Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cossssid Structured version   Visualization version   GIF version

Theorem cossssid 38503
Description: Equivalent expressions for the class of cosets by 𝑅 to be a subset of the identity class. (Contributed by Peter Mazsa, 27-Jul-2021.)
Assertion
Ref Expression
cossssid ( ≀ 𝑅 ⊆ I ↔ ≀ 𝑅 ⊆ ( I ∩ (dom ≀ 𝑅 × ran ≀ 𝑅)))

Proof of Theorem cossssid
StepHypRef Expression
1 iss2 38371 . 2 ( ≀ 𝑅 ⊆ I ↔ ≀ 𝑅 = ( I ∩ (dom ≀ 𝑅 × ran ≀ 𝑅)))
2 refrelcoss2 38500 . . . 4 (( I ∩ (dom ≀ 𝑅 × ran ≀ 𝑅)) ⊆ ≀ 𝑅 ∧ Rel ≀ 𝑅)
32simpli 483 . . 3 ( I ∩ (dom ≀ 𝑅 × ran ≀ 𝑅)) ⊆ ≀ 𝑅
4 eqss 3950 . . 3 ( ≀ 𝑅 = ( I ∩ (dom ≀ 𝑅 × ran ≀ 𝑅)) ↔ ( ≀ 𝑅 ⊆ ( I ∩ (dom ≀ 𝑅 × ran ≀ 𝑅)) ∧ ( I ∩ (dom ≀ 𝑅 × ran ≀ 𝑅)) ⊆ ≀ 𝑅))
53, 4mpbiran2 710 . 2 ( ≀ 𝑅 = ( I ∩ (dom ≀ 𝑅 × ran ≀ 𝑅)) ↔ ≀ 𝑅 ⊆ ( I ∩ (dom ≀ 𝑅 × ran ≀ 𝑅)))
61, 5bitri 275 1 ( ≀ 𝑅 ⊆ I ↔ ≀ 𝑅 ⊆ ( I ∩ (dom ≀ 𝑅 × ran ≀ 𝑅)))
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1541  cin 3901  wss 3902   I cid 5510   × cxp 5614  dom cdm 5616  ran crn 5617  Rel wrel 5621  ccoss 38214
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-11 2160  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-br 5092  df-opab 5154  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-coss 38447
This theorem is referenced by:  cnvrefrelcoss2  38573  cosselcnvrefrels2  38574
  Copyright terms: Public domain W3C validator