MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  suppssov1 Structured version   Visualization version   GIF version

Theorem suppssov1 8122
Description: Formula building theorem for support restrictions: operator with left annihilator. (Contributed by Stefan O'Rear, 9-Mar-2015.) (Revised by AV, 28-May-2019.) (Proof shortened by SN, 11-Apr-2025.)
Hypotheses
Ref Expression
suppssov1.s (𝜑 → ((𝑥𝐷𝐴) supp 𝑌) ⊆ 𝐿)
suppssov1.o ((𝜑𝑣𝑅) → (𝑌𝑂𝑣) = 𝑍)
suppssov1.a ((𝜑𝑥𝐷) → 𝐴𝑉)
suppssov1.b ((𝜑𝑥𝐷) → 𝐵𝑅)
suppssov1.y (𝜑𝑌𝑊)
Assertion
Ref Expression
suppssov1 (𝜑 → ((𝑥𝐷 ↦ (𝐴𝑂𝐵)) supp 𝑍) ⊆ 𝐿)
Distinct variable groups:   𝜑,𝑣   𝜑,𝑥   𝑣,𝐵   𝑥,𝐷   𝑣,𝑂   𝑣,𝑅   𝑣,𝑌   𝑥,𝑌   𝑣,𝑍   𝑥,𝑍
Allowed substitution hints:   𝐴(𝑥,𝑣)   𝐵(𝑥)   𝐷(𝑣)   𝑅(𝑥)   𝐿(𝑥,𝑣)   𝑂(𝑥)   𝑉(𝑥,𝑣)   𝑊(𝑥,𝑣)

Proof of Theorem suppssov1
StepHypRef Expression
1 suppssov1.a . . . . . . . . . 10 ((𝜑𝑥𝐷) → 𝐴𝑉)
21elexd 3458 . . . . . . . . 9 ((𝜑𝑥𝐷) → 𝐴 ∈ V)
32adantlr 715 . . . . . . . 8 (((𝜑 ∧ (𝐷 ∈ V ∧ 𝑍 ∈ V)) ∧ 𝑥𝐷) → 𝐴 ∈ V)
43adantr 480 . . . . . . 7 ((((𝜑 ∧ (𝐷 ∈ V ∧ 𝑍 ∈ V)) ∧ 𝑥𝐷) ∧ (𝐴𝑂𝐵) ∈ (V ∖ {𝑍})) → 𝐴 ∈ V)
5 oveq2 7349 . . . . . . . . . . . 12 (𝑣 = 𝐵 → (𝑌𝑂𝑣) = (𝑌𝑂𝐵))
65eqeq1d 2732 . . . . . . . . . . 11 (𝑣 = 𝐵 → ((𝑌𝑂𝑣) = 𝑍 ↔ (𝑌𝑂𝐵) = 𝑍))
7 suppssov1.o . . . . . . . . . . . . 13 ((𝜑𝑣𝑅) → (𝑌𝑂𝑣) = 𝑍)
87ralrimiva 3122 . . . . . . . . . . . 12 (𝜑 → ∀𝑣𝑅 (𝑌𝑂𝑣) = 𝑍)
98ad2antrr 726 . . . . . . . . . . 11 (((𝜑 ∧ (𝐷 ∈ V ∧ 𝑍 ∈ V)) ∧ 𝑥𝐷) → ∀𝑣𝑅 (𝑌𝑂𝑣) = 𝑍)
10 suppssov1.b . . . . . . . . . . . 12 ((𝜑𝑥𝐷) → 𝐵𝑅)
1110adantlr 715 . . . . . . . . . . 11 (((𝜑 ∧ (𝐷 ∈ V ∧ 𝑍 ∈ V)) ∧ 𝑥𝐷) → 𝐵𝑅)
126, 9, 11rspcdva 3576 . . . . . . . . . 10 (((𝜑 ∧ (𝐷 ∈ V ∧ 𝑍 ∈ V)) ∧ 𝑥𝐷) → (𝑌𝑂𝐵) = 𝑍)
13 oveq1 7348 . . . . . . . . . . 11 (𝐴 = 𝑌 → (𝐴𝑂𝐵) = (𝑌𝑂𝐵))
1413eqeq1d 2732 . . . . . . . . . 10 (𝐴 = 𝑌 → ((𝐴𝑂𝐵) = 𝑍 ↔ (𝑌𝑂𝐵) = 𝑍))
1512, 14syl5ibrcom 247 . . . . . . . . 9 (((𝜑 ∧ (𝐷 ∈ V ∧ 𝑍 ∈ V)) ∧ 𝑥𝐷) → (𝐴 = 𝑌 → (𝐴𝑂𝐵) = 𝑍))
1615necon3d 2947 . . . . . . . 8 (((𝜑 ∧ (𝐷 ∈ V ∧ 𝑍 ∈ V)) ∧ 𝑥𝐷) → ((𝐴𝑂𝐵) ≠ 𝑍𝐴𝑌))
17 eldifsni 4740 . . . . . . . 8 ((𝐴𝑂𝐵) ∈ (V ∖ {𝑍}) → (𝐴𝑂𝐵) ≠ 𝑍)
1816, 17impel 505 . . . . . . 7 ((((𝜑 ∧ (𝐷 ∈ V ∧ 𝑍 ∈ V)) ∧ 𝑥𝐷) ∧ (𝐴𝑂𝐵) ∈ (V ∖ {𝑍})) → 𝐴𝑌)
19 eldifsn 4736 . . . . . . 7 (𝐴 ∈ (V ∖ {𝑌}) ↔ (𝐴 ∈ V ∧ 𝐴𝑌))
204, 18, 19sylanbrc 583 . . . . . 6 ((((𝜑 ∧ (𝐷 ∈ V ∧ 𝑍 ∈ V)) ∧ 𝑥𝐷) ∧ (𝐴𝑂𝐵) ∈ (V ∖ {𝑍})) → 𝐴 ∈ (V ∖ {𝑌}))
2120ex 412 . . . . 5 (((𝜑 ∧ (𝐷 ∈ V ∧ 𝑍 ∈ V)) ∧ 𝑥𝐷) → ((𝐴𝑂𝐵) ∈ (V ∖ {𝑍}) → 𝐴 ∈ (V ∖ {𝑌})))
2221ss2rabdv 4024 . . . 4 ((𝜑 ∧ (𝐷 ∈ V ∧ 𝑍 ∈ V)) → {𝑥𝐷 ∣ (𝐴𝑂𝐵) ∈ (V ∖ {𝑍})} ⊆ {𝑥𝐷𝐴 ∈ (V ∖ {𝑌})})
23 eqid 2730 . . . . 5 (𝑥𝐷 ↦ (𝐴𝑂𝐵)) = (𝑥𝐷 ↦ (𝐴𝑂𝐵))
24 simprl 770 . . . . 5 ((𝜑 ∧ (𝐷 ∈ V ∧ 𝑍 ∈ V)) → 𝐷 ∈ V)
25 simprr 772 . . . . 5 ((𝜑 ∧ (𝐷 ∈ V ∧ 𝑍 ∈ V)) → 𝑍 ∈ V)
2623, 24, 25mptsuppdifd 8111 . . . 4 ((𝜑 ∧ (𝐷 ∈ V ∧ 𝑍 ∈ V)) → ((𝑥𝐷 ↦ (𝐴𝑂𝐵)) supp 𝑍) = {𝑥𝐷 ∣ (𝐴𝑂𝐵) ∈ (V ∖ {𝑍})})
27 eqid 2730 . . . . 5 (𝑥𝐷𝐴) = (𝑥𝐷𝐴)
28 suppssov1.y . . . . . 6 (𝜑𝑌𝑊)
2928adantr 480 . . . . 5 ((𝜑 ∧ (𝐷 ∈ V ∧ 𝑍 ∈ V)) → 𝑌𝑊)
3027, 24, 29mptsuppdifd 8111 . . . 4 ((𝜑 ∧ (𝐷 ∈ V ∧ 𝑍 ∈ V)) → ((𝑥𝐷𝐴) supp 𝑌) = {𝑥𝐷𝐴 ∈ (V ∖ {𝑌})})
3122, 26, 303sstr4d 3988 . . 3 ((𝜑 ∧ (𝐷 ∈ V ∧ 𝑍 ∈ V)) → ((𝑥𝐷 ↦ (𝐴𝑂𝐵)) supp 𝑍) ⊆ ((𝑥𝐷𝐴) supp 𝑌))
32 suppssov1.s . . . 4 (𝜑 → ((𝑥𝐷𝐴) supp 𝑌) ⊆ 𝐿)
3332adantr 480 . . 3 ((𝜑 ∧ (𝐷 ∈ V ∧ 𝑍 ∈ V)) → ((𝑥𝐷𝐴) supp 𝑌) ⊆ 𝐿)
3431, 33sstrd 3943 . 2 ((𝜑 ∧ (𝐷 ∈ V ∧ 𝑍 ∈ V)) → ((𝑥𝐷 ↦ (𝐴𝑂𝐵)) supp 𝑍) ⊆ 𝐿)
35 mptexg 7150 . . . . . . 7 (𝐷 ∈ V → (𝑥𝐷 ↦ (𝐴𝑂𝐵)) ∈ V)
36 ovex 7374 . . . . . . . . . 10 (𝐴𝑂𝐵) ∈ V
3736rgenw 3049 . . . . . . . . 9 𝑥𝐷 (𝐴𝑂𝐵) ∈ V
38 dmmptg 6186 . . . . . . . . 9 (∀𝑥𝐷 (𝐴𝑂𝐵) ∈ V → dom (𝑥𝐷 ↦ (𝐴𝑂𝐵)) = 𝐷)
3937, 38ax-mp 5 . . . . . . . 8 dom (𝑥𝐷 ↦ (𝐴𝑂𝐵)) = 𝐷
40 dmexg 7826 . . . . . . . 8 ((𝑥𝐷 ↦ (𝐴𝑂𝐵)) ∈ V → dom (𝑥𝐷 ↦ (𝐴𝑂𝐵)) ∈ V)
4139, 40eqeltrrid 2834 . . . . . . 7 ((𝑥𝐷 ↦ (𝐴𝑂𝐵)) ∈ V → 𝐷 ∈ V)
4235, 41impbii 209 . . . . . 6 (𝐷 ∈ V ↔ (𝑥𝐷 ↦ (𝐴𝑂𝐵)) ∈ V)
4342anbi1i 624 . . . . 5 ((𝐷 ∈ V ∧ 𝑍 ∈ V) ↔ ((𝑥𝐷 ↦ (𝐴𝑂𝐵)) ∈ V ∧ 𝑍 ∈ V))
44 supp0prc 8088 . . . . 5 (¬ ((𝑥𝐷 ↦ (𝐴𝑂𝐵)) ∈ V ∧ 𝑍 ∈ V) → ((𝑥𝐷 ↦ (𝐴𝑂𝐵)) supp 𝑍) = ∅)
4543, 44sylnbi 330 . . . 4 (¬ (𝐷 ∈ V ∧ 𝑍 ∈ V) → ((𝑥𝐷 ↦ (𝐴𝑂𝐵)) supp 𝑍) = ∅)
46 0ss 4348 . . . 4 ∅ ⊆ 𝐿
4745, 46eqsstrdi 3977 . . 3 (¬ (𝐷 ∈ V ∧ 𝑍 ∈ V) → ((𝑥𝐷 ↦ (𝐴𝑂𝐵)) supp 𝑍) ⊆ 𝐿)
4847adantl 481 . 2 ((𝜑 ∧ ¬ (𝐷 ∈ V ∧ 𝑍 ∈ V)) → ((𝑥𝐷 ↦ (𝐴𝑂𝐵)) supp 𝑍) ⊆ 𝐿)
4934, 48pm2.61dan 812 1 (𝜑 → ((𝑥𝐷 ↦ (𝐴𝑂𝐵)) supp 𝑍) ⊆ 𝐿)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1541  wcel 2110  wne 2926  wral 3045  {crab 3393  Vcvv 3434  cdif 3897  wss 3900  c0 4281  {csn 4574  cmpt 5170  dom cdm 5614  (class class class)co 7341   supp csupp 8085
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pr 5368  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-ov 7344  df-oprab 7345  df-mpo 7346  df-supp 8086
This theorem is referenced by:  suppssof1  8124  fsuppssov1  9263  evlslem6  22009  plypf1  26137  fisuppov1  32654  mhphf  42609
  Copyright terms: Public domain W3C validator