![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > opswap | Structured version Visualization version GIF version |
Description: Swap the members of an ordered pair. (Contributed by NM, 14-Dec-2008.) (Revised by Mario Carneiro, 30-Aug-2015.) |
Ref | Expression |
---|---|
opswap | ⊢ ∪ ◡{⟨𝐴, 𝐵⟩} = ⟨𝐵, 𝐴⟩ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnvsng 6213 | . . . 4 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ◡{⟨𝐴, 𝐵⟩} = {⟨𝐵, 𝐴⟩}) | |
2 | 1 | unieqd 4913 | . . 3 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ∪ ◡{⟨𝐴, 𝐵⟩} = ∪ {⟨𝐵, 𝐴⟩}) |
3 | opex 5455 | . . . 4 ⊢ ⟨𝐵, 𝐴⟩ ∈ V | |
4 | 3 | unisn 4921 | . . 3 ⊢ ∪ {⟨𝐵, 𝐴⟩} = ⟨𝐵, 𝐴⟩ |
5 | 2, 4 | eqtrdi 2780 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ∪ ◡{⟨𝐴, 𝐵⟩} = ⟨𝐵, 𝐴⟩) |
6 | uni0 4930 | . . 3 ⊢ ∪ ∅ = ∅ | |
7 | opprc 4889 | . . . . . . 7 ⊢ (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → ⟨𝐴, 𝐵⟩ = ∅) | |
8 | 7 | sneqd 4633 | . . . . . 6 ⊢ (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → {⟨𝐴, 𝐵⟩} = {∅}) |
9 | 8 | cnveqd 5866 | . . . . 5 ⊢ (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → ◡{⟨𝐴, 𝐵⟩} = ◡{∅}) |
10 | cnvsn0 6200 | . . . . 5 ⊢ ◡{∅} = ∅ | |
11 | 9, 10 | eqtrdi 2780 | . . . 4 ⊢ (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → ◡{⟨𝐴, 𝐵⟩} = ∅) |
12 | 11 | unieqd 4913 | . . 3 ⊢ (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → ∪ ◡{⟨𝐴, 𝐵⟩} = ∪ ∅) |
13 | ancom 460 | . . . 4 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ↔ (𝐵 ∈ V ∧ 𝐴 ∈ V)) | |
14 | opprc 4889 | . . . 4 ⊢ (¬ (𝐵 ∈ V ∧ 𝐴 ∈ V) → ⟨𝐵, 𝐴⟩ = ∅) | |
15 | 13, 14 | sylnbi 330 | . . 3 ⊢ (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → ⟨𝐵, 𝐴⟩ = ∅) |
16 | 6, 12, 15 | 3eqtr4a 2790 | . 2 ⊢ (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → ∪ ◡{⟨𝐴, 𝐵⟩} = ⟨𝐵, 𝐴⟩) |
17 | 5, 16 | pm2.61i 182 | 1 ⊢ ∪ ◡{⟨𝐴, 𝐵⟩} = ⟨𝐵, 𝐴⟩ |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 395 = wceq 1533 ∈ wcel 2098 Vcvv 3466 ∅c0 4315 {csn 4621 ⟨cop 4627 ∪ cuni 4900 ◡ccnv 5666 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5290 ax-nul 5297 ax-pr 5418 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-clab 2702 df-cleq 2716 df-clel 2802 df-ne 2933 df-ral 3054 df-rex 3063 df-rab 3425 df-v 3468 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-nul 4316 df-if 4522 df-sn 4622 df-pr 4624 df-op 4628 df-uni 4901 df-br 5140 df-opab 5202 df-xp 5673 df-rel 5674 df-cnv 5675 df-dm 5677 df-rn 5678 |
This theorem is referenced by: 2nd1st 8018 cnvf1olem 8091 brtpos 8216 dftpos4 8226 tpostpos 8227 xpcomco 9059 fsumcnv 15717 fprodcnv 15925 gsumcom2 19887 txswaphmeolem 23632 |
Copyright terms: Public domain | W3C validator |