MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgcgrcomimp Structured version   Visualization version   GIF version

Theorem tgcgrcomimp 26742
Description: Congruence commutes on the RHS. Theorem 2.5 of [Schwabhauser] p. 27. (Contributed by David A. Wheeler, 29-Jun-2020.)
Hypotheses
Ref Expression
tkgeom.p 𝑃 = (Base‘𝐺)
tkgeom.d = (dist‘𝐺)
tkgeom.i 𝐼 = (Itv‘𝐺)
tkgeom.g (𝜑𝐺 ∈ TarskiG)
tgcgrcomimp.a (𝜑𝐴𝑃)
tgcgrcomimp.b (𝜑𝐵𝑃)
tgcgrcomimp.c (𝜑𝐶𝑃)
tgcgrcomimp.d (𝜑𝐷𝑃)
Assertion
Ref Expression
tgcgrcomimp (𝜑 → ((𝐴 𝐵) = (𝐶 𝐷) → (𝐴 𝐵) = (𝐷 𝐶)))

Proof of Theorem tgcgrcomimp
StepHypRef Expression
1 tkgeom.p . . . 4 𝑃 = (Base‘𝐺)
2 tkgeom.d . . . 4 = (dist‘𝐺)
3 tkgeom.i . . . 4 𝐼 = (Itv‘𝐺)
4 tkgeom.g . . . 4 (𝜑𝐺 ∈ TarskiG)
5 tgcgrcomimp.c . . . 4 (𝜑𝐶𝑃)
6 tgcgrcomimp.d . . . 4 (𝜑𝐷𝑃)
71, 2, 3, 4, 5, 6axtgcgrrflx 26727 . . 3 (𝜑 → (𝐶 𝐷) = (𝐷 𝐶))
87eqeq2d 2749 . 2 (𝜑 → ((𝐴 𝐵) = (𝐶 𝐷) ↔ (𝐴 𝐵) = (𝐷 𝐶)))
98biimpd 228 1 (𝜑 → ((𝐴 𝐵) = (𝐶 𝐷) → (𝐴 𝐵) = (𝐷 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2108  cfv 6418  (class class class)co 7255  Basecbs 16840  distcds 16897  TarskiGcstrkg 26693  Itvcitv 26699
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-nul 5225
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-iota 6376  df-fv 6426  df-ov 7258  df-trkgc 26713  df-trkg 26718
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator