Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cossssid Structured version   Visualization version   GIF version

Theorem cossssid 37850
Description: Equivalent expressions for the class of cosets by 𝑅 to be a subset of the identity class. (Contributed by Peter Mazsa, 27-Jul-2021.)
Assertion
Ref Expression
cossssid ( ≀ 𝑅 ⊆ I ↔ ≀ 𝑅 ⊆ ( I ∩ (dom ≀ 𝑅 × ran ≀ 𝑅)))

Proof of Theorem cossssid
StepHypRef Expression
1 iss2 37726 . 2 ( ≀ 𝑅 ⊆ I ↔ ≀ 𝑅 = ( I ∩ (dom ≀ 𝑅 × ran ≀ 𝑅)))
2 refrelcoss2 37847 . . . 4 (( I ∩ (dom ≀ 𝑅 × ran ≀ 𝑅)) ⊆ ≀ 𝑅 ∧ Rel ≀ 𝑅)
32simpli 483 . . 3 ( I ∩ (dom ≀ 𝑅 × ran ≀ 𝑅)) ⊆ ≀ 𝑅
4 eqss 3992 . . 3 ( ≀ 𝑅 = ( I ∩ (dom ≀ 𝑅 × ran ≀ 𝑅)) ↔ ( ≀ 𝑅 ⊆ ( I ∩ (dom ≀ 𝑅 × ran ≀ 𝑅)) ∧ ( I ∩ (dom ≀ 𝑅 × ran ≀ 𝑅)) ⊆ ≀ 𝑅))
53, 4mpbiran2 707 . 2 ( ≀ 𝑅 = ( I ∩ (dom ≀ 𝑅 × ran ≀ 𝑅)) ↔ ≀ 𝑅 ⊆ ( I ∩ (dom ≀ 𝑅 × ran ≀ 𝑅)))
61, 5bitri 275 1 ( ≀ 𝑅 ⊆ I ↔ ≀ 𝑅 ⊆ ( I ∩ (dom ≀ 𝑅 × ran ≀ 𝑅)))
Colors of variables: wff setvar class
Syntax hints:  wb 205   = wceq 1533  cin 3942  wss 3943   I cid 5566   × cxp 5667  dom cdm 5669  ran crn 5670  Rel wrel 5674  ccoss 37556
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pr 5420
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-clab 2704  df-cleq 2718  df-clel 2804  df-ral 3056  df-rex 3065  df-rab 3427  df-v 3470  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-sn 4624  df-pr 4626  df-op 4630  df-br 5142  df-opab 5204  df-id 5567  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-coss 37794
This theorem is referenced by:  cnvrefrelcoss2  37920  cosselcnvrefrels2  37921
  Copyright terms: Public domain W3C validator