Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ndmaovcom Structured version   Visualization version   GIF version

Theorem ndmaovcom 47315
Description: Any operation is commutative outside its domain, analogous to ndmovcom 7533. (Contributed by Alexander van der Vekens, 26-May-2017.)
Hypothesis
Ref Expression
ndmaov.1 dom 𝐹 = (𝑆 × 𝑆)
Assertion
Ref Expression
ndmaovcom (¬ (𝐴𝑆𝐵𝑆) → ((𝐴𝐹𝐵)) = ((𝐵𝐹𝐴)) )

Proof of Theorem ndmaovcom
StepHypRef Expression
1 opelxp 5650 . . . 4 (⟨𝐴, 𝐵⟩ ∈ (𝑆 × 𝑆) ↔ (𝐴𝑆𝐵𝑆))
2 ndmaov.1 . . . . . 6 dom 𝐹 = (𝑆 × 𝑆)
32eqcomi 2740 . . . . 5 (𝑆 × 𝑆) = dom 𝐹
43eleq2i 2823 . . . 4 (⟨𝐴, 𝐵⟩ ∈ (𝑆 × 𝑆) ↔ ⟨𝐴, 𝐵⟩ ∈ dom 𝐹)
51, 4bitr3i 277 . . 3 ((𝐴𝑆𝐵𝑆) ↔ ⟨𝐴, 𝐵⟩ ∈ dom 𝐹)
6 ndmaov 47293 . . 3 (¬ ⟨𝐴, 𝐵⟩ ∈ dom 𝐹 → ((𝐴𝐹𝐵)) = V)
75, 6sylnbi 330 . 2 (¬ (𝐴𝑆𝐵𝑆) → ((𝐴𝐹𝐵)) = V)
8 ancom 460 . . . 4 ((𝐴𝑆𝐵𝑆) ↔ (𝐵𝑆𝐴𝑆))
9 opelxp 5650 . . . 4 (⟨𝐵, 𝐴⟩ ∈ (𝑆 × 𝑆) ↔ (𝐵𝑆𝐴𝑆))
103eleq2i 2823 . . . 4 (⟨𝐵, 𝐴⟩ ∈ (𝑆 × 𝑆) ↔ ⟨𝐵, 𝐴⟩ ∈ dom 𝐹)
118, 9, 103bitr2i 299 . . 3 ((𝐴𝑆𝐵𝑆) ↔ ⟨𝐵, 𝐴⟩ ∈ dom 𝐹)
12 ndmaov 47293 . . 3 (¬ ⟨𝐵, 𝐴⟩ ∈ dom 𝐹 → ((𝐵𝐹𝐴)) = V)
1311, 12sylnbi 330 . 2 (¬ (𝐴𝑆𝐵𝑆) → ((𝐵𝐹𝐴)) = V)
147, 13eqtr4d 2769 1 (¬ (𝐴𝑆𝐵𝑆) → ((𝐴𝐹𝐵)) = ((𝐵𝐹𝐴)) )
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1541  wcel 2111  Vcvv 3436  cop 4579   × cxp 5612  dom cdm 5614   ((caov 47228
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-br 5090  df-opab 5152  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-res 5626  df-iota 6437  df-fun 6483  df-fv 6489  df-aiota 47195  df-dfat 47229  df-afv 47230  df-aov 47231
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator