MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opswap Structured version   Visualization version   GIF version

Theorem opswap 6155
Description: Swap the members of an ordered pair. (Contributed by NM, 14-Dec-2008.) (Revised by Mario Carneiro, 30-Aug-2015.)
Assertion
Ref Expression
opswap {⟨𝐴, 𝐵⟩} = ⟨𝐵, 𝐴

Proof of Theorem opswap
StepHypRef Expression
1 cnvsng 6149 . . . 4 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → {⟨𝐴, 𝐵⟩} = {⟨𝐵, 𝐴⟩})
21unieqd 4864 . . 3 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → {⟨𝐴, 𝐵⟩} = {⟨𝐵, 𝐴⟩})
3 opex 5398 . . . 4 𝐵, 𝐴⟩ ∈ V
43unisn 4872 . . 3 {⟨𝐵, 𝐴⟩} = ⟨𝐵, 𝐴
52, 4eqtrdi 2793 . 2 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → {⟨𝐴, 𝐵⟩} = ⟨𝐵, 𝐴⟩)
6 uni0 4881 . . 3 ∅ = ∅
7 opprc 4838 . . . . . . 7 (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → ⟨𝐴, 𝐵⟩ = ∅)
87sneqd 4583 . . . . . 6 (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → {⟨𝐴, 𝐵⟩} = {∅})
98cnveqd 5805 . . . . 5 (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → {⟨𝐴, 𝐵⟩} = {∅})
10 cnvsn0 6136 . . . . 5 {∅} = ∅
119, 10eqtrdi 2793 . . . 4 (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → {⟨𝐴, 𝐵⟩} = ∅)
1211unieqd 4864 . . 3 (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → {⟨𝐴, 𝐵⟩} = ∅)
13 ancom 461 . . . 4 ((𝐴 ∈ V ∧ 𝐵 ∈ V) ↔ (𝐵 ∈ V ∧ 𝐴 ∈ V))
14 opprc 4838 . . . 4 (¬ (𝐵 ∈ V ∧ 𝐴 ∈ V) → ⟨𝐵, 𝐴⟩ = ∅)
1513, 14sylnbi 329 . . 3 (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → ⟨𝐵, 𝐴⟩ = ∅)
166, 12, 153eqtr4a 2803 . 2 (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → {⟨𝐴, 𝐵⟩} = ⟨𝐵, 𝐴⟩)
175, 16pm2.61i 182 1 {⟨𝐴, 𝐵⟩} = ⟨𝐵, 𝐴
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 396   = wceq 1540  wcel 2105  Vcvv 3441  c0 4267  {csn 4571  cop 4577   cuni 4850  ccnv 5607
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2708  ax-sep 5238  ax-nul 5245  ax-pr 5367
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-clab 2715  df-cleq 2729  df-clel 2815  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3405  df-v 3443  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4268  df-if 4472  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4851  df-br 5088  df-opab 5150  df-xp 5614  df-rel 5615  df-cnv 5616  df-dm 5618  df-rn 5619
This theorem is referenced by:  2nd1st  7926  cnvf1olem  7997  brtpos  8100  dftpos4  8110  tpostpos  8111  xpcomco  8906  fsumcnv  15564  fprodcnv  15772  gsumcom2  19651  txswaphmeolem  23038
  Copyright terms: Public domain W3C validator