Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > cossssid | Structured version Visualization version GIF version |
Description: Equivalent expressions for the class of cosets by 𝑅 to be a subset of the identity class. (Contributed by Peter Mazsa, 27-Jul-2021.) |
Ref | Expression |
---|---|
cossssid | ⊢ ( ≀ 𝑅 ⊆ I ↔ ≀ 𝑅 ⊆ ( I ∩ (dom ≀ 𝑅 × ran ≀ 𝑅))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iss2 36406 | . 2 ⊢ ( ≀ 𝑅 ⊆ I ↔ ≀ 𝑅 = ( I ∩ (dom ≀ 𝑅 × ran ≀ 𝑅))) | |
2 | refrelcoss2 36509 | . . . 4 ⊢ (( I ∩ (dom ≀ 𝑅 × ran ≀ 𝑅)) ⊆ ≀ 𝑅 ∧ Rel ≀ 𝑅) | |
3 | 2 | simpli 483 | . . 3 ⊢ ( I ∩ (dom ≀ 𝑅 × ran ≀ 𝑅)) ⊆ ≀ 𝑅 |
4 | eqss 3932 | . . 3 ⊢ ( ≀ 𝑅 = ( I ∩ (dom ≀ 𝑅 × ran ≀ 𝑅)) ↔ ( ≀ 𝑅 ⊆ ( I ∩ (dom ≀ 𝑅 × ran ≀ 𝑅)) ∧ ( I ∩ (dom ≀ 𝑅 × ran ≀ 𝑅)) ⊆ ≀ 𝑅)) | |
5 | 3, 4 | mpbiran2 706 | . 2 ⊢ ( ≀ 𝑅 = ( I ∩ (dom ≀ 𝑅 × ran ≀ 𝑅)) ↔ ≀ 𝑅 ⊆ ( I ∩ (dom ≀ 𝑅 × ran ≀ 𝑅))) |
6 | 1, 5 | bitri 274 | 1 ⊢ ( ≀ 𝑅 ⊆ I ↔ ≀ 𝑅 ⊆ ( I ∩ (dom ≀ 𝑅 × ran ≀ 𝑅))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1539 ∩ cin 3882 ⊆ wss 3883 I cid 5479 × cxp 5578 dom cdm 5580 ran crn 5581 Rel wrel 5585 ≀ ccoss 36260 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-coss 36464 |
This theorem is referenced by: cnvrefrelcoss2 36578 cosselcnvrefrels2 36579 |
Copyright terms: Public domain | W3C validator |