Proof of Theorem suppssov1
| Step | Hyp | Ref
| Expression |
| 1 | | suppssov1.a |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → 𝐴 ∈ 𝑉) |
| 2 | 1 | elexd 3488 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → 𝐴 ∈ V) |
| 3 | 2 | adantlr 715 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝐷 ∈ V ∧ 𝑍 ∈ V)) ∧ 𝑥 ∈ 𝐷) → 𝐴 ∈ V) |
| 4 | 3 | adantr 480 |
. . . . . . 7
⊢ ((((𝜑 ∧ (𝐷 ∈ V ∧ 𝑍 ∈ V)) ∧ 𝑥 ∈ 𝐷) ∧ (𝐴𝑂𝐵) ∈ (V ∖ {𝑍})) → 𝐴 ∈ V) |
| 5 | | oveq2 7418 |
. . . . . . . . . . . 12
⊢ (𝑣 = 𝐵 → (𝑌𝑂𝑣) = (𝑌𝑂𝐵)) |
| 6 | 5 | eqeq1d 2738 |
. . . . . . . . . . 11
⊢ (𝑣 = 𝐵 → ((𝑌𝑂𝑣) = 𝑍 ↔ (𝑌𝑂𝐵) = 𝑍)) |
| 7 | | suppssov1.o |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑣 ∈ 𝑅) → (𝑌𝑂𝑣) = 𝑍) |
| 8 | 7 | ralrimiva 3133 |
. . . . . . . . . . . 12
⊢ (𝜑 → ∀𝑣 ∈ 𝑅 (𝑌𝑂𝑣) = 𝑍) |
| 9 | 8 | ad2antrr 726 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝐷 ∈ V ∧ 𝑍 ∈ V)) ∧ 𝑥 ∈ 𝐷) → ∀𝑣 ∈ 𝑅 (𝑌𝑂𝑣) = 𝑍) |
| 10 | | suppssov1.b |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → 𝐵 ∈ 𝑅) |
| 11 | 10 | adantlr 715 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝐷 ∈ V ∧ 𝑍 ∈ V)) ∧ 𝑥 ∈ 𝐷) → 𝐵 ∈ 𝑅) |
| 12 | 6, 9, 11 | rspcdva 3607 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝐷 ∈ V ∧ 𝑍 ∈ V)) ∧ 𝑥 ∈ 𝐷) → (𝑌𝑂𝐵) = 𝑍) |
| 13 | | oveq1 7417 |
. . . . . . . . . . 11
⊢ (𝐴 = 𝑌 → (𝐴𝑂𝐵) = (𝑌𝑂𝐵)) |
| 14 | 13 | eqeq1d 2738 |
. . . . . . . . . 10
⊢ (𝐴 = 𝑌 → ((𝐴𝑂𝐵) = 𝑍 ↔ (𝑌𝑂𝐵) = 𝑍)) |
| 15 | 12, 14 | syl5ibrcom 247 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝐷 ∈ V ∧ 𝑍 ∈ V)) ∧ 𝑥 ∈ 𝐷) → (𝐴 = 𝑌 → (𝐴𝑂𝐵) = 𝑍)) |
| 16 | 15 | necon3d 2954 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝐷 ∈ V ∧ 𝑍 ∈ V)) ∧ 𝑥 ∈ 𝐷) → ((𝐴𝑂𝐵) ≠ 𝑍 → 𝐴 ≠ 𝑌)) |
| 17 | | eldifsni 4771 |
. . . . . . . 8
⊢ ((𝐴𝑂𝐵) ∈ (V ∖ {𝑍}) → (𝐴𝑂𝐵) ≠ 𝑍) |
| 18 | 16, 17 | impel 505 |
. . . . . . 7
⊢ ((((𝜑 ∧ (𝐷 ∈ V ∧ 𝑍 ∈ V)) ∧ 𝑥 ∈ 𝐷) ∧ (𝐴𝑂𝐵) ∈ (V ∖ {𝑍})) → 𝐴 ≠ 𝑌) |
| 19 | | eldifsn 4767 |
. . . . . . 7
⊢ (𝐴 ∈ (V ∖ {𝑌}) ↔ (𝐴 ∈ V ∧ 𝐴 ≠ 𝑌)) |
| 20 | 4, 18, 19 | sylanbrc 583 |
. . . . . 6
⊢ ((((𝜑 ∧ (𝐷 ∈ V ∧ 𝑍 ∈ V)) ∧ 𝑥 ∈ 𝐷) ∧ (𝐴𝑂𝐵) ∈ (V ∖ {𝑍})) → 𝐴 ∈ (V ∖ {𝑌})) |
| 21 | 20 | ex 412 |
. . . . 5
⊢ (((𝜑 ∧ (𝐷 ∈ V ∧ 𝑍 ∈ V)) ∧ 𝑥 ∈ 𝐷) → ((𝐴𝑂𝐵) ∈ (V ∖ {𝑍}) → 𝐴 ∈ (V ∖ {𝑌}))) |
| 22 | 21 | ss2rabdv 4056 |
. . . 4
⊢ ((𝜑 ∧ (𝐷 ∈ V ∧ 𝑍 ∈ V)) → {𝑥 ∈ 𝐷 ∣ (𝐴𝑂𝐵) ∈ (V ∖ {𝑍})} ⊆ {𝑥 ∈ 𝐷 ∣ 𝐴 ∈ (V ∖ {𝑌})}) |
| 23 | | eqid 2736 |
. . . . 5
⊢ (𝑥 ∈ 𝐷 ↦ (𝐴𝑂𝐵)) = (𝑥 ∈ 𝐷 ↦ (𝐴𝑂𝐵)) |
| 24 | | simprl 770 |
. . . . 5
⊢ ((𝜑 ∧ (𝐷 ∈ V ∧ 𝑍 ∈ V)) → 𝐷 ∈ V) |
| 25 | | simprr 772 |
. . . . 5
⊢ ((𝜑 ∧ (𝐷 ∈ V ∧ 𝑍 ∈ V)) → 𝑍 ∈ V) |
| 26 | 23, 24, 25 | mptsuppdifd 8190 |
. . . 4
⊢ ((𝜑 ∧ (𝐷 ∈ V ∧ 𝑍 ∈ V)) → ((𝑥 ∈ 𝐷 ↦ (𝐴𝑂𝐵)) supp 𝑍) = {𝑥 ∈ 𝐷 ∣ (𝐴𝑂𝐵) ∈ (V ∖ {𝑍})}) |
| 27 | | eqid 2736 |
. . . . 5
⊢ (𝑥 ∈ 𝐷 ↦ 𝐴) = (𝑥 ∈ 𝐷 ↦ 𝐴) |
| 28 | | suppssov1.y |
. . . . . 6
⊢ (𝜑 → 𝑌 ∈ 𝑊) |
| 29 | 28 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ (𝐷 ∈ V ∧ 𝑍 ∈ V)) → 𝑌 ∈ 𝑊) |
| 30 | 27, 24, 29 | mptsuppdifd 8190 |
. . . 4
⊢ ((𝜑 ∧ (𝐷 ∈ V ∧ 𝑍 ∈ V)) → ((𝑥 ∈ 𝐷 ↦ 𝐴) supp 𝑌) = {𝑥 ∈ 𝐷 ∣ 𝐴 ∈ (V ∖ {𝑌})}) |
| 31 | 22, 26, 30 | 3sstr4d 4019 |
. . 3
⊢ ((𝜑 ∧ (𝐷 ∈ V ∧ 𝑍 ∈ V)) → ((𝑥 ∈ 𝐷 ↦ (𝐴𝑂𝐵)) supp 𝑍) ⊆ ((𝑥 ∈ 𝐷 ↦ 𝐴) supp 𝑌)) |
| 32 | | suppssov1.s |
. . . 4
⊢ (𝜑 → ((𝑥 ∈ 𝐷 ↦ 𝐴) supp 𝑌) ⊆ 𝐿) |
| 33 | 32 | adantr 480 |
. . 3
⊢ ((𝜑 ∧ (𝐷 ∈ V ∧ 𝑍 ∈ V)) → ((𝑥 ∈ 𝐷 ↦ 𝐴) supp 𝑌) ⊆ 𝐿) |
| 34 | 31, 33 | sstrd 3974 |
. 2
⊢ ((𝜑 ∧ (𝐷 ∈ V ∧ 𝑍 ∈ V)) → ((𝑥 ∈ 𝐷 ↦ (𝐴𝑂𝐵)) supp 𝑍) ⊆ 𝐿) |
| 35 | | mptexg 7218 |
. . . . . . 7
⊢ (𝐷 ∈ V → (𝑥 ∈ 𝐷 ↦ (𝐴𝑂𝐵)) ∈ V) |
| 36 | | ovex 7443 |
. . . . . . . . . 10
⊢ (𝐴𝑂𝐵) ∈ V |
| 37 | 36 | rgenw 3056 |
. . . . . . . . 9
⊢
∀𝑥 ∈
𝐷 (𝐴𝑂𝐵) ∈ V |
| 38 | | dmmptg 6236 |
. . . . . . . . 9
⊢
(∀𝑥 ∈
𝐷 (𝐴𝑂𝐵) ∈ V → dom (𝑥 ∈ 𝐷 ↦ (𝐴𝑂𝐵)) = 𝐷) |
| 39 | 37, 38 | ax-mp 5 |
. . . . . . . 8
⊢ dom
(𝑥 ∈ 𝐷 ↦ (𝐴𝑂𝐵)) = 𝐷 |
| 40 | | dmexg 7902 |
. . . . . . . 8
⊢ ((𝑥 ∈ 𝐷 ↦ (𝐴𝑂𝐵)) ∈ V → dom (𝑥 ∈ 𝐷 ↦ (𝐴𝑂𝐵)) ∈ V) |
| 41 | 39, 40 | eqeltrrid 2840 |
. . . . . . 7
⊢ ((𝑥 ∈ 𝐷 ↦ (𝐴𝑂𝐵)) ∈ V → 𝐷 ∈ V) |
| 42 | 35, 41 | impbii 209 |
. . . . . 6
⊢ (𝐷 ∈ V ↔ (𝑥 ∈ 𝐷 ↦ (𝐴𝑂𝐵)) ∈ V) |
| 43 | 42 | anbi1i 624 |
. . . . 5
⊢ ((𝐷 ∈ V ∧ 𝑍 ∈ V) ↔ ((𝑥 ∈ 𝐷 ↦ (𝐴𝑂𝐵)) ∈ V ∧ 𝑍 ∈ V)) |
| 44 | | supp0prc 8167 |
. . . . 5
⊢ (¬
((𝑥 ∈ 𝐷 ↦ (𝐴𝑂𝐵)) ∈ V ∧ 𝑍 ∈ V) → ((𝑥 ∈ 𝐷 ↦ (𝐴𝑂𝐵)) supp 𝑍) = ∅) |
| 45 | 43, 44 | sylnbi 330 |
. . . 4
⊢ (¬
(𝐷 ∈ V ∧ 𝑍 ∈ V) → ((𝑥 ∈ 𝐷 ↦ (𝐴𝑂𝐵)) supp 𝑍) = ∅) |
| 46 | | 0ss 4380 |
. . . 4
⊢ ∅
⊆ 𝐿 |
| 47 | 45, 46 | eqsstrdi 4008 |
. . 3
⊢ (¬
(𝐷 ∈ V ∧ 𝑍 ∈ V) → ((𝑥 ∈ 𝐷 ↦ (𝐴𝑂𝐵)) supp 𝑍) ⊆ 𝐿) |
| 48 | 47 | adantl 481 |
. 2
⊢ ((𝜑 ∧ ¬ (𝐷 ∈ V ∧ 𝑍 ∈ V)) → ((𝑥 ∈ 𝐷 ↦ (𝐴𝑂𝐵)) supp 𝑍) ⊆ 𝐿) |
| 49 | 34, 48 | pm2.61dan 812 |
1
⊢ (𝜑 → ((𝑥 ∈ 𝐷 ↦ (𝐴𝑂𝐵)) supp 𝑍) ⊆ 𝐿) |