Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  symrelcoss2 Structured version   Visualization version   GIF version

Theorem symrelcoss2 37331
Description: The class of cosets by 𝑅 is symmetric, see dfsymrel2 37414. (Contributed by Peter Mazsa, 27-Dec-2018.)
Assertion
Ref Expression
symrelcoss2 (𝑅 ⊆ ≀ 𝑅 ∧ Rel ≀ 𝑅)

Proof of Theorem symrelcoss2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 symrelcoss3 37330 . 2 (∀𝑥𝑦(𝑥𝑅𝑦𝑦𝑅𝑥) ∧ Rel ≀ 𝑅)
2 cnvsym 6113 . . 3 (𝑅 ⊆ ≀ 𝑅 ↔ ∀𝑥𝑦(𝑥𝑅𝑦𝑦𝑅𝑥))
32anbi1i 624 . 2 ((𝑅 ⊆ ≀ 𝑅 ∧ Rel ≀ 𝑅) ↔ (∀𝑥𝑦(𝑥𝑅𝑦𝑦𝑅𝑥) ∧ Rel ≀ 𝑅))
41, 3mpbir 230 1 (𝑅 ⊆ ≀ 𝑅 ∧ Rel ≀ 𝑅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wal 1539  wss 3948   class class class wbr 5148  ccnv 5675  Rel wrel 5681  ccoss 37038
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-br 5149  df-opab 5211  df-xp 5682  df-rel 5683  df-cnv 5684  df-coss 37276
This theorem is referenced by:  symrelcoss  37425
  Copyright terms: Public domain W3C validator