Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > tgcgrcomimp | Structured version Visualization version GIF version |
Description: Congruence commutes on the RHS. Theorem 2.5 of [Schwabhauser] p. 27. (Contributed by David A. Wheeler, 29-Jun-2020.) |
Ref | Expression |
---|---|
tkgeom.p | ⊢ 𝑃 = (Base‘𝐺) |
tkgeom.d | ⊢ − = (dist‘𝐺) |
tkgeom.i | ⊢ 𝐼 = (Itv‘𝐺) |
tkgeom.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
tgcgrcomimp.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
tgcgrcomimp.b | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
tgcgrcomimp.c | ⊢ (𝜑 → 𝐶 ∈ 𝑃) |
tgcgrcomimp.d | ⊢ (𝜑 → 𝐷 ∈ 𝑃) |
Ref | Expression |
---|---|
tgcgrcomimp | ⊢ (𝜑 → ((𝐴 − 𝐵) = (𝐶 − 𝐷) → (𝐴 − 𝐵) = (𝐷 − 𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tkgeom.p | . . . 4 ⊢ 𝑃 = (Base‘𝐺) | |
2 | tkgeom.d | . . . 4 ⊢ − = (dist‘𝐺) | |
3 | tkgeom.i | . . . 4 ⊢ 𝐼 = (Itv‘𝐺) | |
4 | tkgeom.g | . . . 4 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
5 | tgcgrcomimp.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ 𝑃) | |
6 | tgcgrcomimp.d | . . . 4 ⊢ (𝜑 → 𝐷 ∈ 𝑃) | |
7 | 1, 2, 3, 4, 5, 6 | axtgcgrrflx 26727 | . . 3 ⊢ (𝜑 → (𝐶 − 𝐷) = (𝐷 − 𝐶)) |
8 | 7 | eqeq2d 2749 | . 2 ⊢ (𝜑 → ((𝐴 − 𝐵) = (𝐶 − 𝐷) ↔ (𝐴 − 𝐵) = (𝐷 − 𝐶))) |
9 | 8 | biimpd 228 | 1 ⊢ (𝜑 → ((𝐴 − 𝐵) = (𝐶 − 𝐷) → (𝐴 − 𝐵) = (𝐷 − 𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 ‘cfv 6418 (class class class)co 7255 Basecbs 16840 distcds 16897 TarskiGcstrkg 26693 Itvcitv 26699 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-nul 5225 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-iota 6376 df-fv 6426 df-ov 7258 df-trkgc 26713 df-trkg 26718 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |