Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ndmaovcom Structured version   Visualization version   GIF version

Theorem ndmaovcom 47210
Description: Any operation is commutative outside its domain, analogous to ndmovcom 7579. (Contributed by Alexander van der Vekens, 26-May-2017.)
Hypothesis
Ref Expression
ndmaov.1 dom 𝐹 = (𝑆 × 𝑆)
Assertion
Ref Expression
ndmaovcom (¬ (𝐴𝑆𝐵𝑆) → ((𝐴𝐹𝐵)) = ((𝐵𝐹𝐴)) )

Proof of Theorem ndmaovcom
StepHypRef Expression
1 opelxp 5677 . . . 4 (⟨𝐴, 𝐵⟩ ∈ (𝑆 × 𝑆) ↔ (𝐴𝑆𝐵𝑆))
2 ndmaov.1 . . . . . 6 dom 𝐹 = (𝑆 × 𝑆)
32eqcomi 2739 . . . . 5 (𝑆 × 𝑆) = dom 𝐹
43eleq2i 2821 . . . 4 (⟨𝐴, 𝐵⟩ ∈ (𝑆 × 𝑆) ↔ ⟨𝐴, 𝐵⟩ ∈ dom 𝐹)
51, 4bitr3i 277 . . 3 ((𝐴𝑆𝐵𝑆) ↔ ⟨𝐴, 𝐵⟩ ∈ dom 𝐹)
6 ndmaov 47188 . . 3 (¬ ⟨𝐴, 𝐵⟩ ∈ dom 𝐹 → ((𝐴𝐹𝐵)) = V)
75, 6sylnbi 330 . 2 (¬ (𝐴𝑆𝐵𝑆) → ((𝐴𝐹𝐵)) = V)
8 ancom 460 . . . 4 ((𝐴𝑆𝐵𝑆) ↔ (𝐵𝑆𝐴𝑆))
9 opelxp 5677 . . . 4 (⟨𝐵, 𝐴⟩ ∈ (𝑆 × 𝑆) ↔ (𝐵𝑆𝐴𝑆))
103eleq2i 2821 . . . 4 (⟨𝐵, 𝐴⟩ ∈ (𝑆 × 𝑆) ↔ ⟨𝐵, 𝐴⟩ ∈ dom 𝐹)
118, 9, 103bitr2i 299 . . 3 ((𝐴𝑆𝐵𝑆) ↔ ⟨𝐵, 𝐴⟩ ∈ dom 𝐹)
12 ndmaov 47188 . . 3 (¬ ⟨𝐵, 𝐴⟩ ∈ dom 𝐹 → ((𝐵𝐹𝐴)) = V)
1311, 12sylnbi 330 . 2 (¬ (𝐴𝑆𝐵𝑆) → ((𝐵𝐹𝐴)) = V)
147, 13eqtr4d 2768 1 (¬ (𝐴𝑆𝐵𝑆) → ((𝐴𝐹𝐵)) = ((𝐵𝐹𝐴)) )
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3450  cop 4598   × cxp 5639  dom cdm 5641   ((caov 47123
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-br 5111  df-opab 5173  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-res 5653  df-iota 6467  df-fun 6516  df-fv 6522  df-aiota 47090  df-dfat 47124  df-afv 47125  df-aov 47126
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator