![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > opswap | Structured version Visualization version GIF version |
Description: Swap the members of an ordered pair. (Contributed by NM, 14-Dec-2008.) (Revised by Mario Carneiro, 30-Aug-2015.) |
Ref | Expression |
---|---|
opswap | ⊢ ∪ ◡{⟨𝐴, 𝐵⟩} = ⟨𝐵, 𝐴⟩ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnvsng 6179 | . . . 4 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ◡{⟨𝐴, 𝐵⟩} = {⟨𝐵, 𝐴⟩}) | |
2 | 1 | unieqd 4883 | . . 3 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ∪ ◡{⟨𝐴, 𝐵⟩} = ∪ {⟨𝐵, 𝐴⟩}) |
3 | opex 5425 | . . . 4 ⊢ ⟨𝐵, 𝐴⟩ ∈ V | |
4 | 3 | unisn 4891 | . . 3 ⊢ ∪ {⟨𝐵, 𝐴⟩} = ⟨𝐵, 𝐴⟩ |
5 | 2, 4 | eqtrdi 2789 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ∪ ◡{⟨𝐴, 𝐵⟩} = ⟨𝐵, 𝐴⟩) |
6 | uni0 4900 | . . 3 ⊢ ∪ ∅ = ∅ | |
7 | opprc 4857 | . . . . . . 7 ⊢ (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → ⟨𝐴, 𝐵⟩ = ∅) | |
8 | 7 | sneqd 4602 | . . . . . 6 ⊢ (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → {⟨𝐴, 𝐵⟩} = {∅}) |
9 | 8 | cnveqd 5835 | . . . . 5 ⊢ (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → ◡{⟨𝐴, 𝐵⟩} = ◡{∅}) |
10 | cnvsn0 6166 | . . . . 5 ⊢ ◡{∅} = ∅ | |
11 | 9, 10 | eqtrdi 2789 | . . . 4 ⊢ (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → ◡{⟨𝐴, 𝐵⟩} = ∅) |
12 | 11 | unieqd 4883 | . . 3 ⊢ (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → ∪ ◡{⟨𝐴, 𝐵⟩} = ∪ ∅) |
13 | ancom 462 | . . . 4 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ↔ (𝐵 ∈ V ∧ 𝐴 ∈ V)) | |
14 | opprc 4857 | . . . 4 ⊢ (¬ (𝐵 ∈ V ∧ 𝐴 ∈ V) → ⟨𝐵, 𝐴⟩ = ∅) | |
15 | 13, 14 | sylnbi 330 | . . 3 ⊢ (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → ⟨𝐵, 𝐴⟩ = ∅) |
16 | 6, 12, 15 | 3eqtr4a 2799 | . 2 ⊢ (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → ∪ ◡{⟨𝐴, 𝐵⟩} = ⟨𝐵, 𝐴⟩) |
17 | 5, 16 | pm2.61i 182 | 1 ⊢ ∪ ◡{⟨𝐴, 𝐵⟩} = ⟨𝐵, 𝐴⟩ |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 397 = wceq 1542 ∈ wcel 2107 Vcvv 3447 ∅c0 4286 {csn 4590 ⟨cop 4596 ∪ cuni 4869 ◡ccnv 5636 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5260 ax-nul 5267 ax-pr 5388 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3407 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4287 df-if 4491 df-sn 4591 df-pr 4593 df-op 4597 df-uni 4870 df-br 5110 df-opab 5172 df-xp 5643 df-rel 5644 df-cnv 5645 df-dm 5647 df-rn 5648 |
This theorem is referenced by: 2nd1st 7974 cnvf1olem 8046 brtpos 8170 dftpos4 8180 tpostpos 8181 xpcomco 9012 fsumcnv 15666 fprodcnv 15874 gsumcom2 19760 txswaphmeolem 23178 |
Copyright terms: Public domain | W3C validator |