![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > opswap | Structured version Visualization version GIF version |
Description: Swap the members of an ordered pair. (Contributed by NM, 14-Dec-2008.) (Revised by Mario Carneiro, 30-Aug-2015.) |
Ref | Expression |
---|---|
opswap | ⊢ ∪ ◡{〈𝐴, 𝐵〉} = 〈𝐵, 𝐴〉 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnvsng 6254 | . . . 4 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ◡{〈𝐴, 𝐵〉} = {〈𝐵, 𝐴〉}) | |
2 | 1 | unieqd 4944 | . . 3 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ∪ ◡{〈𝐴, 𝐵〉} = ∪ {〈𝐵, 𝐴〉}) |
3 | opex 5484 | . . . 4 ⊢ 〈𝐵, 𝐴〉 ∈ V | |
4 | 3 | unisn 4950 | . . 3 ⊢ ∪ {〈𝐵, 𝐴〉} = 〈𝐵, 𝐴〉 |
5 | 2, 4 | eqtrdi 2796 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ∪ ◡{〈𝐴, 𝐵〉} = 〈𝐵, 𝐴〉) |
6 | uni0 4959 | . . 3 ⊢ ∪ ∅ = ∅ | |
7 | opprc 4920 | . . . . . . 7 ⊢ (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → 〈𝐴, 𝐵〉 = ∅) | |
8 | 7 | sneqd 4660 | . . . . . 6 ⊢ (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → {〈𝐴, 𝐵〉} = {∅}) |
9 | 8 | cnveqd 5900 | . . . . 5 ⊢ (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → ◡{〈𝐴, 𝐵〉} = ◡{∅}) |
10 | cnvsn0 6241 | . . . . 5 ⊢ ◡{∅} = ∅ | |
11 | 9, 10 | eqtrdi 2796 | . . . 4 ⊢ (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → ◡{〈𝐴, 𝐵〉} = ∅) |
12 | 11 | unieqd 4944 | . . 3 ⊢ (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → ∪ ◡{〈𝐴, 𝐵〉} = ∪ ∅) |
13 | ancom 460 | . . . 4 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ↔ (𝐵 ∈ V ∧ 𝐴 ∈ V)) | |
14 | opprc 4920 | . . . 4 ⊢ (¬ (𝐵 ∈ V ∧ 𝐴 ∈ V) → 〈𝐵, 𝐴〉 = ∅) | |
15 | 13, 14 | sylnbi 330 | . . 3 ⊢ (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → 〈𝐵, 𝐴〉 = ∅) |
16 | 6, 12, 15 | 3eqtr4a 2806 | . 2 ⊢ (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → ∪ ◡{〈𝐴, 𝐵〉} = 〈𝐵, 𝐴〉) |
17 | 5, 16 | pm2.61i 182 | 1 ⊢ ∪ ◡{〈𝐴, 𝐵〉} = 〈𝐵, 𝐴〉 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 395 = wceq 1537 ∈ wcel 2108 Vcvv 3488 ∅c0 4352 {csn 4648 〈cop 4654 ∪ cuni 4931 ◡ccnv 5699 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-xp 5706 df-rel 5707 df-cnv 5708 df-dm 5710 df-rn 5711 |
This theorem is referenced by: 2nd1st 8079 cnvf1olem 8151 brtpos 8276 dftpos4 8286 tpostpos 8287 xpcomco 9128 fsumcnv 15821 fprodcnv 16031 gsumcom2 20017 txswaphmeolem 23833 |
Copyright terms: Public domain | W3C validator |