MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  suppssov1 Structured version   Visualization version   GIF version

Theorem suppssov1 8222
Description: Formula building theorem for support restrictions: operator with left annihilator. (Contributed by Stefan O'Rear, 9-Mar-2015.) (Revised by AV, 28-May-2019.) (Proof shortened by SN, 11-Apr-2025.)
Hypotheses
Ref Expression
suppssov1.s (𝜑 → ((𝑥𝐷𝐴) supp 𝑌) ⊆ 𝐿)
suppssov1.o ((𝜑𝑣𝑅) → (𝑌𝑂𝑣) = 𝑍)
suppssov1.a ((𝜑𝑥𝐷) → 𝐴𝑉)
suppssov1.b ((𝜑𝑥𝐷) → 𝐵𝑅)
suppssov1.y (𝜑𝑌𝑊)
Assertion
Ref Expression
suppssov1 (𝜑 → ((𝑥𝐷 ↦ (𝐴𝑂𝐵)) supp 𝑍) ⊆ 𝐿)
Distinct variable groups:   𝜑,𝑣   𝜑,𝑥   𝑣,𝐵   𝑥,𝐷   𝑣,𝑂   𝑣,𝑅   𝑣,𝑌   𝑥,𝑌   𝑣,𝑍   𝑥,𝑍
Allowed substitution hints:   𝐴(𝑥,𝑣)   𝐵(𝑥)   𝐷(𝑣)   𝑅(𝑥)   𝐿(𝑥,𝑣)   𝑂(𝑥)   𝑉(𝑥,𝑣)   𝑊(𝑥,𝑣)

Proof of Theorem suppssov1
StepHypRef Expression
1 suppssov1.a . . . . . . . . . 10 ((𝜑𝑥𝐷) → 𝐴𝑉)
21elexd 3504 . . . . . . . . 9 ((𝜑𝑥𝐷) → 𝐴 ∈ V)
32adantlr 715 . . . . . . . 8 (((𝜑 ∧ (𝐷 ∈ V ∧ 𝑍 ∈ V)) ∧ 𝑥𝐷) → 𝐴 ∈ V)
43adantr 480 . . . . . . 7 ((((𝜑 ∧ (𝐷 ∈ V ∧ 𝑍 ∈ V)) ∧ 𝑥𝐷) ∧ (𝐴𝑂𝐵) ∈ (V ∖ {𝑍})) → 𝐴 ∈ V)
5 oveq2 7439 . . . . . . . . . . . 12 (𝑣 = 𝐵 → (𝑌𝑂𝑣) = (𝑌𝑂𝐵))
65eqeq1d 2739 . . . . . . . . . . 11 (𝑣 = 𝐵 → ((𝑌𝑂𝑣) = 𝑍 ↔ (𝑌𝑂𝐵) = 𝑍))
7 suppssov1.o . . . . . . . . . . . . 13 ((𝜑𝑣𝑅) → (𝑌𝑂𝑣) = 𝑍)
87ralrimiva 3146 . . . . . . . . . . . 12 (𝜑 → ∀𝑣𝑅 (𝑌𝑂𝑣) = 𝑍)
98ad2antrr 726 . . . . . . . . . . 11 (((𝜑 ∧ (𝐷 ∈ V ∧ 𝑍 ∈ V)) ∧ 𝑥𝐷) → ∀𝑣𝑅 (𝑌𝑂𝑣) = 𝑍)
10 suppssov1.b . . . . . . . . . . . 12 ((𝜑𝑥𝐷) → 𝐵𝑅)
1110adantlr 715 . . . . . . . . . . 11 (((𝜑 ∧ (𝐷 ∈ V ∧ 𝑍 ∈ V)) ∧ 𝑥𝐷) → 𝐵𝑅)
126, 9, 11rspcdva 3623 . . . . . . . . . 10 (((𝜑 ∧ (𝐷 ∈ V ∧ 𝑍 ∈ V)) ∧ 𝑥𝐷) → (𝑌𝑂𝐵) = 𝑍)
13 oveq1 7438 . . . . . . . . . . 11 (𝐴 = 𝑌 → (𝐴𝑂𝐵) = (𝑌𝑂𝐵))
1413eqeq1d 2739 . . . . . . . . . 10 (𝐴 = 𝑌 → ((𝐴𝑂𝐵) = 𝑍 ↔ (𝑌𝑂𝐵) = 𝑍))
1512, 14syl5ibrcom 247 . . . . . . . . 9 (((𝜑 ∧ (𝐷 ∈ V ∧ 𝑍 ∈ V)) ∧ 𝑥𝐷) → (𝐴 = 𝑌 → (𝐴𝑂𝐵) = 𝑍))
1615necon3d 2961 . . . . . . . 8 (((𝜑 ∧ (𝐷 ∈ V ∧ 𝑍 ∈ V)) ∧ 𝑥𝐷) → ((𝐴𝑂𝐵) ≠ 𝑍𝐴𝑌))
17 eldifsni 4790 . . . . . . . 8 ((𝐴𝑂𝐵) ∈ (V ∖ {𝑍}) → (𝐴𝑂𝐵) ≠ 𝑍)
1816, 17impel 505 . . . . . . 7 ((((𝜑 ∧ (𝐷 ∈ V ∧ 𝑍 ∈ V)) ∧ 𝑥𝐷) ∧ (𝐴𝑂𝐵) ∈ (V ∖ {𝑍})) → 𝐴𝑌)
19 eldifsn 4786 . . . . . . 7 (𝐴 ∈ (V ∖ {𝑌}) ↔ (𝐴 ∈ V ∧ 𝐴𝑌))
204, 18, 19sylanbrc 583 . . . . . 6 ((((𝜑 ∧ (𝐷 ∈ V ∧ 𝑍 ∈ V)) ∧ 𝑥𝐷) ∧ (𝐴𝑂𝐵) ∈ (V ∖ {𝑍})) → 𝐴 ∈ (V ∖ {𝑌}))
2120ex 412 . . . . 5 (((𝜑 ∧ (𝐷 ∈ V ∧ 𝑍 ∈ V)) ∧ 𝑥𝐷) → ((𝐴𝑂𝐵) ∈ (V ∖ {𝑍}) → 𝐴 ∈ (V ∖ {𝑌})))
2221ss2rabdv 4076 . . . 4 ((𝜑 ∧ (𝐷 ∈ V ∧ 𝑍 ∈ V)) → {𝑥𝐷 ∣ (𝐴𝑂𝐵) ∈ (V ∖ {𝑍})} ⊆ {𝑥𝐷𝐴 ∈ (V ∖ {𝑌})})
23 eqid 2737 . . . . 5 (𝑥𝐷 ↦ (𝐴𝑂𝐵)) = (𝑥𝐷 ↦ (𝐴𝑂𝐵))
24 simprl 771 . . . . 5 ((𝜑 ∧ (𝐷 ∈ V ∧ 𝑍 ∈ V)) → 𝐷 ∈ V)
25 simprr 773 . . . . 5 ((𝜑 ∧ (𝐷 ∈ V ∧ 𝑍 ∈ V)) → 𝑍 ∈ V)
2623, 24, 25mptsuppdifd 8211 . . . 4 ((𝜑 ∧ (𝐷 ∈ V ∧ 𝑍 ∈ V)) → ((𝑥𝐷 ↦ (𝐴𝑂𝐵)) supp 𝑍) = {𝑥𝐷 ∣ (𝐴𝑂𝐵) ∈ (V ∖ {𝑍})})
27 eqid 2737 . . . . 5 (𝑥𝐷𝐴) = (𝑥𝐷𝐴)
28 suppssov1.y . . . . . 6 (𝜑𝑌𝑊)
2928adantr 480 . . . . 5 ((𝜑 ∧ (𝐷 ∈ V ∧ 𝑍 ∈ V)) → 𝑌𝑊)
3027, 24, 29mptsuppdifd 8211 . . . 4 ((𝜑 ∧ (𝐷 ∈ V ∧ 𝑍 ∈ V)) → ((𝑥𝐷𝐴) supp 𝑌) = {𝑥𝐷𝐴 ∈ (V ∖ {𝑌})})
3122, 26, 303sstr4d 4039 . . 3 ((𝜑 ∧ (𝐷 ∈ V ∧ 𝑍 ∈ V)) → ((𝑥𝐷 ↦ (𝐴𝑂𝐵)) supp 𝑍) ⊆ ((𝑥𝐷𝐴) supp 𝑌))
32 suppssov1.s . . . 4 (𝜑 → ((𝑥𝐷𝐴) supp 𝑌) ⊆ 𝐿)
3332adantr 480 . . 3 ((𝜑 ∧ (𝐷 ∈ V ∧ 𝑍 ∈ V)) → ((𝑥𝐷𝐴) supp 𝑌) ⊆ 𝐿)
3431, 33sstrd 3994 . 2 ((𝜑 ∧ (𝐷 ∈ V ∧ 𝑍 ∈ V)) → ((𝑥𝐷 ↦ (𝐴𝑂𝐵)) supp 𝑍) ⊆ 𝐿)
35 mptexg 7241 . . . . . . 7 (𝐷 ∈ V → (𝑥𝐷 ↦ (𝐴𝑂𝐵)) ∈ V)
36 ovex 7464 . . . . . . . . . 10 (𝐴𝑂𝐵) ∈ V
3736rgenw 3065 . . . . . . . . 9 𝑥𝐷 (𝐴𝑂𝐵) ∈ V
38 dmmptg 6262 . . . . . . . . 9 (∀𝑥𝐷 (𝐴𝑂𝐵) ∈ V → dom (𝑥𝐷 ↦ (𝐴𝑂𝐵)) = 𝐷)
3937, 38ax-mp 5 . . . . . . . 8 dom (𝑥𝐷 ↦ (𝐴𝑂𝐵)) = 𝐷
40 dmexg 7923 . . . . . . . 8 ((𝑥𝐷 ↦ (𝐴𝑂𝐵)) ∈ V → dom (𝑥𝐷 ↦ (𝐴𝑂𝐵)) ∈ V)
4139, 40eqeltrrid 2846 . . . . . . 7 ((𝑥𝐷 ↦ (𝐴𝑂𝐵)) ∈ V → 𝐷 ∈ V)
4235, 41impbii 209 . . . . . 6 (𝐷 ∈ V ↔ (𝑥𝐷 ↦ (𝐴𝑂𝐵)) ∈ V)
4342anbi1i 624 . . . . 5 ((𝐷 ∈ V ∧ 𝑍 ∈ V) ↔ ((𝑥𝐷 ↦ (𝐴𝑂𝐵)) ∈ V ∧ 𝑍 ∈ V))
44 supp0prc 8188 . . . . 5 (¬ ((𝑥𝐷 ↦ (𝐴𝑂𝐵)) ∈ V ∧ 𝑍 ∈ V) → ((𝑥𝐷 ↦ (𝐴𝑂𝐵)) supp 𝑍) = ∅)
4543, 44sylnbi 330 . . . 4 (¬ (𝐷 ∈ V ∧ 𝑍 ∈ V) → ((𝑥𝐷 ↦ (𝐴𝑂𝐵)) supp 𝑍) = ∅)
46 0ss 4400 . . . 4 ∅ ⊆ 𝐿
4745, 46eqsstrdi 4028 . . 3 (¬ (𝐷 ∈ V ∧ 𝑍 ∈ V) → ((𝑥𝐷 ↦ (𝐴𝑂𝐵)) supp 𝑍) ⊆ 𝐿)
4847adantl 481 . 2 ((𝜑 ∧ ¬ (𝐷 ∈ V ∧ 𝑍 ∈ V)) → ((𝑥𝐷 ↦ (𝐴𝑂𝐵)) supp 𝑍) ⊆ 𝐿)
4934, 48pm2.61dan 813 1 (𝜑 → ((𝑥𝐷 ↦ (𝐴𝑂𝐵)) supp 𝑍) ⊆ 𝐿)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2108  wne 2940  wral 3061  {crab 3436  Vcvv 3480  cdif 3948  wss 3951  c0 4333  {csn 4626  cmpt 5225  dom cdm 5685  (class class class)co 7431   supp csupp 8185
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-ov 7434  df-oprab 7435  df-mpo 7436  df-supp 8186
This theorem is referenced by:  suppssof1  8224  fsuppssov1  9424  evlslem6  22105  plypf1  26251  fisuppov1  32692  mhphf  42607
  Copyright terms: Public domain W3C validator