![]() |
Mathbox for Emmett Weisz |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > setrec2lem1 | Structured version Visualization version GIF version |
Description: Lemma for setrec2 48926. The functional part of 𝐹 has the same values as 𝐹. (Contributed by Emmett Weisz, 4-Mar-2021.) (New usage is discouraged.) |
Ref | Expression |
---|---|
setrec2lem1 | ⊢ ((𝐹 ↾ {𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦})‘𝑎) = (𝐹‘𝑎) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvres 6926 | . 2 ⊢ (𝑎 ∈ {𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦} → ((𝐹 ↾ {𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦})‘𝑎) = (𝐹‘𝑎)) | |
2 | nfvres 6948 | . . 3 ⊢ (¬ 𝑎 ∈ {𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦} → ((𝐹 ↾ {𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦})‘𝑎) = ∅) | |
3 | vex 3482 | . . . . 5 ⊢ 𝑎 ∈ V | |
4 | breq1 5151 | . . . . . 6 ⊢ (𝑥 = 𝑎 → (𝑥𝐹𝑦 ↔ 𝑎𝐹𝑦)) | |
5 | 4 | eubidv 2584 | . . . . 5 ⊢ (𝑥 = 𝑎 → (∃!𝑦 𝑥𝐹𝑦 ↔ ∃!𝑦 𝑎𝐹𝑦)) |
6 | 3, 5 | elab 3681 | . . . 4 ⊢ (𝑎 ∈ {𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦} ↔ ∃!𝑦 𝑎𝐹𝑦) |
7 | tz6.12-2 6895 | . . . 4 ⊢ (¬ ∃!𝑦 𝑎𝐹𝑦 → (𝐹‘𝑎) = ∅) | |
8 | 6, 7 | sylnbi 330 | . . 3 ⊢ (¬ 𝑎 ∈ {𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦} → (𝐹‘𝑎) = ∅) |
9 | 2, 8 | eqtr4d 2778 | . 2 ⊢ (¬ 𝑎 ∈ {𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦} → ((𝐹 ↾ {𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦})‘𝑎) = (𝐹‘𝑎)) |
10 | 1, 9 | pm2.61i 182 | 1 ⊢ ((𝐹 ↾ {𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦})‘𝑎) = (𝐹‘𝑎) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1537 ∈ wcel 2106 ∃!weu 2566 {cab 2712 ∅c0 4339 class class class wbr 5148 ↾ cres 5691 ‘cfv 6563 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-xp 5695 df-dm 5699 df-res 5701 df-iota 6516 df-fv 6571 |
This theorem is referenced by: setrec2 48926 |
Copyright terms: Public domain | W3C validator |