Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cossssid Structured version   Visualization version   GIF version

Theorem cossssid 38449
Description: Equivalent expressions for the class of cosets by 𝑅 to be a subset of the identity class. (Contributed by Peter Mazsa, 27-Jul-2021.)
Assertion
Ref Expression
cossssid ( ≀ 𝑅 ⊆ I ↔ ≀ 𝑅 ⊆ ( I ∩ (dom ≀ 𝑅 × ran ≀ 𝑅)))

Proof of Theorem cossssid
StepHypRef Expression
1 iss2 38326 . 2 ( ≀ 𝑅 ⊆ I ↔ ≀ 𝑅 = ( I ∩ (dom ≀ 𝑅 × ran ≀ 𝑅)))
2 refrelcoss2 38446 . . . 4 (( I ∩ (dom ≀ 𝑅 × ran ≀ 𝑅)) ⊆ ≀ 𝑅 ∧ Rel ≀ 𝑅)
32simpli 483 . . 3 ( I ∩ (dom ≀ 𝑅 × ran ≀ 𝑅)) ⊆ ≀ 𝑅
4 eqss 4011 . . 3 ( ≀ 𝑅 = ( I ∩ (dom ≀ 𝑅 × ran ≀ 𝑅)) ↔ ( ≀ 𝑅 ⊆ ( I ∩ (dom ≀ 𝑅 × ran ≀ 𝑅)) ∧ ( I ∩ (dom ≀ 𝑅 × ran ≀ 𝑅)) ⊆ ≀ 𝑅))
53, 4mpbiran2 710 . 2 ( ≀ 𝑅 = ( I ∩ (dom ≀ 𝑅 × ran ≀ 𝑅)) ↔ ≀ 𝑅 ⊆ ( I ∩ (dom ≀ 𝑅 × ran ≀ 𝑅)))
61, 5bitri 275 1 ( ≀ 𝑅 ⊆ I ↔ ≀ 𝑅 ⊆ ( I ∩ (dom ≀ 𝑅 × ran ≀ 𝑅)))
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1537  cin 3962  wss 3963   I cid 5582   × cxp 5687  dom cdm 5689  ran crn 5690  Rel wrel 5694  ccoss 38162
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-br 5149  df-opab 5211  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-coss 38393
This theorem is referenced by:  cnvrefrelcoss2  38519  cosselcnvrefrels2  38520
  Copyright terms: Public domain W3C validator