MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  suppssfv Structured version   Visualization version   GIF version

Theorem suppssfv 7669
Description: Formula building theorem for support restriction, on a function which preserves zero. (Contributed by Stefan O'Rear, 9-Mar-2015.) (Revised by AV, 28-May-2019.)
Hypotheses
Ref Expression
suppssfv.a (𝜑 → ((𝑥𝐷𝐴) supp 𝑌) ⊆ 𝐿)
suppssfv.f (𝜑 → (𝐹𝑌) = 𝑍)
suppssfv.v ((𝜑𝑥𝐷) → 𝐴𝑉)
suppssfv.y (𝜑𝑌𝑈)
Assertion
Ref Expression
suppssfv (𝜑 → ((𝑥𝐷 ↦ (𝐹𝐴)) supp 𝑍) ⊆ 𝐿)
Distinct variable groups:   𝜑,𝑥   𝑥,𝐷   𝑥,𝑌   𝑥,𝑍
Allowed substitution hints:   𝐴(𝑥)   𝑈(𝑥)   𝐹(𝑥)   𝐿(𝑥)   𝑉(𝑥)

Proof of Theorem suppssfv
StepHypRef Expression
1 eldifsni 4596 . . . . . . 7 ((𝐹𝐴) ∈ (V ∖ {𝑍}) → (𝐹𝐴) ≠ 𝑍)
2 suppssfv.v . . . . . . . . . . 11 ((𝜑𝑥𝐷) → 𝐴𝑉)
32elexd 3436 . . . . . . . . . 10 ((𝜑𝑥𝐷) → 𝐴 ∈ V)
43ad4ant23 740 . . . . . . . . 9 (((((𝐷 ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) ∧ 𝑥𝐷) ∧ (𝐹𝐴) ≠ 𝑍) → 𝐴 ∈ V)
5 suppssfv.f . . . . . . . . . . . . 13 (𝜑 → (𝐹𝑌) = 𝑍)
6 fveqeq2 6508 . . . . . . . . . . . . 13 (𝐴 = 𝑌 → ((𝐹𝐴) = 𝑍 ↔ (𝐹𝑌) = 𝑍))
75, 6syl5ibrcom 239 . . . . . . . . . . . 12 (𝜑 → (𝐴 = 𝑌 → (𝐹𝐴) = 𝑍))
87necon3d 2989 . . . . . . . . . . 11 (𝜑 → ((𝐹𝐴) ≠ 𝑍𝐴𝑌))
98ad2antlr 714 . . . . . . . . . 10 ((((𝐷 ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) ∧ 𝑥𝐷) → ((𝐹𝐴) ≠ 𝑍𝐴𝑌))
109imp 398 . . . . . . . . 9 (((((𝐷 ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) ∧ 𝑥𝐷) ∧ (𝐹𝐴) ≠ 𝑍) → 𝐴𝑌)
11 eldifsn 4593 . . . . . . . . 9 (𝐴 ∈ (V ∖ {𝑌}) ↔ (𝐴 ∈ V ∧ 𝐴𝑌))
124, 10, 11sylanbrc 575 . . . . . . . 8 (((((𝐷 ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) ∧ 𝑥𝐷) ∧ (𝐹𝐴) ≠ 𝑍) → 𝐴 ∈ (V ∖ {𝑌}))
1312ex 405 . . . . . . 7 ((((𝐷 ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) ∧ 𝑥𝐷) → ((𝐹𝐴) ≠ 𝑍𝐴 ∈ (V ∖ {𝑌})))
141, 13syl5 34 . . . . . 6 ((((𝐷 ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) ∧ 𝑥𝐷) → ((𝐹𝐴) ∈ (V ∖ {𝑍}) → 𝐴 ∈ (V ∖ {𝑌})))
1514ss2rabdv 3943 . . . . 5 (((𝐷 ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) → {𝑥𝐷 ∣ (𝐹𝐴) ∈ (V ∖ {𝑍})} ⊆ {𝑥𝐷𝐴 ∈ (V ∖ {𝑌})})
16 eqid 2779 . . . . . 6 (𝑥𝐷 ↦ (𝐹𝐴)) = (𝑥𝐷 ↦ (𝐹𝐴))
17 simpll 754 . . . . . 6 (((𝐷 ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) → 𝐷 ∈ V)
18 simplr 756 . . . . . 6 (((𝐷 ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) → 𝑍 ∈ V)
1916, 17, 18mptsuppdifd 7655 . . . . 5 (((𝐷 ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) → ((𝑥𝐷 ↦ (𝐹𝐴)) supp 𝑍) = {𝑥𝐷 ∣ (𝐹𝐴) ∈ (V ∖ {𝑍})})
20 eqid 2779 . . . . . 6 (𝑥𝐷𝐴) = (𝑥𝐷𝐴)
21 suppssfv.y . . . . . . 7 (𝜑𝑌𝑈)
2221adantl 474 . . . . . 6 (((𝐷 ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) → 𝑌𝑈)
2320, 17, 22mptsuppdifd 7655 . . . . 5 (((𝐷 ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) → ((𝑥𝐷𝐴) supp 𝑌) = {𝑥𝐷𝐴 ∈ (V ∖ {𝑌})})
2415, 19, 233sstr4d 3905 . . . 4 (((𝐷 ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) → ((𝑥𝐷 ↦ (𝐹𝐴)) supp 𝑍) ⊆ ((𝑥𝐷𝐴) supp 𝑌))
25 suppssfv.a . . . . 5 (𝜑 → ((𝑥𝐷𝐴) supp 𝑌) ⊆ 𝐿)
2625adantl 474 . . . 4 (((𝐷 ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) → ((𝑥𝐷𝐴) supp 𝑌) ⊆ 𝐿)
2724, 26sstrd 3869 . . 3 (((𝐷 ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) → ((𝑥𝐷 ↦ (𝐹𝐴)) supp 𝑍) ⊆ 𝐿)
2827ex 405 . 2 ((𝐷 ∈ V ∧ 𝑍 ∈ V) → (𝜑 → ((𝑥𝐷 ↦ (𝐹𝐴)) supp 𝑍) ⊆ 𝐿))
29 mptexg 6810 . . . . . . 7 (𝐷 ∈ V → (𝑥𝐷 ↦ (𝐹𝐴)) ∈ V)
30 fvex 6512 . . . . . . . . . 10 (𝐹𝐴) ∈ V
3130rgenw 3101 . . . . . . . . 9 𝑥𝐷 (𝐹𝐴) ∈ V
32 dmmptg 5935 . . . . . . . . 9 (∀𝑥𝐷 (𝐹𝐴) ∈ V → dom (𝑥𝐷 ↦ (𝐹𝐴)) = 𝐷)
3331, 32ax-mp 5 . . . . . . . 8 dom (𝑥𝐷 ↦ (𝐹𝐴)) = 𝐷
34 dmexg 7428 . . . . . . . 8 ((𝑥𝐷 ↦ (𝐹𝐴)) ∈ V → dom (𝑥𝐷 ↦ (𝐹𝐴)) ∈ V)
3533, 34syl5eqelr 2872 . . . . . . 7 ((𝑥𝐷 ↦ (𝐹𝐴)) ∈ V → 𝐷 ∈ V)
3629, 35impbii 201 . . . . . 6 (𝐷 ∈ V ↔ (𝑥𝐷 ↦ (𝐹𝐴)) ∈ V)
3736anbi1i 614 . . . . 5 ((𝐷 ∈ V ∧ 𝑍 ∈ V) ↔ ((𝑥𝐷 ↦ (𝐹𝐴)) ∈ V ∧ 𝑍 ∈ V))
38 supp0prc 7636 . . . . 5 (¬ ((𝑥𝐷 ↦ (𝐹𝐴)) ∈ V ∧ 𝑍 ∈ V) → ((𝑥𝐷 ↦ (𝐹𝐴)) supp 𝑍) = ∅)
3937, 38sylnbi 322 . . . 4 (¬ (𝐷 ∈ V ∧ 𝑍 ∈ V) → ((𝑥𝐷 ↦ (𝐹𝐴)) supp 𝑍) = ∅)
40 0ss 4236 . . . 4 ∅ ⊆ 𝐿
4139, 40syl6eqss 3912 . . 3 (¬ (𝐷 ∈ V ∧ 𝑍 ∈ V) → ((𝑥𝐷 ↦ (𝐹𝐴)) supp 𝑍) ⊆ 𝐿)
4241a1d 25 . 2 (¬ (𝐷 ∈ V ∧ 𝑍 ∈ V) → (𝜑 → ((𝑥𝐷 ↦ (𝐹𝐴)) supp 𝑍) ⊆ 𝐿))
4328, 42pm2.61i 177 1 (𝜑 → ((𝑥𝐷 ↦ (𝐹𝐴)) supp 𝑍) ⊆ 𝐿)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 387   = wceq 1507  wcel 2050  wne 2968  wral 3089  {crab 3093  Vcvv 3416  cdif 3827  wss 3830  c0 4179  {csn 4441  cmpt 5008  dom cdm 5407  cfv 6188  (class class class)co 6976   supp csupp 7633
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2751  ax-rep 5049  ax-sep 5060  ax-nul 5067  ax-pow 5119  ax-pr 5186  ax-un 7279
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2584  df-clab 2760  df-cleq 2772  df-clel 2847  df-nfc 2919  df-ne 2969  df-ral 3094  df-rex 3095  df-reu 3096  df-rab 3098  df-v 3418  df-sbc 3683  df-csb 3788  df-dif 3833  df-un 3835  df-in 3837  df-ss 3844  df-nul 4180  df-if 4351  df-sn 4442  df-pr 4444  df-op 4448  df-uni 4713  df-iun 4794  df-br 4930  df-opab 4992  df-mpt 5009  df-id 5312  df-xp 5413  df-rel 5414  df-cnv 5415  df-co 5416  df-dm 5417  df-rn 5418  df-res 5419  df-ima 5420  df-iota 6152  df-fun 6190  df-fn 6191  df-f 6192  df-f1 6193  df-fo 6194  df-f1o 6195  df-fv 6196  df-ov 6979  df-oprab 6980  df-mpo 6981  df-supp 7634
This theorem is referenced by:  evlslem2  20005  evlslem6  20006
  Copyright terms: Public domain W3C validator