Users' Mathboxes Mathbox for Emmett Weisz < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  setrec2lem1 Structured version   Visualization version   GIF version

Theorem setrec2lem1 44628
Description: Lemma for setrec2 44630. The functional part of 𝐹 has the same values as 𝐹. (Contributed by Emmett Weisz, 4-Mar-2021.) (New usage is discouraged.)
Assertion
Ref Expression
setrec2lem1 ((𝐹 ↾ {𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦})‘𝑎) = (𝐹𝑎)
Distinct variable groups:   𝑥,𝐹,𝑦   𝑥,𝑎,𝑦
Allowed substitution hint:   𝐹(𝑎)

Proof of Theorem setrec2lem1
StepHypRef Expression
1 fvres 6686 . 2 (𝑎 ∈ {𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦} → ((𝐹 ↾ {𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦})‘𝑎) = (𝐹𝑎))
2 dmres 5874 . . . . . . 7 dom (𝐹 ↾ {𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦}) = ({𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦} ∩ dom 𝐹)
3 inss1 4209 . . . . . . 7 ({𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦} ∩ dom 𝐹) ⊆ {𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦}
42, 3eqsstri 4005 . . . . . 6 dom (𝐹 ↾ {𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦}) ⊆ {𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦}
54sseli 3967 . . . . 5 (𝑎 ∈ dom (𝐹 ↾ {𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦}) → 𝑎 ∈ {𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦})
65con3i 157 . . . 4 𝑎 ∈ {𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦} → ¬ 𝑎 ∈ dom (𝐹 ↾ {𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦}))
7 ndmfv 6697 . . . 4 𝑎 ∈ dom (𝐹 ↾ {𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦}) → ((𝐹 ↾ {𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦})‘𝑎) = ∅)
86, 7syl 17 . . 3 𝑎 ∈ {𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦} → ((𝐹 ↾ {𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦})‘𝑎) = ∅)
9 vex 3503 . . . . . . 7 𝑎 ∈ V
10 breq1 5066 . . . . . . . 8 (𝑥 = 𝑎 → (𝑥𝐹𝑦𝑎𝐹𝑦))
1110eubidv 2670 . . . . . . 7 (𝑥 = 𝑎 → (∃!𝑦 𝑥𝐹𝑦 ↔ ∃!𝑦 𝑎𝐹𝑦))
129, 11elab 3671 . . . . . 6 (𝑎 ∈ {𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦} ↔ ∃!𝑦 𝑎𝐹𝑦)
1312notbii 321 . . . . 5 𝑎 ∈ {𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦} ↔ ¬ ∃!𝑦 𝑎𝐹𝑦)
1413biimpi 217 . . . 4 𝑎 ∈ {𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦} → ¬ ∃!𝑦 𝑎𝐹𝑦)
15 tz6.12-2 6657 . . . 4 (¬ ∃!𝑦 𝑎𝐹𝑦 → (𝐹𝑎) = ∅)
1614, 15syl 17 . . 3 𝑎 ∈ {𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦} → (𝐹𝑎) = ∅)
178, 16eqtr4d 2864 . 2 𝑎 ∈ {𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦} → ((𝐹 ↾ {𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦})‘𝑎) = (𝐹𝑎))
181, 17pm2.61i 183 1 ((𝐹 ↾ {𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦})‘𝑎) = (𝐹𝑎)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1530  wcel 2107  ∃!weu 2651  {cab 2804  cin 3939  c0 4295   class class class wbr 5063  dom cdm 5554  cres 5556  cfv 6352
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2798  ax-sep 5200  ax-nul 5207  ax-pow 5263  ax-pr 5326
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2620  df-eu 2652  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-ral 3148  df-rex 3149  df-rab 3152  df-v 3502  df-dif 3943  df-un 3945  df-in 3947  df-ss 3956  df-nul 4296  df-if 4471  df-sn 4565  df-pr 4567  df-op 4571  df-uni 4838  df-br 5064  df-opab 5126  df-xp 5560  df-dm 5564  df-res 5566  df-iota 6312  df-fv 6360
This theorem is referenced by:  setrec2  44630
  Copyright terms: Public domain W3C validator