Proof of Theorem suppssov1
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | suppssov1.a | . . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → 𝐴 ∈ 𝑉) | 
| 2 | 1 | elexd 3504 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → 𝐴 ∈ V) | 
| 3 | 2 | adantlr 715 | . . . . . . . 8
⊢ (((𝜑 ∧ (𝐷 ∈ V ∧ 𝑍 ∈ V)) ∧ 𝑥 ∈ 𝐷) → 𝐴 ∈ V) | 
| 4 | 3 | adantr 480 | . . . . . . 7
⊢ ((((𝜑 ∧ (𝐷 ∈ V ∧ 𝑍 ∈ V)) ∧ 𝑥 ∈ 𝐷) ∧ (𝐴𝑂𝐵) ∈ (V ∖ {𝑍})) → 𝐴 ∈ V) | 
| 5 |  | oveq2 7439 | . . . . . . . . . . . 12
⊢ (𝑣 = 𝐵 → (𝑌𝑂𝑣) = (𝑌𝑂𝐵)) | 
| 6 | 5 | eqeq1d 2739 | . . . . . . . . . . 11
⊢ (𝑣 = 𝐵 → ((𝑌𝑂𝑣) = 𝑍 ↔ (𝑌𝑂𝐵) = 𝑍)) | 
| 7 |  | suppssov1.o | . . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑣 ∈ 𝑅) → (𝑌𝑂𝑣) = 𝑍) | 
| 8 | 7 | ralrimiva 3146 | . . . . . . . . . . . 12
⊢ (𝜑 → ∀𝑣 ∈ 𝑅 (𝑌𝑂𝑣) = 𝑍) | 
| 9 | 8 | ad2antrr 726 | . . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝐷 ∈ V ∧ 𝑍 ∈ V)) ∧ 𝑥 ∈ 𝐷) → ∀𝑣 ∈ 𝑅 (𝑌𝑂𝑣) = 𝑍) | 
| 10 |  | suppssov1.b | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → 𝐵 ∈ 𝑅) | 
| 11 | 10 | adantlr 715 | . . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝐷 ∈ V ∧ 𝑍 ∈ V)) ∧ 𝑥 ∈ 𝐷) → 𝐵 ∈ 𝑅) | 
| 12 | 6, 9, 11 | rspcdva 3623 | . . . . . . . . . 10
⊢ (((𝜑 ∧ (𝐷 ∈ V ∧ 𝑍 ∈ V)) ∧ 𝑥 ∈ 𝐷) → (𝑌𝑂𝐵) = 𝑍) | 
| 13 |  | oveq1 7438 | . . . . . . . . . . 11
⊢ (𝐴 = 𝑌 → (𝐴𝑂𝐵) = (𝑌𝑂𝐵)) | 
| 14 | 13 | eqeq1d 2739 | . . . . . . . . . 10
⊢ (𝐴 = 𝑌 → ((𝐴𝑂𝐵) = 𝑍 ↔ (𝑌𝑂𝐵) = 𝑍)) | 
| 15 | 12, 14 | syl5ibrcom 247 | . . . . . . . . 9
⊢ (((𝜑 ∧ (𝐷 ∈ V ∧ 𝑍 ∈ V)) ∧ 𝑥 ∈ 𝐷) → (𝐴 = 𝑌 → (𝐴𝑂𝐵) = 𝑍)) | 
| 16 | 15 | necon3d 2961 | . . . . . . . 8
⊢ (((𝜑 ∧ (𝐷 ∈ V ∧ 𝑍 ∈ V)) ∧ 𝑥 ∈ 𝐷) → ((𝐴𝑂𝐵) ≠ 𝑍 → 𝐴 ≠ 𝑌)) | 
| 17 |  | eldifsni 4790 | . . . . . . . 8
⊢ ((𝐴𝑂𝐵) ∈ (V ∖ {𝑍}) → (𝐴𝑂𝐵) ≠ 𝑍) | 
| 18 | 16, 17 | impel 505 | . . . . . . 7
⊢ ((((𝜑 ∧ (𝐷 ∈ V ∧ 𝑍 ∈ V)) ∧ 𝑥 ∈ 𝐷) ∧ (𝐴𝑂𝐵) ∈ (V ∖ {𝑍})) → 𝐴 ≠ 𝑌) | 
| 19 |  | eldifsn 4786 | . . . . . . 7
⊢ (𝐴 ∈ (V ∖ {𝑌}) ↔ (𝐴 ∈ V ∧ 𝐴 ≠ 𝑌)) | 
| 20 | 4, 18, 19 | sylanbrc 583 | . . . . . 6
⊢ ((((𝜑 ∧ (𝐷 ∈ V ∧ 𝑍 ∈ V)) ∧ 𝑥 ∈ 𝐷) ∧ (𝐴𝑂𝐵) ∈ (V ∖ {𝑍})) → 𝐴 ∈ (V ∖ {𝑌})) | 
| 21 | 20 | ex 412 | . . . . 5
⊢ (((𝜑 ∧ (𝐷 ∈ V ∧ 𝑍 ∈ V)) ∧ 𝑥 ∈ 𝐷) → ((𝐴𝑂𝐵) ∈ (V ∖ {𝑍}) → 𝐴 ∈ (V ∖ {𝑌}))) | 
| 22 | 21 | ss2rabdv 4076 | . . . 4
⊢ ((𝜑 ∧ (𝐷 ∈ V ∧ 𝑍 ∈ V)) → {𝑥 ∈ 𝐷 ∣ (𝐴𝑂𝐵) ∈ (V ∖ {𝑍})} ⊆ {𝑥 ∈ 𝐷 ∣ 𝐴 ∈ (V ∖ {𝑌})}) | 
| 23 |  | eqid 2737 | . . . . 5
⊢ (𝑥 ∈ 𝐷 ↦ (𝐴𝑂𝐵)) = (𝑥 ∈ 𝐷 ↦ (𝐴𝑂𝐵)) | 
| 24 |  | simprl 771 | . . . . 5
⊢ ((𝜑 ∧ (𝐷 ∈ V ∧ 𝑍 ∈ V)) → 𝐷 ∈ V) | 
| 25 |  | simprr 773 | . . . . 5
⊢ ((𝜑 ∧ (𝐷 ∈ V ∧ 𝑍 ∈ V)) → 𝑍 ∈ V) | 
| 26 | 23, 24, 25 | mptsuppdifd 8211 | . . . 4
⊢ ((𝜑 ∧ (𝐷 ∈ V ∧ 𝑍 ∈ V)) → ((𝑥 ∈ 𝐷 ↦ (𝐴𝑂𝐵)) supp 𝑍) = {𝑥 ∈ 𝐷 ∣ (𝐴𝑂𝐵) ∈ (V ∖ {𝑍})}) | 
| 27 |  | eqid 2737 | . . . . 5
⊢ (𝑥 ∈ 𝐷 ↦ 𝐴) = (𝑥 ∈ 𝐷 ↦ 𝐴) | 
| 28 |  | suppssov1.y | . . . . . 6
⊢ (𝜑 → 𝑌 ∈ 𝑊) | 
| 29 | 28 | adantr 480 | . . . . 5
⊢ ((𝜑 ∧ (𝐷 ∈ V ∧ 𝑍 ∈ V)) → 𝑌 ∈ 𝑊) | 
| 30 | 27, 24, 29 | mptsuppdifd 8211 | . . . 4
⊢ ((𝜑 ∧ (𝐷 ∈ V ∧ 𝑍 ∈ V)) → ((𝑥 ∈ 𝐷 ↦ 𝐴) supp 𝑌) = {𝑥 ∈ 𝐷 ∣ 𝐴 ∈ (V ∖ {𝑌})}) | 
| 31 | 22, 26, 30 | 3sstr4d 4039 | . . 3
⊢ ((𝜑 ∧ (𝐷 ∈ V ∧ 𝑍 ∈ V)) → ((𝑥 ∈ 𝐷 ↦ (𝐴𝑂𝐵)) supp 𝑍) ⊆ ((𝑥 ∈ 𝐷 ↦ 𝐴) supp 𝑌)) | 
| 32 |  | suppssov1.s | . . . 4
⊢ (𝜑 → ((𝑥 ∈ 𝐷 ↦ 𝐴) supp 𝑌) ⊆ 𝐿) | 
| 33 | 32 | adantr 480 | . . 3
⊢ ((𝜑 ∧ (𝐷 ∈ V ∧ 𝑍 ∈ V)) → ((𝑥 ∈ 𝐷 ↦ 𝐴) supp 𝑌) ⊆ 𝐿) | 
| 34 | 31, 33 | sstrd 3994 | . 2
⊢ ((𝜑 ∧ (𝐷 ∈ V ∧ 𝑍 ∈ V)) → ((𝑥 ∈ 𝐷 ↦ (𝐴𝑂𝐵)) supp 𝑍) ⊆ 𝐿) | 
| 35 |  | mptexg 7241 | . . . . . . 7
⊢ (𝐷 ∈ V → (𝑥 ∈ 𝐷 ↦ (𝐴𝑂𝐵)) ∈ V) | 
| 36 |  | ovex 7464 | . . . . . . . . . 10
⊢ (𝐴𝑂𝐵) ∈ V | 
| 37 | 36 | rgenw 3065 | . . . . . . . . 9
⊢
∀𝑥 ∈
𝐷 (𝐴𝑂𝐵) ∈ V | 
| 38 |  | dmmptg 6262 | . . . . . . . . 9
⊢
(∀𝑥 ∈
𝐷 (𝐴𝑂𝐵) ∈ V → dom (𝑥 ∈ 𝐷 ↦ (𝐴𝑂𝐵)) = 𝐷) | 
| 39 | 37, 38 | ax-mp 5 | . . . . . . . 8
⊢ dom
(𝑥 ∈ 𝐷 ↦ (𝐴𝑂𝐵)) = 𝐷 | 
| 40 |  | dmexg 7923 | . . . . . . . 8
⊢ ((𝑥 ∈ 𝐷 ↦ (𝐴𝑂𝐵)) ∈ V → dom (𝑥 ∈ 𝐷 ↦ (𝐴𝑂𝐵)) ∈ V) | 
| 41 | 39, 40 | eqeltrrid 2846 | . . . . . . 7
⊢ ((𝑥 ∈ 𝐷 ↦ (𝐴𝑂𝐵)) ∈ V → 𝐷 ∈ V) | 
| 42 | 35, 41 | impbii 209 | . . . . . 6
⊢ (𝐷 ∈ V ↔ (𝑥 ∈ 𝐷 ↦ (𝐴𝑂𝐵)) ∈ V) | 
| 43 | 42 | anbi1i 624 | . . . . 5
⊢ ((𝐷 ∈ V ∧ 𝑍 ∈ V) ↔ ((𝑥 ∈ 𝐷 ↦ (𝐴𝑂𝐵)) ∈ V ∧ 𝑍 ∈ V)) | 
| 44 |  | supp0prc 8188 | . . . . 5
⊢ (¬
((𝑥 ∈ 𝐷 ↦ (𝐴𝑂𝐵)) ∈ V ∧ 𝑍 ∈ V) → ((𝑥 ∈ 𝐷 ↦ (𝐴𝑂𝐵)) supp 𝑍) = ∅) | 
| 45 | 43, 44 | sylnbi 330 | . . . 4
⊢ (¬
(𝐷 ∈ V ∧ 𝑍 ∈ V) → ((𝑥 ∈ 𝐷 ↦ (𝐴𝑂𝐵)) supp 𝑍) = ∅) | 
| 46 |  | 0ss 4400 | . . . 4
⊢ ∅
⊆ 𝐿 | 
| 47 | 45, 46 | eqsstrdi 4028 | . . 3
⊢ (¬
(𝐷 ∈ V ∧ 𝑍 ∈ V) → ((𝑥 ∈ 𝐷 ↦ (𝐴𝑂𝐵)) supp 𝑍) ⊆ 𝐿) | 
| 48 | 47 | adantl 481 | . 2
⊢ ((𝜑 ∧ ¬ (𝐷 ∈ V ∧ 𝑍 ∈ V)) → ((𝑥 ∈ 𝐷 ↦ (𝐴𝑂𝐵)) supp 𝑍) ⊆ 𝐿) | 
| 49 | 34, 48 | pm2.61dan 813 | 1
⊢ (𝜑 → ((𝑥 ∈ 𝐷 ↦ (𝐴𝑂𝐵)) supp 𝑍) ⊆ 𝐿) |