| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > symrelcoss2 | Structured version Visualization version GIF version | ||
| Description: The class of cosets by 𝑅 is symmetric, see dfsymrel2 38540. (Contributed by Peter Mazsa, 27-Dec-2018.) |
| Ref | Expression |
|---|---|
| symrelcoss2 | ⊢ (◡ ≀ 𝑅 ⊆ ≀ 𝑅 ∧ Rel ≀ 𝑅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | symrelcoss3 38456 | . 2 ⊢ (∀𝑥∀𝑦(𝑥 ≀ 𝑅𝑦 → 𝑦 ≀ 𝑅𝑥) ∧ Rel ≀ 𝑅) | |
| 2 | cnvsym 6085 | . . 3 ⊢ (◡ ≀ 𝑅 ⊆ ≀ 𝑅 ↔ ∀𝑥∀𝑦(𝑥 ≀ 𝑅𝑦 → 𝑦 ≀ 𝑅𝑥)) | |
| 3 | 2 | anbi1i 624 | . 2 ⊢ ((◡ ≀ 𝑅 ⊆ ≀ 𝑅 ∧ Rel ≀ 𝑅) ↔ (∀𝑥∀𝑦(𝑥 ≀ 𝑅𝑦 → 𝑦 ≀ 𝑅𝑥) ∧ Rel ≀ 𝑅)) |
| 4 | 1, 3 | mpbir 231 | 1 ⊢ (◡ ≀ 𝑅 ⊆ ≀ 𝑅 ∧ Rel ≀ 𝑅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∀wal 1538 ⊆ wss 3914 class class class wbr 5107 ◡ccnv 5637 Rel wrel 5643 ≀ ccoss 38169 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-xp 5644 df-rel 5645 df-cnv 5646 df-coss 38402 |
| This theorem is referenced by: symrelcoss 38551 |
| Copyright terms: Public domain | W3C validator |