MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgcgrcomimp Structured version   Visualization version   GIF version

Theorem tgcgrcomimp 28475
Description: Congruence commutes on the RHS. Theorem 2.5 of [Schwabhauser] p. 27. (Contributed by David A. Wheeler, 29-Jun-2020.)
Hypotheses
Ref Expression
tkgeom.p 𝑃 = (Base‘𝐺)
tkgeom.d = (dist‘𝐺)
tkgeom.i 𝐼 = (Itv‘𝐺)
tkgeom.g (𝜑𝐺 ∈ TarskiG)
tgcgrcomimp.a (𝜑𝐴𝑃)
tgcgrcomimp.b (𝜑𝐵𝑃)
tgcgrcomimp.c (𝜑𝐶𝑃)
tgcgrcomimp.d (𝜑𝐷𝑃)
Assertion
Ref Expression
tgcgrcomimp (𝜑 → ((𝐴 𝐵) = (𝐶 𝐷) → (𝐴 𝐵) = (𝐷 𝐶)))

Proof of Theorem tgcgrcomimp
StepHypRef Expression
1 tkgeom.p . . . 4 𝑃 = (Base‘𝐺)
2 tkgeom.d . . . 4 = (dist‘𝐺)
3 tkgeom.i . . . 4 𝐼 = (Itv‘𝐺)
4 tkgeom.g . . . 4 (𝜑𝐺 ∈ TarskiG)
5 tgcgrcomimp.c . . . 4 (𝜑𝐶𝑃)
6 tgcgrcomimp.d . . . 4 (𝜑𝐷𝑃)
71, 2, 3, 4, 5, 6axtgcgrrflx 28460 . . 3 (𝜑 → (𝐶 𝐷) = (𝐷 𝐶))
87eqeq2d 2744 . 2 (𝜑 → ((𝐴 𝐵) = (𝐶 𝐷) ↔ (𝐴 𝐵) = (𝐷 𝐶)))
98biimpd 229 1 (𝜑 → ((𝐴 𝐵) = (𝐶 𝐷) → (𝐴 𝐵) = (𝐷 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2113  cfv 6489  (class class class)co 7355  Basecbs 17127  distcds 17177  TarskiGcstrkg 28425  Itvcitv 28431
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705  ax-nul 5248
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-ne 2930  df-ral 3049  df-rab 3397  df-v 3439  df-sbc 3738  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-iota 6445  df-fv 6497  df-ov 7358  df-trkgc 28446  df-trkg 28451
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator