| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tgcgrcomimp | Structured version Visualization version GIF version | ||
| Description: Congruence commutes on the RHS. Theorem 2.5 of [Schwabhauser] p. 27. (Contributed by David A. Wheeler, 29-Jun-2020.) |
| Ref | Expression |
|---|---|
| tkgeom.p | ⊢ 𝑃 = (Base‘𝐺) |
| tkgeom.d | ⊢ − = (dist‘𝐺) |
| tkgeom.i | ⊢ 𝐼 = (Itv‘𝐺) |
| tkgeom.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
| tgcgrcomimp.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
| tgcgrcomimp.b | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
| tgcgrcomimp.c | ⊢ (𝜑 → 𝐶 ∈ 𝑃) |
| tgcgrcomimp.d | ⊢ (𝜑 → 𝐷 ∈ 𝑃) |
| Ref | Expression |
|---|---|
| tgcgrcomimp | ⊢ (𝜑 → ((𝐴 − 𝐵) = (𝐶 − 𝐷) → (𝐴 − 𝐵) = (𝐷 − 𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tkgeom.p | . . . 4 ⊢ 𝑃 = (Base‘𝐺) | |
| 2 | tkgeom.d | . . . 4 ⊢ − = (dist‘𝐺) | |
| 3 | tkgeom.i | . . . 4 ⊢ 𝐼 = (Itv‘𝐺) | |
| 4 | tkgeom.g | . . . 4 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
| 5 | tgcgrcomimp.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ 𝑃) | |
| 6 | tgcgrcomimp.d | . . . 4 ⊢ (𝜑 → 𝐷 ∈ 𝑃) | |
| 7 | 1, 2, 3, 4, 5, 6 | axtgcgrrflx 28396 | . . 3 ⊢ (𝜑 → (𝐶 − 𝐷) = (𝐷 − 𝐶)) |
| 8 | 7 | eqeq2d 2741 | . 2 ⊢ (𝜑 → ((𝐴 − 𝐵) = (𝐶 − 𝐷) ↔ (𝐴 − 𝐵) = (𝐷 − 𝐶))) |
| 9 | 8 | biimpd 229 | 1 ⊢ (𝜑 → ((𝐴 − 𝐵) = (𝐶 − 𝐷) → (𝐴 − 𝐵) = (𝐷 − 𝐶))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ‘cfv 6514 (class class class)co 7390 Basecbs 17186 distcds 17236 TarskiGcstrkg 28361 Itvcitv 28367 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-nul 5264 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-ral 3046 df-rab 3409 df-v 3452 df-sbc 3757 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-iota 6467 df-fv 6522 df-ov 7393 df-trkgc 28382 df-trkg 28387 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |