Users' Mathboxes Mathbox for Emmett Weisz < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  setrec2lem1 Structured version   Visualization version   GIF version

Theorem setrec2lem1 49524
Description: Lemma for setrec2 49526. The functional part of 𝐹 has the same values as 𝐹. (Contributed by Emmett Weisz, 4-Mar-2021.) (New usage is discouraged.)
Assertion
Ref Expression
setrec2lem1 ((𝐹 ↾ {𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦})‘𝑎) = (𝐹𝑎)
Distinct variable groups:   𝑥,𝐹,𝑦   𝑥,𝑎,𝑦
Allowed substitution hint:   𝐹(𝑎)

Proof of Theorem setrec2lem1
StepHypRef Expression
1 fvres 6900 . 2 (𝑎 ∈ {𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦} → ((𝐹 ↾ {𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦})‘𝑎) = (𝐹𝑎))
2 nfvres 6922 . . 3 𝑎 ∈ {𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦} → ((𝐹 ↾ {𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦})‘𝑎) = ∅)
3 vex 3468 . . . . 5 𝑎 ∈ V
4 breq1 5127 . . . . . 6 (𝑥 = 𝑎 → (𝑥𝐹𝑦𝑎𝐹𝑦))
54eubidv 2586 . . . . 5 (𝑥 = 𝑎 → (∃!𝑦 𝑥𝐹𝑦 ↔ ∃!𝑦 𝑎𝐹𝑦))
63, 5elab 3663 . . . 4 (𝑎 ∈ {𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦} ↔ ∃!𝑦 𝑎𝐹𝑦)
7 tz6.12-2 6869 . . . 4 (¬ ∃!𝑦 𝑎𝐹𝑦 → (𝐹𝑎) = ∅)
86, 7sylnbi 330 . . 3 𝑎 ∈ {𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦} → (𝐹𝑎) = ∅)
92, 8eqtr4d 2774 . 2 𝑎 ∈ {𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦} → ((𝐹 ↾ {𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦})‘𝑎) = (𝐹𝑎))
101, 9pm2.61i 182 1 ((𝐹 ↾ {𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦})‘𝑎) = (𝐹𝑎)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1540  wcel 2109  ∃!weu 2568  {cab 2714  c0 4313   class class class wbr 5124  cres 5661  cfv 6536
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-xp 5665  df-dm 5669  df-res 5671  df-iota 6489  df-fv 6544
This theorem is referenced by:  setrec2  49526
  Copyright terms: Public domain W3C validator