MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgcgrcomimp Structured version   Visualization version   GIF version

Theorem tgcgrcomimp 28503
Description: Congruence commutes on the RHS. Theorem 2.5 of [Schwabhauser] p. 27. (Contributed by David A. Wheeler, 29-Jun-2020.)
Hypotheses
Ref Expression
tkgeom.p 𝑃 = (Base‘𝐺)
tkgeom.d = (dist‘𝐺)
tkgeom.i 𝐼 = (Itv‘𝐺)
tkgeom.g (𝜑𝐺 ∈ TarskiG)
tgcgrcomimp.a (𝜑𝐴𝑃)
tgcgrcomimp.b (𝜑𝐵𝑃)
tgcgrcomimp.c (𝜑𝐶𝑃)
tgcgrcomimp.d (𝜑𝐷𝑃)
Assertion
Ref Expression
tgcgrcomimp (𝜑 → ((𝐴 𝐵) = (𝐶 𝐷) → (𝐴 𝐵) = (𝐷 𝐶)))

Proof of Theorem tgcgrcomimp
StepHypRef Expression
1 tkgeom.p . . . 4 𝑃 = (Base‘𝐺)
2 tkgeom.d . . . 4 = (dist‘𝐺)
3 tkgeom.i . . . 4 𝐼 = (Itv‘𝐺)
4 tkgeom.g . . . 4 (𝜑𝐺 ∈ TarskiG)
5 tgcgrcomimp.c . . . 4 (𝜑𝐶𝑃)
6 tgcgrcomimp.d . . . 4 (𝜑𝐷𝑃)
71, 2, 3, 4, 5, 6axtgcgrrflx 28488 . . 3 (𝜑 → (𝐶 𝐷) = (𝐷 𝐶))
87eqeq2d 2751 . 2 (𝜑 → ((𝐴 𝐵) = (𝐶 𝐷) ↔ (𝐴 𝐵) = (𝐷 𝐶)))
98biimpd 229 1 (𝜑 → ((𝐴 𝐵) = (𝐶 𝐷) → (𝐴 𝐵) = (𝐷 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2108  cfv 6573  (class class class)co 7448  Basecbs 17258  distcds 17320  TarskiGcstrkg 28453  Itvcitv 28459
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-nul 5324
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-ral 3068  df-rab 3444  df-v 3490  df-sbc 3805  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-iota 6525  df-fv 6581  df-ov 7451  df-trkgc 28474  df-trkg 28479
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator