| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ndmaovcom | Structured version Visualization version GIF version | ||
| Description: Any operation is commutative outside its domain, analogous to ndmovcom 7579. (Contributed by Alexander van der Vekens, 26-May-2017.) |
| Ref | Expression |
|---|---|
| ndmaov.1 | ⊢ dom 𝐹 = (𝑆 × 𝑆) |
| Ref | Expression |
|---|---|
| ndmaovcom | ⊢ (¬ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → ((𝐴𝐹𝐵)) = ((𝐵𝐹𝐴)) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opelxp 5677 | . . . 4 ⊢ (〈𝐴, 𝐵〉 ∈ (𝑆 × 𝑆) ↔ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆)) | |
| 2 | ndmaov.1 | . . . . . 6 ⊢ dom 𝐹 = (𝑆 × 𝑆) | |
| 3 | 2 | eqcomi 2739 | . . . . 5 ⊢ (𝑆 × 𝑆) = dom 𝐹 |
| 4 | 3 | eleq2i 2821 | . . . 4 ⊢ (〈𝐴, 𝐵〉 ∈ (𝑆 × 𝑆) ↔ 〈𝐴, 𝐵〉 ∈ dom 𝐹) |
| 5 | 1, 4 | bitr3i 277 | . . 3 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ↔ 〈𝐴, 𝐵〉 ∈ dom 𝐹) |
| 6 | ndmaov 47188 | . . 3 ⊢ (¬ 〈𝐴, 𝐵〉 ∈ dom 𝐹 → ((𝐴𝐹𝐵)) = V) | |
| 7 | 5, 6 | sylnbi 330 | . 2 ⊢ (¬ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → ((𝐴𝐹𝐵)) = V) |
| 8 | ancom 460 | . . . 4 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ↔ (𝐵 ∈ 𝑆 ∧ 𝐴 ∈ 𝑆)) | |
| 9 | opelxp 5677 | . . . 4 ⊢ (〈𝐵, 𝐴〉 ∈ (𝑆 × 𝑆) ↔ (𝐵 ∈ 𝑆 ∧ 𝐴 ∈ 𝑆)) | |
| 10 | 3 | eleq2i 2821 | . . . 4 ⊢ (〈𝐵, 𝐴〉 ∈ (𝑆 × 𝑆) ↔ 〈𝐵, 𝐴〉 ∈ dom 𝐹) |
| 11 | 8, 9, 10 | 3bitr2i 299 | . . 3 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ↔ 〈𝐵, 𝐴〉 ∈ dom 𝐹) |
| 12 | ndmaov 47188 | . . 3 ⊢ (¬ 〈𝐵, 𝐴〉 ∈ dom 𝐹 → ((𝐵𝐹𝐴)) = V) | |
| 13 | 11, 12 | sylnbi 330 | . 2 ⊢ (¬ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → ((𝐵𝐹𝐴)) = V) |
| 14 | 7, 13 | eqtr4d 2768 | 1 ⊢ (¬ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → ((𝐴𝐹𝐵)) = ((𝐵𝐹𝐴)) ) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3450 〈cop 4598 × cxp 5639 dom cdm 5641 ((caov 47123 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-br 5111 df-opab 5173 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-res 5653 df-iota 6467 df-fun 6516 df-fv 6522 df-aiota 47090 df-dfat 47124 df-afv 47125 df-aov 47126 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |