MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opswap Structured version   Visualization version   GIF version

Theorem opswap 6218
Description: Swap the members of an ordered pair. (Contributed by NM, 14-Dec-2008.) (Revised by Mario Carneiro, 30-Aug-2015.)
Assertion
Ref Expression
opswap {⟨𝐴, 𝐵⟩} = ⟨𝐵, 𝐴

Proof of Theorem opswap
StepHypRef Expression
1 cnvsng 6212 . . . 4 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → {⟨𝐴, 𝐵⟩} = {⟨𝐵, 𝐴⟩})
21unieqd 4896 . . 3 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → {⟨𝐴, 𝐵⟩} = {⟨𝐵, 𝐴⟩})
3 opex 5439 . . . 4 𝐵, 𝐴⟩ ∈ V
43unisn 4902 . . 3 {⟨𝐵, 𝐴⟩} = ⟨𝐵, 𝐴
52, 4eqtrdi 2786 . 2 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → {⟨𝐴, 𝐵⟩} = ⟨𝐵, 𝐴⟩)
6 uni0 4911 . . 3 ∅ = ∅
7 opprc 4872 . . . . . . 7 (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → ⟨𝐴, 𝐵⟩ = ∅)
87sneqd 4613 . . . . . 6 (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → {⟨𝐴, 𝐵⟩} = {∅})
98cnveqd 5855 . . . . 5 (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → {⟨𝐴, 𝐵⟩} = {∅})
10 cnvsn0 6199 . . . . 5 {∅} = ∅
119, 10eqtrdi 2786 . . . 4 (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → {⟨𝐴, 𝐵⟩} = ∅)
1211unieqd 4896 . . 3 (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → {⟨𝐴, 𝐵⟩} = ∅)
13 ancom 460 . . . 4 ((𝐴 ∈ V ∧ 𝐵 ∈ V) ↔ (𝐵 ∈ V ∧ 𝐴 ∈ V))
14 opprc 4872 . . . 4 (¬ (𝐵 ∈ V ∧ 𝐴 ∈ V) → ⟨𝐵, 𝐴⟩ = ∅)
1513, 14sylnbi 330 . . 3 (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → ⟨𝐵, 𝐴⟩ = ∅)
166, 12, 153eqtr4a 2796 . 2 (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → {⟨𝐴, 𝐵⟩} = ⟨𝐵, 𝐴⟩)
175, 16pm2.61i 182 1 {⟨𝐴, 𝐵⟩} = ⟨𝐵, 𝐴
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395   = wceq 1540  wcel 2108  Vcvv 3459  c0 4308  {csn 4601  cop 4607   cuni 4883  ccnv 5653
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-xp 5660  df-rel 5661  df-cnv 5662  df-dm 5664  df-rn 5665
This theorem is referenced by:  2nd1st  8037  cnvf1olem  8109  brtpos  8234  dftpos4  8244  tpostpos  8245  xpcomco  9076  fsumcnv  15789  fprodcnv  15999  gsumcom2  19956  txswaphmeolem  23742  swapf1  49189  swapf2  49191
  Copyright terms: Public domain W3C validator