![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ndmaovcom | Structured version Visualization version GIF version |
Description: Any operation is commutative outside its domain, analogous to ndmovcom 7593. (Contributed by Alexander van der Vekens, 26-May-2017.) |
Ref | Expression |
---|---|
ndmaov.1 | ⊢ dom 𝐹 = (𝑆 × 𝑆) |
Ref | Expression |
---|---|
ndmaovcom | ⊢ (¬ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → ((𝐴𝐹𝐵)) = ((𝐵𝐹𝐴)) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opelxp 5712 | . . . 4 ⊢ (⟨𝐴, 𝐵⟩ ∈ (𝑆 × 𝑆) ↔ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆)) | |
2 | ndmaov.1 | . . . . . 6 ⊢ dom 𝐹 = (𝑆 × 𝑆) | |
3 | 2 | eqcomi 2741 | . . . . 5 ⊢ (𝑆 × 𝑆) = dom 𝐹 |
4 | 3 | eleq2i 2825 | . . . 4 ⊢ (⟨𝐴, 𝐵⟩ ∈ (𝑆 × 𝑆) ↔ ⟨𝐴, 𝐵⟩ ∈ dom 𝐹) |
5 | 1, 4 | bitr3i 276 | . . 3 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ↔ ⟨𝐴, 𝐵⟩ ∈ dom 𝐹) |
6 | ndmaov 45881 | . . 3 ⊢ (¬ ⟨𝐴, 𝐵⟩ ∈ dom 𝐹 → ((𝐴𝐹𝐵)) = V) | |
7 | 5, 6 | sylnbi 329 | . 2 ⊢ (¬ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → ((𝐴𝐹𝐵)) = V) |
8 | ancom 461 | . . . 4 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ↔ (𝐵 ∈ 𝑆 ∧ 𝐴 ∈ 𝑆)) | |
9 | opelxp 5712 | . . . 4 ⊢ (⟨𝐵, 𝐴⟩ ∈ (𝑆 × 𝑆) ↔ (𝐵 ∈ 𝑆 ∧ 𝐴 ∈ 𝑆)) | |
10 | 3 | eleq2i 2825 | . . . 4 ⊢ (⟨𝐵, 𝐴⟩ ∈ (𝑆 × 𝑆) ↔ ⟨𝐵, 𝐴⟩ ∈ dom 𝐹) |
11 | 8, 9, 10 | 3bitr2i 298 | . . 3 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ↔ ⟨𝐵, 𝐴⟩ ∈ dom 𝐹) |
12 | ndmaov 45881 | . . 3 ⊢ (¬ ⟨𝐵, 𝐴⟩ ∈ dom 𝐹 → ((𝐵𝐹𝐴)) = V) | |
13 | 11, 12 | sylnbi 329 | . 2 ⊢ (¬ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → ((𝐵𝐹𝐴)) = V) |
14 | 7, 13 | eqtr4d 2775 | 1 ⊢ (¬ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → ((𝐴𝐹𝐵)) = ((𝐵𝐹𝐴)) ) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 = wceq 1541 ∈ wcel 2106 Vcvv 3474 ⟨cop 4634 × cxp 5674 dom cdm 5676 ((caov 45816 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-br 5149 df-opab 5211 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-res 5688 df-iota 6495 df-fun 6545 df-fv 6551 df-aiota 45783 df-dfat 45817 df-afv 45818 df-aov 45819 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |