅 ∈ Mnd)
7675adantr 480 . . . . 5 ((𝜑𝑖𝑁) → 𝑅 ∈ Mnd)
776adantr 480 . . . . 5 ((𝜑𝑖𝑁) → 𝑁 ∈ Fin)
78 eqid 2731 . . . . 5 (𝑗𝑁 ↦ if(𝑗 = 𝑖, (𝑌𝑖), (0g𝑅))) = (𝑗𝑁 ↦ if(𝑗 = 𝑖, (𝑌𝑖), (0g𝑅)))
79 ffvelcdm 7014 . . . . . . . . . 10 ((𝑌:𝑁𝐵𝑖𝑁) → (𝑌𝑖) ∈ 𝐵)
8079, 3eleqtrdi 2841 . . . . . . . . 9 ((𝑌:𝑁𝐵𝑖𝑁) → (𝑌𝑖) ∈ (Base‘𝑅))
8180ex 412 . . . . . . . 8 (𝑌:𝑁𝐵 → (𝑖𝑁 → (𝑌𝑖) ∈ (Base‘𝑅)))
8240, 81biimtrdi 253 . . . . . . 7 (𝜑 → (𝑌 ∈ (𝐵m 𝑁) → (𝑖𝑁 → (𝑌𝑖) ∈ (Base‘𝑅))))
8311, 82mpd 15 . . . . . 6 (𝜑 → (𝑖𝑁 → (𝑌𝑖) ∈ (Base‘𝑅)))
8483imp 406 . . . . 5 ((𝜑𝑖𝑁) → (𝑌𝑖) ∈ (Base‘𝑅))
8514, 76, 77, 25, 78, 84gsummptif1n0 19876 . . . 4 ((𝜑𝑖𝑁) → (𝑅 Σg (𝑗𝑁 ↦ if(𝑗 = 𝑖, (𝑌𝑖), (0g𝑅)))) = (𝑌𝑖))
8620, 73, 853eqtrd 2770 . . 3 ((𝜑𝑖𝑁) → (𝑅 Σg (𝑗𝑁 ↦ ((𝑖(1r𝐴)𝑗)(.r𝑅)(𝑌𝑗)))) = (𝑌𝑖))
8786mpteq2dva 5184 . 2 (𝜑 → (𝑖𝑁 ↦ (𝑅 Σg (𝑗𝑁 ↦ ((𝑖(1r𝐴)𝑗)(.r𝑅)(𝑌𝑗))))) = (𝑖𝑁 ↦ (𝑌𝑖)))
88 ffn 6651 . . . . 5 (𝑌:𝑁𝐵𝑌 Fn 𝑁)
8940, 88biimtrdi 253 . . . 4 (𝜑 → (𝑌 ∈ (𝐵m 𝑁) → 𝑌 Fn 𝑁))
9011, 89mpd 15 . . 3 (𝜑𝑌 Fn 𝑁)
91 eqcom 2738 . . . 4 ((𝑖𝑁 ↦ (𝑌𝑖)) = 𝑌𝑌 = (𝑖𝑁 ↦ (𝑌𝑖)))
92 dffn5 6880 . . . 4 (𝑌 Fn 𝑁𝑌 = (𝑖𝑁 ↦ (𝑌𝑖)))
9391, 92bitr4i 278 . . 3 ((𝑖𝑁 ↦ (𝑌𝑖)) = 𝑌𝑌 Fn 𝑁)
9490, 93sylibr 234 . 2 (𝜑 → (𝑖𝑁 ↦ (𝑌𝑖)) = 𝑌)
9512, 87, 943eqtrd 2770 1 (𝜑 → ((1r𝐴) · 𝑌) = 𝑌)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1541  wcel 2111  Vcvv 3436  ifcif 4475  cop 4582  cmpt 5172   Fn wfn 6476  wf 6477  cfv 6481  (class class class)co 7346  cmpo 7348  m cmap 8750  Fincfn 8869  Basecbs 17117  .rcmulr 17159  0gc0g 17340   Σg cgsu 17341  Mndcmnd 18639  1rcur 20097  Ringcrg 20149   Mat cmat 22320   maVecMul cmvmul 22453
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11059  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-mulcom 11067  ax-addass 11068  ax-mulass 11069  ax-distr 11070  ax-i2m1 11071  ax-1ne0 11072  ax-1rid 11073  ax-rnegex 11074  ax-rrecex 11075  ax-cnre 11076  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079  ax-pre-mulgt0 11080
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-tp 4581  df-op 4583  df-ot 4585  df-uni 4860  df-int 4898  df-iun 4943  df-iin 4944  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-se 5570  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-om 7797  df-1st 7921  df-2nd 7922  df-supp 8091  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-er 8622  df-map 8752  df-ixp 8822  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fsupp 9246  df-sup 9326  df-oi 9396  df-card 9829  df-pnf 11145  df-mnf 11146  df-xr 11147  df-ltxr 11148  df-le 11149  df-sub 11343  df-neg 11344  df-nn 12123  df-2 12185  df-3 12186  df-4 12187  df-5 12188  df-6 12189  df-7 12190  df-8 12191  df-9 12192  df-n0 12379  df-z 12466  df-dec 12586  df-uz 12730  df-fz 13405  df-fzo 13552  df-seq 13906  df-hash 14235  df-struct 17055  df-sets 17072  df-slot 17090  df-ndx 17102  df-base 17118  df-ress 17139  df-plusg 17171  df-mulr 17172  df-sca 17174  df-vsca 17175  df-ip 17176  df-tset 17177  df-ple 17178  df-ds 17180  df-hom 17182  df-cco 17183  df-0g 17342  df-gsum 17343  df-prds 17348  df-pws 17350  df-mre 17485  df-mrc 17486  df-acs 17488  df-mgm 18545  df-sgrp 18624  df-mnd 18640  df-mhm 18688  df-submnd 18689  df-grp 18846  df-minusg 18847  df-sbg 18848  df-mulg 18978  df-subg 19033  df-ghm 19123  df-cntz 19227  df-cmn 19692  df-abl 19693  df-mgp 20057  df-rng 20069  df-ur 20098  df-ring 20151  df-subrg 20483  df-lmod 20793  df-lss 20863  df-sra 21105  df-rgmod 21106  df-dsmm 21667  df-frlm 21682  df-mamu 22304  df-mat 22321  df-mvmul 22454
This theorem is referenced by:  slesolinv  22593  slesolinvbi  22594
  Copyright terms: Public domain W3C validator