Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  symrelcoss Structured version   Visualization version   GIF version

Theorem symrelcoss 38536
Description: The class of cosets by 𝑅 is symmetric. (Contributed by Peter Mazsa, 20-Dec-2021.)
Assertion
Ref Expression
symrelcoss SymRel ≀ 𝑅

Proof of Theorem symrelcoss
StepHypRef Expression
1 symrelcoss2 38442 . 2 (𝑅 ⊆ ≀ 𝑅 ∧ Rel ≀ 𝑅)
2 dfsymrel2 38525 . 2 ( SymRel ≀ 𝑅 ↔ (𝑅 ⊆ ≀ 𝑅 ∧ Rel ≀ 𝑅))
31, 2mpbir 231 1 SymRel ≀ 𝑅
Colors of variables: wff setvar class
Syntax hints:  wa 395  wss 3905  ccnv 5622  Rel wrel 5628  ccoss 38154   SymRel wsymrel 38166
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-br 5096  df-opab 5158  df-xp 5629  df-rel 5630  df-cnv 5631  df-dm 5633  df-rn 5634  df-res 5635  df-coss 38387  df-symrel 38520
This theorem is referenced by:  eqvrelcoss  38593
  Copyright terms: Public domain W3C validator