Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cossssid Structured version   Visualization version   GIF version

Theorem cossssid 38465
Description: Equivalent expressions for the class of cosets by 𝑅 to be a subset of the identity class. (Contributed by Peter Mazsa, 27-Jul-2021.)
Assertion
Ref Expression
cossssid ( ≀ 𝑅 ⊆ I ↔ ≀ 𝑅 ⊆ ( I ∩ (dom ≀ 𝑅 × ran ≀ 𝑅)))

Proof of Theorem cossssid
StepHypRef Expression
1 iss2 38333 . 2 ( ≀ 𝑅 ⊆ I ↔ ≀ 𝑅 = ( I ∩ (dom ≀ 𝑅 × ran ≀ 𝑅)))
2 refrelcoss2 38462 . . . 4 (( I ∩ (dom ≀ 𝑅 × ran ≀ 𝑅)) ⊆ ≀ 𝑅 ∧ Rel ≀ 𝑅)
32simpli 483 . . 3 ( I ∩ (dom ≀ 𝑅 × ran ≀ 𝑅)) ⊆ ≀ 𝑅
4 eqss 3965 . . 3 ( ≀ 𝑅 = ( I ∩ (dom ≀ 𝑅 × ran ≀ 𝑅)) ↔ ( ≀ 𝑅 ⊆ ( I ∩ (dom ≀ 𝑅 × ran ≀ 𝑅)) ∧ ( I ∩ (dom ≀ 𝑅 × ran ≀ 𝑅)) ⊆ ≀ 𝑅))
53, 4mpbiran2 710 . 2 ( ≀ 𝑅 = ( I ∩ (dom ≀ 𝑅 × ran ≀ 𝑅)) ↔ ≀ 𝑅 ⊆ ( I ∩ (dom ≀ 𝑅 × ran ≀ 𝑅)))
61, 5bitri 275 1 ( ≀ 𝑅 ⊆ I ↔ ≀ 𝑅 ⊆ ( I ∩ (dom ≀ 𝑅 × ran ≀ 𝑅)))
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1540  cin 3916  wss 3917   I cid 5535   × cxp 5639  dom cdm 5641  ran crn 5642  Rel wrel 5646  ccoss 38176
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-br 5111  df-opab 5173  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-coss 38409
This theorem is referenced by:  cnvrefrelcoss2  38535  cosselcnvrefrels2  38536
  Copyright terms: Public domain W3C validator