Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  symrelcoss2 Structured version   Visualization version   GIF version

Theorem symrelcoss2 38464
Description: The class of cosets by 𝑅 is symmetric, see dfsymrel2 38547. (Contributed by Peter Mazsa, 27-Dec-2018.)
Assertion
Ref Expression
symrelcoss2 (𝑅 ⊆ ≀ 𝑅 ∧ Rel ≀ 𝑅)

Proof of Theorem symrelcoss2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 symrelcoss3 38463 . 2 (∀𝑥𝑦(𝑥𝑅𝑦𝑦𝑅𝑥) ∧ Rel ≀ 𝑅)
2 cnvsym 6088 . . 3 (𝑅 ⊆ ≀ 𝑅 ↔ ∀𝑥𝑦(𝑥𝑅𝑦𝑦𝑅𝑥))
32anbi1i 624 . 2 ((𝑅 ⊆ ≀ 𝑅 ∧ Rel ≀ 𝑅) ↔ (∀𝑥𝑦(𝑥𝑅𝑦𝑦𝑅𝑥) ∧ Rel ≀ 𝑅))
41, 3mpbir 231 1 (𝑅 ⊆ ≀ 𝑅 ∧ Rel ≀ 𝑅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wal 1538  wss 3917   class class class wbr 5110  ccnv 5640  Rel wrel 5646  ccoss 38176
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-br 5111  df-opab 5173  df-xp 5647  df-rel 5648  df-cnv 5649  df-coss 38409
This theorem is referenced by:  symrelcoss  38558
  Copyright terms: Public domain W3C validator