![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > opswap | Structured version Visualization version GIF version |
Description: Swap the members of an ordered pair. (Contributed by NM, 14-Dec-2008.) (Revised by Mario Carneiro, 30-Aug-2015.) |
Ref | Expression |
---|---|
opswap | ⊢ ∪ ◡{⟨𝐴, 𝐵⟩} = ⟨𝐵, 𝐴⟩ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnvsng 6221 | . . . 4 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ◡{⟨𝐴, 𝐵⟩} = {⟨𝐵, 𝐴⟩}) | |
2 | 1 | unieqd 4916 | . . 3 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ∪ ◡{⟨𝐴, 𝐵⟩} = ∪ {⟨𝐵, 𝐴⟩}) |
3 | opex 5460 | . . . 4 ⊢ ⟨𝐵, 𝐴⟩ ∈ V | |
4 | 3 | unisn 4924 | . . 3 ⊢ ∪ {⟨𝐵, 𝐴⟩} = ⟨𝐵, 𝐴⟩ |
5 | 2, 4 | eqtrdi 2783 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ∪ ◡{⟨𝐴, 𝐵⟩} = ⟨𝐵, 𝐴⟩) |
6 | uni0 4933 | . . 3 ⊢ ∪ ∅ = ∅ | |
7 | opprc 4892 | . . . . . . 7 ⊢ (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → ⟨𝐴, 𝐵⟩ = ∅) | |
8 | 7 | sneqd 4636 | . . . . . 6 ⊢ (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → {⟨𝐴, 𝐵⟩} = {∅}) |
9 | 8 | cnveqd 5872 | . . . . 5 ⊢ (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → ◡{⟨𝐴, 𝐵⟩} = ◡{∅}) |
10 | cnvsn0 6208 | . . . . 5 ⊢ ◡{∅} = ∅ | |
11 | 9, 10 | eqtrdi 2783 | . . . 4 ⊢ (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → ◡{⟨𝐴, 𝐵⟩} = ∅) |
12 | 11 | unieqd 4916 | . . 3 ⊢ (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → ∪ ◡{⟨𝐴, 𝐵⟩} = ∪ ∅) |
13 | ancom 460 | . . . 4 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ↔ (𝐵 ∈ V ∧ 𝐴 ∈ V)) | |
14 | opprc 4892 | . . . 4 ⊢ (¬ (𝐵 ∈ V ∧ 𝐴 ∈ V) → ⟨𝐵, 𝐴⟩ = ∅) | |
15 | 13, 14 | sylnbi 330 | . . 3 ⊢ (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → ⟨𝐵, 𝐴⟩ = ∅) |
16 | 6, 12, 15 | 3eqtr4a 2793 | . 2 ⊢ (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → ∪ ◡{⟨𝐴, 𝐵⟩} = ⟨𝐵, 𝐴⟩) |
17 | 5, 16 | pm2.61i 182 | 1 ⊢ ∪ ◡{⟨𝐴, 𝐵⟩} = ⟨𝐵, 𝐴⟩ |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 395 = wceq 1534 ∈ wcel 2099 Vcvv 3469 ∅c0 4318 {csn 4624 ⟨cop 4630 ∪ cuni 4903 ◡ccnv 5671 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-sep 5293 ax-nul 5300 ax-pr 5423 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-clab 2705 df-cleq 2719 df-clel 2805 df-ne 2936 df-ral 3057 df-rex 3066 df-rab 3428 df-v 3471 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4319 df-if 4525 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-br 5143 df-opab 5205 df-xp 5678 df-rel 5679 df-cnv 5680 df-dm 5682 df-rn 5683 |
This theorem is referenced by: 2nd1st 8036 cnvf1olem 8109 brtpos 8234 dftpos4 8244 tpostpos 8245 xpcomco 9080 fsumcnv 15745 fprodcnv 15953 gsumcom2 19923 txswaphmeolem 23701 |
Copyright terms: Public domain | W3C validator |