MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  suppssov1 Structured version   Visualization version   GIF version

Theorem suppssov1 8136
Description: Formula building theorem for support restrictions: operator with left annihilator. (Contributed by Stefan O'Rear, 9-Mar-2015.) (Revised by AV, 28-May-2019.) (Proof shortened by SN, 11-Apr-2025.)
Hypotheses
Ref Expression
suppssov1.s (𝜑 → ((𝑥𝐷𝐴) supp 𝑌) ⊆ 𝐿)
suppssov1.o ((𝜑𝑣𝑅) → (𝑌𝑂𝑣) = 𝑍)
suppssov1.a ((𝜑𝑥𝐷) → 𝐴𝑉)
suppssov1.b ((𝜑𝑥𝐷) → 𝐵𝑅)
suppssov1.y (𝜑𝑌𝑊)
Assertion
Ref Expression
suppssov1 (𝜑 → ((𝑥𝐷 ↦ (𝐴𝑂𝐵)) supp 𝑍) ⊆ 𝐿)
Distinct variable groups:   𝜑,𝑣   𝜑,𝑥   𝑣,𝐵   𝑥,𝐷   𝑣,𝑂   𝑣,𝑅   𝑣,𝑌   𝑥,𝑌   𝑣,𝑍   𝑥,𝑍
Allowed substitution hints:   𝐴(𝑥,𝑣)   𝐵(𝑥)   𝐷(𝑣)   𝑅(𝑥)   𝐿(𝑥,𝑣)   𝑂(𝑥)   𝑉(𝑥,𝑣)   𝑊(𝑥,𝑣)

Proof of Theorem suppssov1
StepHypRef Expression
1 suppssov1.a . . . . . . . . . 10 ((𝜑𝑥𝐷) → 𝐴𝑉)
21elexd 3462 . . . . . . . . 9 ((𝜑𝑥𝐷) → 𝐴 ∈ V)
32adantlr 715 . . . . . . . 8 (((𝜑 ∧ (𝐷 ∈ V ∧ 𝑍 ∈ V)) ∧ 𝑥𝐷) → 𝐴 ∈ V)
43adantr 480 . . . . . . 7 ((((𝜑 ∧ (𝐷 ∈ V ∧ 𝑍 ∈ V)) ∧ 𝑥𝐷) ∧ (𝐴𝑂𝐵) ∈ (V ∖ {𝑍})) → 𝐴 ∈ V)
5 oveq2 7363 . . . . . . . . . . . 12 (𝑣 = 𝐵 → (𝑌𝑂𝑣) = (𝑌𝑂𝐵))
65eqeq1d 2735 . . . . . . . . . . 11 (𝑣 = 𝐵 → ((𝑌𝑂𝑣) = 𝑍 ↔ (𝑌𝑂𝐵) = 𝑍))
7 suppssov1.o . . . . . . . . . . . . 13 ((𝜑𝑣𝑅) → (𝑌𝑂𝑣) = 𝑍)
87ralrimiva 3126 . . . . . . . . . . . 12 (𝜑 → ∀𝑣𝑅 (𝑌𝑂𝑣) = 𝑍)
98ad2antrr 726 . . . . . . . . . . 11 (((𝜑 ∧ (𝐷 ∈ V ∧ 𝑍 ∈ V)) ∧ 𝑥𝐷) → ∀𝑣𝑅 (𝑌𝑂𝑣) = 𝑍)
10 suppssov1.b . . . . . . . . . . . 12 ((𝜑𝑥𝐷) → 𝐵𝑅)
1110adantlr 715 . . . . . . . . . . 11 (((𝜑 ∧ (𝐷 ∈ V ∧ 𝑍 ∈ V)) ∧ 𝑥𝐷) → 𝐵𝑅)
126, 9, 11rspcdva 3575 . . . . . . . . . 10 (((𝜑 ∧ (𝐷 ∈ V ∧ 𝑍 ∈ V)) ∧ 𝑥𝐷) → (𝑌𝑂𝐵) = 𝑍)
13 oveq1 7362 . . . . . . . . . . 11 (𝐴 = 𝑌 → (𝐴𝑂𝐵) = (𝑌𝑂𝐵))
1413eqeq1d 2735 . . . . . . . . . 10 (𝐴 = 𝑌 → ((𝐴𝑂𝐵) = 𝑍 ↔ (𝑌𝑂𝐵) = 𝑍))
1512, 14syl5ibrcom 247 . . . . . . . . 9 (((𝜑 ∧ (𝐷 ∈ V ∧ 𝑍 ∈ V)) ∧ 𝑥𝐷) → (𝐴 = 𝑌 → (𝐴𝑂𝐵) = 𝑍))
1615necon3d 2951 . . . . . . . 8 (((𝜑 ∧ (𝐷 ∈ V ∧ 𝑍 ∈ V)) ∧ 𝑥𝐷) → ((𝐴𝑂𝐵) ≠ 𝑍𝐴𝑌))
17 eldifsni 4743 . . . . . . . 8 ((𝐴𝑂𝐵) ∈ (V ∖ {𝑍}) → (𝐴𝑂𝐵) ≠ 𝑍)
1816, 17impel 505 . . . . . . 7 ((((𝜑 ∧ (𝐷 ∈ V ∧ 𝑍 ∈ V)) ∧ 𝑥𝐷) ∧ (𝐴𝑂𝐵) ∈ (V ∖ {𝑍})) → 𝐴𝑌)
19 eldifsn 4739 . . . . . . 7 (𝐴 ∈ (V ∖ {𝑌}) ↔ (𝐴 ∈ V ∧ 𝐴𝑌))
204, 18, 19sylanbrc 583 . . . . . 6 ((((𝜑 ∧ (𝐷 ∈ V ∧ 𝑍 ∈ V)) ∧ 𝑥𝐷) ∧ (𝐴𝑂𝐵) ∈ (V ∖ {𝑍})) → 𝐴 ∈ (V ∖ {𝑌}))
2120ex 412 . . . . 5 (((𝜑 ∧ (𝐷 ∈ V ∧ 𝑍 ∈ V)) ∧ 𝑥𝐷) → ((𝐴𝑂𝐵) ∈ (V ∖ {𝑍}) → 𝐴 ∈ (V ∖ {𝑌})))
2221ss2rabdv 4025 . . . 4 ((𝜑 ∧ (𝐷 ∈ V ∧ 𝑍 ∈ V)) → {𝑥𝐷 ∣ (𝐴𝑂𝐵) ∈ (V ∖ {𝑍})} ⊆ {𝑥𝐷𝐴 ∈ (V ∖ {𝑌})})
23 eqid 2733 . . . . 5 (𝑥𝐷 ↦ (𝐴𝑂𝐵)) = (𝑥𝐷 ↦ (𝐴𝑂𝐵))
24 simprl 770 . . . . 5 ((𝜑 ∧ (𝐷 ∈ V ∧ 𝑍 ∈ V)) → 𝐷 ∈ V)
25 simprr 772 . . . . 5 ((𝜑 ∧ (𝐷 ∈ V ∧ 𝑍 ∈ V)) → 𝑍 ∈ V)
2623, 24, 25mptsuppdifd 8125 . . . 4 ((𝜑 ∧ (𝐷 ∈ V ∧ 𝑍 ∈ V)) → ((𝑥𝐷 ↦ (𝐴𝑂𝐵)) supp 𝑍) = {𝑥𝐷 ∣ (𝐴𝑂𝐵) ∈ (V ∖ {𝑍})})
27 eqid 2733 . . . . 5 (𝑥𝐷𝐴) = (𝑥𝐷𝐴)
28 suppssov1.y . . . . . 6 (𝜑𝑌𝑊)
2928adantr 480 . . . . 5 ((𝜑 ∧ (𝐷 ∈ V ∧ 𝑍 ∈ V)) → 𝑌𝑊)
3027, 24, 29mptsuppdifd 8125 . . . 4 ((𝜑 ∧ (𝐷 ∈ V ∧ 𝑍 ∈ V)) → ((𝑥𝐷𝐴) supp 𝑌) = {𝑥𝐷𝐴 ∈ (V ∖ {𝑌})})
3122, 26, 303sstr4d 3987 . . 3 ((𝜑 ∧ (𝐷 ∈ V ∧ 𝑍 ∈ V)) → ((𝑥𝐷 ↦ (𝐴𝑂𝐵)) supp 𝑍) ⊆ ((𝑥𝐷𝐴) supp 𝑌))
32 suppssov1.s . . . 4 (𝜑 → ((𝑥𝐷𝐴) supp 𝑌) ⊆ 𝐿)
3332adantr 480 . . 3 ((𝜑 ∧ (𝐷 ∈ V ∧ 𝑍 ∈ V)) → ((𝑥𝐷𝐴) supp 𝑌) ⊆ 𝐿)
3431, 33sstrd 3942 . 2 ((𝜑 ∧ (𝐷 ∈ V ∧ 𝑍 ∈ V)) → ((𝑥𝐷 ↦ (𝐴𝑂𝐵)) supp 𝑍) ⊆ 𝐿)
35 mptexg 7164 . . . . . . 7 (𝐷 ∈ V → (𝑥𝐷 ↦ (𝐴𝑂𝐵)) ∈ V)
36 ovex 7388 . . . . . . . . . 10 (𝐴𝑂𝐵) ∈ V
3736rgenw 3053 . . . . . . . . 9 𝑥𝐷 (𝐴𝑂𝐵) ∈ V
38 dmmptg 6197 . . . . . . . . 9 (∀𝑥𝐷 (𝐴𝑂𝐵) ∈ V → dom (𝑥𝐷 ↦ (𝐴𝑂𝐵)) = 𝐷)
3937, 38ax-mp 5 . . . . . . . 8 dom (𝑥𝐷 ↦ (𝐴𝑂𝐵)) = 𝐷
40 dmexg 7840 . . . . . . . 8 ((𝑥𝐷 ↦ (𝐴𝑂𝐵)) ∈ V → dom (𝑥𝐷 ↦ (𝐴𝑂𝐵)) ∈ V)
4139, 40eqeltrrid 2838 . . . . . . 7 ((𝑥𝐷 ↦ (𝐴𝑂𝐵)) ∈ V → 𝐷 ∈ V)
4235, 41impbii 209 . . . . . 6 (𝐷 ∈ V ↔ (𝑥𝐷 ↦ (𝐴𝑂𝐵)) ∈ V)
4342anbi1i 624 . . . . 5 ((𝐷 ∈ V ∧ 𝑍 ∈ V) ↔ ((𝑥𝐷 ↦ (𝐴𝑂𝐵)) ∈ V ∧ 𝑍 ∈ V))
44 supp0prc 8102 . . . . 5 (¬ ((𝑥𝐷 ↦ (𝐴𝑂𝐵)) ∈ V ∧ 𝑍 ∈ V) → ((𝑥𝐷 ↦ (𝐴𝑂𝐵)) supp 𝑍) = ∅)
4543, 44sylnbi 330 . . . 4 (¬ (𝐷 ∈ V ∧ 𝑍 ∈ V) → ((𝑥𝐷 ↦ (𝐴𝑂𝐵)) supp 𝑍) = ∅)
46 0ss 4351 . . . 4 ∅ ⊆ 𝐿
4745, 46eqsstrdi 3976 . . 3 (¬ (𝐷 ∈ V ∧ 𝑍 ∈ V) → ((𝑥𝐷 ↦ (𝐴𝑂𝐵)) supp 𝑍) ⊆ 𝐿)
4847adantl 481 . 2 ((𝜑 ∧ ¬ (𝐷 ∈ V ∧ 𝑍 ∈ V)) → ((𝑥𝐷 ↦ (𝐴𝑂𝐵)) supp 𝑍) ⊆ 𝐿)
4934, 48pm2.61dan 812 1 (𝜑 → ((𝑥𝐷 ↦ (𝐴𝑂𝐵)) supp 𝑍) ⊆ 𝐿)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1541  wcel 2113  wne 2930  wral 3049  {crab 3397  Vcvv 3438  cdif 3896  wss 3899  c0 4284  {csn 4577  cmpt 5176  dom cdm 5621  (class class class)co 7355   supp csupp 8099
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pr 5374  ax-un 7677
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2883  df-ne 2931  df-ral 3050  df-rex 3059  df-reu 3349  df-rab 3398  df-v 3440  df-sbc 3739  df-csb 3848  df-dif 3902  df-un 3904  df-in 3906  df-ss 3916  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-ov 7358  df-oprab 7359  df-mpo 7360  df-supp 8100
This theorem is referenced by:  suppssof1  8138  fsuppssov1  9278  evlslem6  22026  plypf1  26154  fisuppov1  32675  mhphf  42705
  Copyright terms: Public domain W3C validator