MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgcgrcomimp Structured version   Visualization version   GIF version

Theorem tgcgrcomimp 27995
Description: Congruence commutes on the RHS. Theorem 2.5 of [Schwabhauser] p. 27. (Contributed by David A. Wheeler, 29-Jun-2020.)
Hypotheses
Ref Expression
tkgeom.p 𝑃 = (Baseβ€˜πΊ)
tkgeom.d βˆ’ = (distβ€˜πΊ)
tkgeom.i 𝐼 = (Itvβ€˜πΊ)
tkgeom.g (πœ‘ β†’ 𝐺 ∈ TarskiG)
tgcgrcomimp.a (πœ‘ β†’ 𝐴 ∈ 𝑃)
tgcgrcomimp.b (πœ‘ β†’ 𝐡 ∈ 𝑃)
tgcgrcomimp.c (πœ‘ β†’ 𝐢 ∈ 𝑃)
tgcgrcomimp.d (πœ‘ β†’ 𝐷 ∈ 𝑃)
Assertion
Ref Expression
tgcgrcomimp (πœ‘ β†’ ((𝐴 βˆ’ 𝐡) = (𝐢 βˆ’ 𝐷) β†’ (𝐴 βˆ’ 𝐡) = (𝐷 βˆ’ 𝐢)))

Proof of Theorem tgcgrcomimp
StepHypRef Expression
1 tkgeom.p . . . 4 𝑃 = (Baseβ€˜πΊ)
2 tkgeom.d . . . 4 βˆ’ = (distβ€˜πΊ)
3 tkgeom.i . . . 4 𝐼 = (Itvβ€˜πΊ)
4 tkgeom.g . . . 4 (πœ‘ β†’ 𝐺 ∈ TarskiG)
5 tgcgrcomimp.c . . . 4 (πœ‘ β†’ 𝐢 ∈ 𝑃)
6 tgcgrcomimp.d . . . 4 (πœ‘ β†’ 𝐷 ∈ 𝑃)
71, 2, 3, 4, 5, 6axtgcgrrflx 27980 . . 3 (πœ‘ β†’ (𝐢 βˆ’ 𝐷) = (𝐷 βˆ’ 𝐢))
87eqeq2d 2741 . 2 (πœ‘ β†’ ((𝐴 βˆ’ 𝐡) = (𝐢 βˆ’ 𝐷) ↔ (𝐴 βˆ’ 𝐡) = (𝐷 βˆ’ 𝐢)))
98biimpd 228 1 (πœ‘ β†’ ((𝐴 βˆ’ 𝐡) = (𝐢 βˆ’ 𝐷) β†’ (𝐴 βˆ’ 𝐡) = (𝐷 βˆ’ 𝐢)))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   = wceq 1539   ∈ wcel 2104  β€˜cfv 6542  (class class class)co 7411  Basecbs 17148  distcds 17210  TarskiGcstrkg 27945  Itvcitv 27951
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-ext 2701  ax-nul 5305
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2722  df-clel 2808  df-ne 2939  df-ral 3060  df-rab 3431  df-v 3474  df-sbc 3777  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-iota 6494  df-fv 6550  df-ov 7414  df-trkgc 27966  df-trkg 27971
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator