| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > opswap | Structured version Visualization version GIF version | ||
| Description: Swap the members of an ordered pair. (Contributed by NM, 14-Dec-2008.) (Revised by Mario Carneiro, 30-Aug-2015.) |
| Ref | Expression |
|---|---|
| opswap | ⊢ ∪ ◡{〈𝐴, 𝐵〉} = 〈𝐵, 𝐴〉 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnvsng 6212 | . . . 4 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ◡{〈𝐴, 𝐵〉} = {〈𝐵, 𝐴〉}) | |
| 2 | 1 | unieqd 4896 | . . 3 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ∪ ◡{〈𝐴, 𝐵〉} = ∪ {〈𝐵, 𝐴〉}) |
| 3 | opex 5439 | . . . 4 ⊢ 〈𝐵, 𝐴〉 ∈ V | |
| 4 | 3 | unisn 4902 | . . 3 ⊢ ∪ {〈𝐵, 𝐴〉} = 〈𝐵, 𝐴〉 |
| 5 | 2, 4 | eqtrdi 2786 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ∪ ◡{〈𝐴, 𝐵〉} = 〈𝐵, 𝐴〉) |
| 6 | uni0 4911 | . . 3 ⊢ ∪ ∅ = ∅ | |
| 7 | opprc 4872 | . . . . . . 7 ⊢ (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → 〈𝐴, 𝐵〉 = ∅) | |
| 8 | 7 | sneqd 4613 | . . . . . 6 ⊢ (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → {〈𝐴, 𝐵〉} = {∅}) |
| 9 | 8 | cnveqd 5855 | . . . . 5 ⊢ (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → ◡{〈𝐴, 𝐵〉} = ◡{∅}) |
| 10 | cnvsn0 6199 | . . . . 5 ⊢ ◡{∅} = ∅ | |
| 11 | 9, 10 | eqtrdi 2786 | . . . 4 ⊢ (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → ◡{〈𝐴, 𝐵〉} = ∅) |
| 12 | 11 | unieqd 4896 | . . 3 ⊢ (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → ∪ ◡{〈𝐴, 𝐵〉} = ∪ ∅) |
| 13 | ancom 460 | . . . 4 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ↔ (𝐵 ∈ V ∧ 𝐴 ∈ V)) | |
| 14 | opprc 4872 | . . . 4 ⊢ (¬ (𝐵 ∈ V ∧ 𝐴 ∈ V) → 〈𝐵, 𝐴〉 = ∅) | |
| 15 | 13, 14 | sylnbi 330 | . . 3 ⊢ (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → 〈𝐵, 𝐴〉 = ∅) |
| 16 | 6, 12, 15 | 3eqtr4a 2796 | . 2 ⊢ (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → ∪ ◡{〈𝐴, 𝐵〉} = 〈𝐵, 𝐴〉) |
| 17 | 5, 16 | pm2.61i 182 | 1 ⊢ ∪ ◡{〈𝐴, 𝐵〉} = 〈𝐵, 𝐴〉 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∧ wa 395 = wceq 1540 ∈ wcel 2108 Vcvv 3459 ∅c0 4308 {csn 4601 〈cop 4607 ∪ cuni 4883 ◡ccnv 5653 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-xp 5660 df-rel 5661 df-cnv 5662 df-dm 5664 df-rn 5665 |
| This theorem is referenced by: 2nd1st 8037 cnvf1olem 8109 brtpos 8234 dftpos4 8244 tpostpos 8245 xpcomco 9076 fsumcnv 15789 fprodcnv 15999 gsumcom2 19956 txswaphmeolem 23742 swapf1 49189 swapf2 49191 |
| Copyright terms: Public domain | W3C validator |