| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ndmaovcom | Structured version Visualization version GIF version | ||
| Description: Any operation is commutative outside its domain, analogous to ndmovcom 7620. (Contributed by Alexander van der Vekens, 26-May-2017.) |
| Ref | Expression |
|---|---|
| ndmaov.1 | ⊢ dom 𝐹 = (𝑆 × 𝑆) |
| Ref | Expression |
|---|---|
| ndmaovcom | ⊢ (¬ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → ((𝐴𝐹𝐵)) = ((𝐵𝐹𝐴)) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opelxp 5721 | . . . 4 ⊢ (〈𝐴, 𝐵〉 ∈ (𝑆 × 𝑆) ↔ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆)) | |
| 2 | ndmaov.1 | . . . . . 6 ⊢ dom 𝐹 = (𝑆 × 𝑆) | |
| 3 | 2 | eqcomi 2746 | . . . . 5 ⊢ (𝑆 × 𝑆) = dom 𝐹 |
| 4 | 3 | eleq2i 2833 | . . . 4 ⊢ (〈𝐴, 𝐵〉 ∈ (𝑆 × 𝑆) ↔ 〈𝐴, 𝐵〉 ∈ dom 𝐹) |
| 5 | 1, 4 | bitr3i 277 | . . 3 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ↔ 〈𝐴, 𝐵〉 ∈ dom 𝐹) |
| 6 | ndmaov 47195 | . . 3 ⊢ (¬ 〈𝐴, 𝐵〉 ∈ dom 𝐹 → ((𝐴𝐹𝐵)) = V) | |
| 7 | 5, 6 | sylnbi 330 | . 2 ⊢ (¬ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → ((𝐴𝐹𝐵)) = V) |
| 8 | ancom 460 | . . . 4 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ↔ (𝐵 ∈ 𝑆 ∧ 𝐴 ∈ 𝑆)) | |
| 9 | opelxp 5721 | . . . 4 ⊢ (〈𝐵, 𝐴〉 ∈ (𝑆 × 𝑆) ↔ (𝐵 ∈ 𝑆 ∧ 𝐴 ∈ 𝑆)) | |
| 10 | 3 | eleq2i 2833 | . . . 4 ⊢ (〈𝐵, 𝐴〉 ∈ (𝑆 × 𝑆) ↔ 〈𝐵, 𝐴〉 ∈ dom 𝐹) |
| 11 | 8, 9, 10 | 3bitr2i 299 | . . 3 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ↔ 〈𝐵, 𝐴〉 ∈ dom 𝐹) |
| 12 | ndmaov 47195 | . . 3 ⊢ (¬ 〈𝐵, 𝐴〉 ∈ dom 𝐹 → ((𝐵𝐹𝐴)) = V) | |
| 13 | 11, 12 | sylnbi 330 | . 2 ⊢ (¬ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → ((𝐵𝐹𝐴)) = V) |
| 14 | 7, 13 | eqtr4d 2780 | 1 ⊢ (¬ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → ((𝐴𝐹𝐵)) = ((𝐵𝐹𝐴)) ) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 Vcvv 3480 〈cop 4632 × cxp 5683 dom cdm 5685 ((caov 47130 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pr 5432 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-int 4947 df-br 5144 df-opab 5206 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-res 5697 df-iota 6514 df-fun 6563 df-fv 6569 df-aiota 47097 df-dfat 47131 df-afv 47132 df-aov 47133 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |