MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opswap Structured version   Visualization version   GIF version

Theorem opswap 6219
Description: Swap the members of an ordered pair. (Contributed by NM, 14-Dec-2008.) (Revised by Mario Carneiro, 30-Aug-2015.)
Assertion
Ref Expression
opswap {⟨𝐴, 𝐵⟩} = ⟨𝐵, 𝐴

Proof of Theorem opswap
StepHypRef Expression
1 cnvsng 6213 . . . 4 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → {⟨𝐴, 𝐵⟩} = {⟨𝐵, 𝐴⟩})
21unieqd 4913 . . 3 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → {⟨𝐴, 𝐵⟩} = {⟨𝐵, 𝐴⟩})
3 opex 5455 . . . 4 𝐵, 𝐴⟩ ∈ V
43unisn 4921 . . 3 {⟨𝐵, 𝐴⟩} = ⟨𝐵, 𝐴
52, 4eqtrdi 2780 . 2 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → {⟨𝐴, 𝐵⟩} = ⟨𝐵, 𝐴⟩)
6 uni0 4930 . . 3 ∅ = ∅
7 opprc 4889 . . . . . . 7 (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → ⟨𝐴, 𝐵⟩ = ∅)
87sneqd 4633 . . . . . 6 (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → {⟨𝐴, 𝐵⟩} = {∅})
98cnveqd 5866 . . . . 5 (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → {⟨𝐴, 𝐵⟩} = {∅})
10 cnvsn0 6200 . . . . 5 {∅} = ∅
119, 10eqtrdi 2780 . . . 4 (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → {⟨𝐴, 𝐵⟩} = ∅)
1211unieqd 4913 . . 3 (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → {⟨𝐴, 𝐵⟩} = ∅)
13 ancom 460 . . . 4 ((𝐴 ∈ V ∧ 𝐵 ∈ V) ↔ (𝐵 ∈ V ∧ 𝐴 ∈ V))
14 opprc 4889 . . . 4 (¬ (𝐵 ∈ V ∧ 𝐴 ∈ V) → ⟨𝐵, 𝐴⟩ = ∅)
1513, 14sylnbi 330 . . 3 (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → ⟨𝐵, 𝐴⟩ = ∅)
166, 12, 153eqtr4a 2790 . 2 (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → {⟨𝐴, 𝐵⟩} = ⟨𝐵, 𝐴⟩)
175, 16pm2.61i 182 1 {⟨𝐴, 𝐵⟩} = ⟨𝐵, 𝐴
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395   = wceq 1533  wcel 2098  Vcvv 3466  c0 4315  {csn 4621  cop 4627   cuni 4900  ccnv 5666
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5290  ax-nul 5297  ax-pr 5418
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-clab 2702  df-cleq 2716  df-clel 2802  df-ne 2933  df-ral 3054  df-rex 3063  df-rab 3425  df-v 3468  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-nul 4316  df-if 4522  df-sn 4622  df-pr 4624  df-op 4628  df-uni 4901  df-br 5140  df-opab 5202  df-xp 5673  df-rel 5674  df-cnv 5675  df-dm 5677  df-rn 5678
This theorem is referenced by:  2nd1st  8018  cnvf1olem  8091  brtpos  8216  dftpos4  8226  tpostpos  8227  xpcomco  9059  fsumcnv  15717  fprodcnv  15925  gsumcom2  19887  txswaphmeolem  23632
  Copyright terms: Public domain W3C validator