Users' Mathboxes Mathbox for Emmett Weisz < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  setrec2lem1 Structured version   Visualization version   GIF version

Theorem setrec2lem1 48235
Description: Lemma for setrec2 48237. The functional part of 𝐹 has the same values as 𝐹. (Contributed by Emmett Weisz, 4-Mar-2021.) (New usage is discouraged.)
Assertion
Ref Expression
setrec2lem1 ((𝐹 ↾ {𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦})‘𝑎) = (𝐹𝑎)
Distinct variable groups:   𝑥,𝐹,𝑦   𝑥,𝑎,𝑦
Allowed substitution hint:   𝐹(𝑎)

Proof of Theorem setrec2lem1
StepHypRef Expression
1 fvres 6910 . 2 (𝑎 ∈ {𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦} → ((𝐹 ↾ {𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦})‘𝑎) = (𝐹𝑎))
2 nfvres 6932 . . 3 𝑎 ∈ {𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦} → ((𝐹 ↾ {𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦})‘𝑎) = ∅)
3 vex 3467 . . . . 5 𝑎 ∈ V
4 breq1 5146 . . . . . 6 (𝑥 = 𝑎 → (𝑥𝐹𝑦𝑎𝐹𝑦))
54eubidv 2574 . . . . 5 (𝑥 = 𝑎 → (∃!𝑦 𝑥𝐹𝑦 ↔ ∃!𝑦 𝑎𝐹𝑦))
63, 5elab 3660 . . . 4 (𝑎 ∈ {𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦} ↔ ∃!𝑦 𝑎𝐹𝑦)
7 tz6.12-2 6879 . . . 4 (¬ ∃!𝑦 𝑎𝐹𝑦 → (𝐹𝑎) = ∅)
86, 7sylnbi 329 . . 3 𝑎 ∈ {𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦} → (𝐹𝑎) = ∅)
92, 8eqtr4d 2768 . 2 𝑎 ∈ {𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦} → ((𝐹 ↾ {𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦})‘𝑎) = (𝐹𝑎))
101, 9pm2.61i 182 1 ((𝐹 ↾ {𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦})‘𝑎) = (𝐹𝑎)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1533  wcel 2098  ∃!weu 2556  {cab 2702  c0 4318   class class class wbr 5143  cres 5674  cfv 6542
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5294  ax-nul 5301  ax-pr 5423
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-ral 3052  df-rex 3061  df-rab 3420  df-v 3465  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-nul 4319  df-if 4525  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-br 5144  df-opab 5206  df-xp 5678  df-dm 5682  df-res 5684  df-iota 6494  df-fv 6550
This theorem is referenced by:  setrec2  48237
  Copyright terms: Public domain W3C validator