Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  suppssov1 Structured version   Visualization version   GIF version

Theorem suppssov1 7593
 Description: Formula building theorem for support restrictions: operator with left annihilator. (Contributed by Stefan O'Rear, 9-Mar-2015.) (Revised by AV, 28-May-2019.)
Hypotheses
Ref Expression
suppssov1.s (𝜑 → ((𝑥𝐷𝐴) supp 𝑌) ⊆ 𝐿)
suppssov1.o ((𝜑𝑣𝑅) → (𝑌𝑂𝑣) = 𝑍)
suppssov1.a ((𝜑𝑥𝐷) → 𝐴𝑉)
suppssov1.b ((𝜑𝑥𝐷) → 𝐵𝑅)
suppssov1.y (𝜑𝑌𝑊)
Assertion
Ref Expression
suppssov1 (𝜑 → ((𝑥𝐷 ↦ (𝐴𝑂𝐵)) supp 𝑍) ⊆ 𝐿)
Distinct variable groups:   𝜑,𝑣   𝜑,𝑥   𝑣,𝐵   𝑥,𝐷   𝑣,𝑂   𝑣,𝑅   𝑣,𝑌   𝑥,𝑌   𝑣,𝑍   𝑥,𝑍
Allowed substitution hints:   𝐴(𝑥,𝑣)   𝐵(𝑥)   𝐷(𝑣)   𝑅(𝑥)   𝐿(𝑥,𝑣)   𝑂(𝑥)   𝑉(𝑥,𝑣)   𝑊(𝑥,𝑣)

Proof of Theorem suppssov1
StepHypRef Expression
1 suppssov1.a . . . . . . . . . . 11 ((𝜑𝑥𝐷) → 𝐴𝑉)
2 elex 3430 . . . . . . . . . . 11 (𝐴𝑉𝐴 ∈ V)
31, 2syl 17 . . . . . . . . . 10 ((𝜑𝑥𝐷) → 𝐴 ∈ V)
43adantll 707 . . . . . . . . 9 ((((𝐷 ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) ∧ 𝑥𝐷) → 𝐴 ∈ V)
54adantr 474 . . . . . . . 8 (((((𝐷 ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) ∧ 𝑥𝐷) ∧ (𝐴𝑂𝐵) ∈ (V ∖ {𝑍})) → 𝐴 ∈ V)
6 eldifsni 4541 . . . . . . . . . 10 ((𝐴𝑂𝐵) ∈ (V ∖ {𝑍}) → (𝐴𝑂𝐵) ≠ 𝑍)
7 oveq2 6914 . . . . . . . . . . . . . 14 (𝑣 = 𝐵 → (𝑌𝑂𝑣) = (𝑌𝑂𝐵))
87eqeq1d 2828 . . . . . . . . . . . . 13 (𝑣 = 𝐵 → ((𝑌𝑂𝑣) = 𝑍 ↔ (𝑌𝑂𝐵) = 𝑍))
9 suppssov1.o . . . . . . . . . . . . . . . 16 ((𝜑𝑣𝑅) → (𝑌𝑂𝑣) = 𝑍)
109ralrimiva 3176 . . . . . . . . . . . . . . 15 (𝜑 → ∀𝑣𝑅 (𝑌𝑂𝑣) = 𝑍)
1110adantl 475 . . . . . . . . . . . . . 14 (((𝐷 ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) → ∀𝑣𝑅 (𝑌𝑂𝑣) = 𝑍)
1211adantr 474 . . . . . . . . . . . . 13 ((((𝐷 ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) ∧ 𝑥𝐷) → ∀𝑣𝑅 (𝑌𝑂𝑣) = 𝑍)
13 suppssov1.b . . . . . . . . . . . . . 14 ((𝜑𝑥𝐷) → 𝐵𝑅)
1413adantll 707 . . . . . . . . . . . . 13 ((((𝐷 ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) ∧ 𝑥𝐷) → 𝐵𝑅)
158, 12, 14rspcdva 3533 . . . . . . . . . . . 12 ((((𝐷 ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) ∧ 𝑥𝐷) → (𝑌𝑂𝐵) = 𝑍)
16 oveq1 6913 . . . . . . . . . . . . 13 (𝐴 = 𝑌 → (𝐴𝑂𝐵) = (𝑌𝑂𝐵))
1716eqeq1d 2828 . . . . . . . . . . . 12 (𝐴 = 𝑌 → ((𝐴𝑂𝐵) = 𝑍 ↔ (𝑌𝑂𝐵) = 𝑍))
1815, 17syl5ibrcom 239 . . . . . . . . . . 11 ((((𝐷 ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) ∧ 𝑥𝐷) → (𝐴 = 𝑌 → (𝐴𝑂𝐵) = 𝑍))
1918necon3d 3021 . . . . . . . . . 10 ((((𝐷 ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) ∧ 𝑥𝐷) → ((𝐴𝑂𝐵) ≠ 𝑍𝐴𝑌))
206, 19syl5 34 . . . . . . . . 9 ((((𝐷 ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) ∧ 𝑥𝐷) → ((𝐴𝑂𝐵) ∈ (V ∖ {𝑍}) → 𝐴𝑌))
2120imp 397 . . . . . . . 8 (((((𝐷 ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) ∧ 𝑥𝐷) ∧ (𝐴𝑂𝐵) ∈ (V ∖ {𝑍})) → 𝐴𝑌)
22 eldifsn 4537 . . . . . . . 8 (𝐴 ∈ (V ∖ {𝑌}) ↔ (𝐴 ∈ V ∧ 𝐴𝑌))
235, 21, 22sylanbrc 580 . . . . . . 7 (((((𝐷 ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) ∧ 𝑥𝐷) ∧ (𝐴𝑂𝐵) ∈ (V ∖ {𝑍})) → 𝐴 ∈ (V ∖ {𝑌}))
2423ex 403 . . . . . 6 ((((𝐷 ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) ∧ 𝑥𝐷) → ((𝐴𝑂𝐵) ∈ (V ∖ {𝑍}) → 𝐴 ∈ (V ∖ {𝑌})))
2524ss2rabdv 3909 . . . . 5 (((𝐷 ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) → {𝑥𝐷 ∣ (𝐴𝑂𝐵) ∈ (V ∖ {𝑍})} ⊆ {𝑥𝐷𝐴 ∈ (V ∖ {𝑌})})
26 eqid 2826 . . . . . 6 (𝑥𝐷 ↦ (𝐴𝑂𝐵)) = (𝑥𝐷 ↦ (𝐴𝑂𝐵))
27 simpll 785 . . . . . 6 (((𝐷 ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) → 𝐷 ∈ V)
28 simplr 787 . . . . . 6 (((𝐷 ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) → 𝑍 ∈ V)
2926, 27, 28mptsuppdifd 7582 . . . . 5 (((𝐷 ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) → ((𝑥𝐷 ↦ (𝐴𝑂𝐵)) supp 𝑍) = {𝑥𝐷 ∣ (𝐴𝑂𝐵) ∈ (V ∖ {𝑍})})
30 eqid 2826 . . . . . 6 (𝑥𝐷𝐴) = (𝑥𝐷𝐴)
31 suppssov1.y . . . . . . 7 (𝜑𝑌𝑊)
3231adantl 475 . . . . . 6 (((𝐷 ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) → 𝑌𝑊)
3330, 27, 32mptsuppdifd 7582 . . . . 5 (((𝐷 ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) → ((𝑥𝐷𝐴) supp 𝑌) = {𝑥𝐷𝐴 ∈ (V ∖ {𝑌})})
3425, 29, 333sstr4d 3874 . . . 4 (((𝐷 ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) → ((𝑥𝐷 ↦ (𝐴𝑂𝐵)) supp 𝑍) ⊆ ((𝑥𝐷𝐴) supp 𝑌))
35 suppssov1.s . . . . 5 (𝜑 → ((𝑥𝐷𝐴) supp 𝑌) ⊆ 𝐿)
3635adantl 475 . . . 4 (((𝐷 ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) → ((𝑥𝐷𝐴) supp 𝑌) ⊆ 𝐿)
3734, 36sstrd 3838 . . 3 (((𝐷 ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) → ((𝑥𝐷 ↦ (𝐴𝑂𝐵)) supp 𝑍) ⊆ 𝐿)
3837ex 403 . 2 ((𝐷 ∈ V ∧ 𝑍 ∈ V) → (𝜑 → ((𝑥𝐷 ↦ (𝐴𝑂𝐵)) supp 𝑍) ⊆ 𝐿))
39 mptexg 6741 . . . . . . 7 (𝐷 ∈ V → (𝑥𝐷 ↦ (𝐴𝑂𝐵)) ∈ V)
40 ovex 6938 . . . . . . . . . 10 (𝐴𝑂𝐵) ∈ V
4140rgenw 3134 . . . . . . . . 9 𝑥𝐷 (𝐴𝑂𝐵) ∈ V
42 dmmptg 5874 . . . . . . . . 9 (∀𝑥𝐷 (𝐴𝑂𝐵) ∈ V → dom (𝑥𝐷 ↦ (𝐴𝑂𝐵)) = 𝐷)
4341, 42ax-mp 5 . . . . . . . 8 dom (𝑥𝐷 ↦ (𝐴𝑂𝐵)) = 𝐷
44 dmexg 7359 . . . . . . . 8 ((𝑥𝐷 ↦ (𝐴𝑂𝐵)) ∈ V → dom (𝑥𝐷 ↦ (𝐴𝑂𝐵)) ∈ V)
4543, 44syl5eqelr 2912 . . . . . . 7 ((𝑥𝐷 ↦ (𝐴𝑂𝐵)) ∈ V → 𝐷 ∈ V)
4639, 45impbii 201 . . . . . 6 (𝐷 ∈ V ↔ (𝑥𝐷 ↦ (𝐴𝑂𝐵)) ∈ V)
4746anbi1i 619 . . . . 5 ((𝐷 ∈ V ∧ 𝑍 ∈ V) ↔ ((𝑥𝐷 ↦ (𝐴𝑂𝐵)) ∈ V ∧ 𝑍 ∈ V))
48 supp0prc 7563 . . . . 5 (¬ ((𝑥𝐷 ↦ (𝐴𝑂𝐵)) ∈ V ∧ 𝑍 ∈ V) → ((𝑥𝐷 ↦ (𝐴𝑂𝐵)) supp 𝑍) = ∅)
4947, 48sylnbi 322 . . . 4 (¬ (𝐷 ∈ V ∧ 𝑍 ∈ V) → ((𝑥𝐷 ↦ (𝐴𝑂𝐵)) supp 𝑍) = ∅)
50 0ss 4198 . . . 4 ∅ ⊆ 𝐿
5149, 50syl6eqss 3881 . . 3 (¬ (𝐷 ∈ V ∧ 𝑍 ∈ V) → ((𝑥𝐷 ↦ (𝐴𝑂𝐵)) supp 𝑍) ⊆ 𝐿)
5251a1d 25 . 2 (¬ (𝐷 ∈ V ∧ 𝑍 ∈ V) → (𝜑 → ((𝑥𝐷 ↦ (𝐴𝑂𝐵)) supp 𝑍) ⊆ 𝐿))
5338, 52pm2.61i 177 1 (𝜑 → ((𝑥𝐷 ↦ (𝐴𝑂𝐵)) supp 𝑍) ⊆ 𝐿)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 386   = wceq 1658   ∈ wcel 2166   ≠ wne 3000  ∀wral 3118  {crab 3122  Vcvv 3415   ∖ cdif 3796   ⊆ wss 3799  ∅c0 4145  {csn 4398   ↦ cmpt 4953  dom cdm 5343  (class class class)co 6906   supp csupp 7560 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2804  ax-rep 4995  ax-sep 5006  ax-nul 5014  ax-pow 5066  ax-pr 5128  ax-un 7210 This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2606  df-eu 2641  df-clab 2813  df-cleq 2819  df-clel 2822  df-nfc 2959  df-ne 3001  df-ral 3123  df-rex 3124  df-reu 3125  df-rab 3127  df-v 3417  df-sbc 3664  df-csb 3759  df-dif 3802  df-un 3804  df-in 3806  df-ss 3813  df-nul 4146  df-if 4308  df-sn 4399  df-pr 4401  df-op 4405  df-uni 4660  df-iun 4743  df-br 4875  df-opab 4937  df-mpt 4954  df-id 5251  df-xp 5349  df-rel 5350  df-cnv 5351  df-co 5352  df-dm 5353  df-rn 5354  df-res 5355  df-ima 5356  df-iota 6087  df-fun 6126  df-fn 6127  df-f 6128  df-f1 6129  df-fo 6130  df-f1o 6131  df-fv 6132  df-ov 6909  df-oprab 6910  df-mpt2 6911  df-supp 7561 This theorem is referenced by:  suppssof1  7594  evlslem6  19874  plypf1  24368
 Copyright terms: Public domain W3C validator