![]() |
Mathbox for Emmett Weisz |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > setrec2lem1 | Structured version Visualization version GIF version |
Description: Lemma for setrec2 43337. The functional part of 𝐹 has the same values as 𝐹. (Contributed by Emmett Weisz, 4-Mar-2021.) (New usage is discouraged.) |
Ref | Expression |
---|---|
setrec2lem1 | ⊢ ((𝐹 ↾ {𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦})‘𝑎) = (𝐹‘𝑎) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvres 6452 | . 2 ⊢ (𝑎 ∈ {𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦} → ((𝐹 ↾ {𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦})‘𝑎) = (𝐹‘𝑎)) | |
2 | dmres 5655 | . . . . . . 7 ⊢ dom (𝐹 ↾ {𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦}) = ({𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦} ∩ dom 𝐹) | |
3 | inss1 4057 | . . . . . . 7 ⊢ ({𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦} ∩ dom 𝐹) ⊆ {𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦} | |
4 | 2, 3 | eqsstri 3860 | . . . . . 6 ⊢ dom (𝐹 ↾ {𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦}) ⊆ {𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦} |
5 | 4 | sseli 3823 | . . . . 5 ⊢ (𝑎 ∈ dom (𝐹 ↾ {𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦}) → 𝑎 ∈ {𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦}) |
6 | 5 | con3i 152 | . . . 4 ⊢ (¬ 𝑎 ∈ {𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦} → ¬ 𝑎 ∈ dom (𝐹 ↾ {𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦})) |
7 | ndmfv 6463 | . . . 4 ⊢ (¬ 𝑎 ∈ dom (𝐹 ↾ {𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦}) → ((𝐹 ↾ {𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦})‘𝑎) = ∅) | |
8 | 6, 7 | syl 17 | . . 3 ⊢ (¬ 𝑎 ∈ {𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦} → ((𝐹 ↾ {𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦})‘𝑎) = ∅) |
9 | vex 3417 | . . . . . . 7 ⊢ 𝑎 ∈ V | |
10 | breq1 4876 | . . . . . . . 8 ⊢ (𝑥 = 𝑎 → (𝑥𝐹𝑦 ↔ 𝑎𝐹𝑦)) | |
11 | 10 | eubidv 2659 | . . . . . . 7 ⊢ (𝑥 = 𝑎 → (∃!𝑦 𝑥𝐹𝑦 ↔ ∃!𝑦 𝑎𝐹𝑦)) |
12 | 9, 11 | elab 3571 | . . . . . 6 ⊢ (𝑎 ∈ {𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦} ↔ ∃!𝑦 𝑎𝐹𝑦) |
13 | 12 | notbii 312 | . . . . 5 ⊢ (¬ 𝑎 ∈ {𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦} ↔ ¬ ∃!𝑦 𝑎𝐹𝑦) |
14 | 13 | biimpi 208 | . . . 4 ⊢ (¬ 𝑎 ∈ {𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦} → ¬ ∃!𝑦 𝑎𝐹𝑦) |
15 | tz6.12-2 6423 | . . . 4 ⊢ (¬ ∃!𝑦 𝑎𝐹𝑦 → (𝐹‘𝑎) = ∅) | |
16 | 14, 15 | syl 17 | . . 3 ⊢ (¬ 𝑎 ∈ {𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦} → (𝐹‘𝑎) = ∅) |
17 | 8, 16 | eqtr4d 2864 | . 2 ⊢ (¬ 𝑎 ∈ {𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦} → ((𝐹 ↾ {𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦})‘𝑎) = (𝐹‘𝑎)) |
18 | 1, 17 | pm2.61i 177 | 1 ⊢ ((𝐹 ↾ {𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦})‘𝑎) = (𝐹‘𝑎) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1658 ∈ wcel 2166 ∃!weu 2639 {cab 2811 ∩ cin 3797 ∅c0 4144 class class class wbr 4873 dom cdm 5342 ↾ cres 5344 ‘cfv 6123 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-8 2168 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2391 ax-ext 2803 ax-sep 5005 ax-nul 5013 ax-pow 5065 ax-pr 5127 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-3an 1115 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ral 3122 df-rex 3123 df-rab 3126 df-v 3416 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-nul 4145 df-if 4307 df-sn 4398 df-pr 4400 df-op 4404 df-uni 4659 df-br 4874 df-opab 4936 df-xp 5348 df-dm 5352 df-res 5354 df-iota 6086 df-fv 6131 |
This theorem is referenced by: setrec2 43337 |
Copyright terms: Public domain | W3C validator |