Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ndmaovcom Structured version   Visualization version   GIF version

Theorem ndmaovcom 45511
Description: Any operation is commutative outside its domain, analogous to ndmovcom 7546. (Contributed by Alexander van der Vekens, 26-May-2017.)
Hypothesis
Ref Expression
ndmaov.1 dom 𝐹 = (𝑆 × 𝑆)
Assertion
Ref Expression
ndmaovcom (¬ (𝐴𝑆𝐵𝑆) → ((𝐴𝐹𝐵)) = ((𝐵𝐹𝐴)) )

Proof of Theorem ndmaovcom
StepHypRef Expression
1 opelxp 5674 . . . 4 (⟨𝐴, 𝐵⟩ ∈ (𝑆 × 𝑆) ↔ (𝐴𝑆𝐵𝑆))
2 ndmaov.1 . . . . . 6 dom 𝐹 = (𝑆 × 𝑆)
32eqcomi 2746 . . . . 5 (𝑆 × 𝑆) = dom 𝐹
43eleq2i 2830 . . . 4 (⟨𝐴, 𝐵⟩ ∈ (𝑆 × 𝑆) ↔ ⟨𝐴, 𝐵⟩ ∈ dom 𝐹)
51, 4bitr3i 277 . . 3 ((𝐴𝑆𝐵𝑆) ↔ ⟨𝐴, 𝐵⟩ ∈ dom 𝐹)
6 ndmaov 45489 . . 3 (¬ ⟨𝐴, 𝐵⟩ ∈ dom 𝐹 → ((𝐴𝐹𝐵)) = V)
75, 6sylnbi 330 . 2 (¬ (𝐴𝑆𝐵𝑆) → ((𝐴𝐹𝐵)) = V)
8 ancom 462 . . . 4 ((𝐴𝑆𝐵𝑆) ↔ (𝐵𝑆𝐴𝑆))
9 opelxp 5674 . . . 4 (⟨𝐵, 𝐴⟩ ∈ (𝑆 × 𝑆) ↔ (𝐵𝑆𝐴𝑆))
103eleq2i 2830 . . . 4 (⟨𝐵, 𝐴⟩ ∈ (𝑆 × 𝑆) ↔ ⟨𝐵, 𝐴⟩ ∈ dom 𝐹)
118, 9, 103bitr2i 299 . . 3 ((𝐴𝑆𝐵𝑆) ↔ ⟨𝐵, 𝐴⟩ ∈ dom 𝐹)
12 ndmaov 45489 . . 3 (¬ ⟨𝐵, 𝐴⟩ ∈ dom 𝐹 → ((𝐵𝐹𝐴)) = V)
1311, 12sylnbi 330 . 2 (¬ (𝐴𝑆𝐵𝑆) → ((𝐵𝐹𝐴)) = V)
147, 13eqtr4d 2780 1 (¬ (𝐴𝑆𝐵𝑆) → ((𝐴𝐹𝐵)) = ((𝐵𝐹𝐴)) )
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 397   = wceq 1542  wcel 2107  Vcvv 3448  cop 4597   × cxp 5636  dom cdm 5638   ((caov 45424
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-sep 5261  ax-nul 5268  ax-pr 5389
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2890  df-ne 2945  df-ral 3066  df-rex 3075  df-rab 3411  df-v 3450  df-sbc 3745  df-csb 3861  df-dif 3918  df-un 3920  df-in 3922  df-ss 3932  df-nul 4288  df-if 4492  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4871  df-int 4913  df-br 5111  df-opab 5173  df-id 5536  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-res 5650  df-iota 6453  df-fun 6503  df-fv 6509  df-aiota 45391  df-dfat 45425  df-afv 45426  df-aov 45427
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator