| Mathbox for Emmett Weisz |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > setrec2lem1 | Structured version Visualization version GIF version | ||
| Description: Lemma for setrec2 49526. The functional part of 𝐹 has the same values as 𝐹. (Contributed by Emmett Weisz, 4-Mar-2021.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| setrec2lem1 | ⊢ ((𝐹 ↾ {𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦})‘𝑎) = (𝐹‘𝑎) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvres 6900 | . 2 ⊢ (𝑎 ∈ {𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦} → ((𝐹 ↾ {𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦})‘𝑎) = (𝐹‘𝑎)) | |
| 2 | nfvres 6922 | . . 3 ⊢ (¬ 𝑎 ∈ {𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦} → ((𝐹 ↾ {𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦})‘𝑎) = ∅) | |
| 3 | vex 3468 | . . . . 5 ⊢ 𝑎 ∈ V | |
| 4 | breq1 5127 | . . . . . 6 ⊢ (𝑥 = 𝑎 → (𝑥𝐹𝑦 ↔ 𝑎𝐹𝑦)) | |
| 5 | 4 | eubidv 2586 | . . . . 5 ⊢ (𝑥 = 𝑎 → (∃!𝑦 𝑥𝐹𝑦 ↔ ∃!𝑦 𝑎𝐹𝑦)) |
| 6 | 3, 5 | elab 3663 | . . . 4 ⊢ (𝑎 ∈ {𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦} ↔ ∃!𝑦 𝑎𝐹𝑦) |
| 7 | tz6.12-2 6869 | . . . 4 ⊢ (¬ ∃!𝑦 𝑎𝐹𝑦 → (𝐹‘𝑎) = ∅) | |
| 8 | 6, 7 | sylnbi 330 | . . 3 ⊢ (¬ 𝑎 ∈ {𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦} → (𝐹‘𝑎) = ∅) |
| 9 | 2, 8 | eqtr4d 2774 | . 2 ⊢ (¬ 𝑎 ∈ {𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦} → ((𝐹 ↾ {𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦})‘𝑎) = (𝐹‘𝑎)) |
| 10 | 1, 9 | pm2.61i 182 | 1 ⊢ ((𝐹 ↾ {𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦})‘𝑎) = (𝐹‘𝑎) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1540 ∈ wcel 2109 ∃!weu 2568 {cab 2714 ∅c0 4313 class class class wbr 5124 ↾ cres 5661 ‘cfv 6536 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-xp 5665 df-dm 5669 df-res 5671 df-iota 6489 df-fv 6544 |
| This theorem is referenced by: setrec2 49526 |
| Copyright terms: Public domain | W3C validator |