Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > opswap | Structured version Visualization version GIF version |
Description: Swap the members of an ordered pair. (Contributed by NM, 14-Dec-2008.) (Revised by Mario Carneiro, 30-Aug-2015.) |
Ref | Expression |
---|---|
opswap | ⊢ ∪ ◡{〈𝐴, 𝐵〉} = 〈𝐵, 𝐴〉 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnvsng 6086 | . . . 4 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ◡{〈𝐴, 𝐵〉} = {〈𝐵, 𝐴〉}) | |
2 | 1 | unieqd 4833 | . . 3 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ∪ ◡{〈𝐴, 𝐵〉} = ∪ {〈𝐵, 𝐴〉}) |
3 | opex 5348 | . . . 4 ⊢ 〈𝐵, 𝐴〉 ∈ V | |
4 | 3 | unisn 4841 | . . 3 ⊢ ∪ {〈𝐵, 𝐴〉} = 〈𝐵, 𝐴〉 |
5 | 2, 4 | eqtrdi 2794 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ∪ ◡{〈𝐴, 𝐵〉} = 〈𝐵, 𝐴〉) |
6 | uni0 4849 | . . 3 ⊢ ∪ ∅ = ∅ | |
7 | opprc 4807 | . . . . . . 7 ⊢ (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → 〈𝐴, 𝐵〉 = ∅) | |
8 | 7 | sneqd 4553 | . . . . . 6 ⊢ (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → {〈𝐴, 𝐵〉} = {∅}) |
9 | 8 | cnveqd 5744 | . . . . 5 ⊢ (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → ◡{〈𝐴, 𝐵〉} = ◡{∅}) |
10 | cnvsn0 6073 | . . . . 5 ⊢ ◡{∅} = ∅ | |
11 | 9, 10 | eqtrdi 2794 | . . . 4 ⊢ (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → ◡{〈𝐴, 𝐵〉} = ∅) |
12 | 11 | unieqd 4833 | . . 3 ⊢ (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → ∪ ◡{〈𝐴, 𝐵〉} = ∪ ∅) |
13 | ancom 464 | . . . 4 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ↔ (𝐵 ∈ V ∧ 𝐴 ∈ V)) | |
14 | opprc 4807 | . . . 4 ⊢ (¬ (𝐵 ∈ V ∧ 𝐴 ∈ V) → 〈𝐵, 𝐴〉 = ∅) | |
15 | 13, 14 | sylnbi 333 | . . 3 ⊢ (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → 〈𝐵, 𝐴〉 = ∅) |
16 | 6, 12, 15 | 3eqtr4a 2804 | . 2 ⊢ (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → ∪ ◡{〈𝐴, 𝐵〉} = 〈𝐵, 𝐴〉) |
17 | 5, 16 | pm2.61i 185 | 1 ⊢ ∪ ◡{〈𝐴, 𝐵〉} = 〈𝐵, 𝐴〉 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 399 = wceq 1543 ∈ wcel 2110 Vcvv 3408 ∅c0 4237 {csn 4541 〈cop 4547 ∪ cuni 4819 ◡ccnv 5550 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pr 5322 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-clab 2715 df-cleq 2729 df-clel 2816 df-ne 2941 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3410 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-nul 4238 df-if 4440 df-sn 4542 df-pr 4544 df-op 4548 df-uni 4820 df-br 5054 df-opab 5116 df-xp 5557 df-rel 5558 df-cnv 5559 df-dm 5561 df-rn 5562 |
This theorem is referenced by: 2nd1st 7809 cnvf1olem 7878 brtpos 7977 dftpos4 7987 tpostpos 7988 xpcomco 8735 fsumcnv 15337 fprodcnv 15545 gsumcom2 19360 txswaphmeolem 22701 |
Copyright terms: Public domain | W3C validator |