MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgjustc2 Structured version   Visualization version   GIF version

Theorem tgjustc2 28454
Description: A justification for using distance equality instead of the textbook relation on pairs of points for congruence. (Contributed by Thierry Arnoux, 29-Jan-2023.)
Hypotheses
Ref Expression
tgjustc2.p 𝑃 = (Base‘𝐺)
tgjustc2.d 𝑅 Er (𝑃 × 𝑃)
Assertion
Ref Expression
tgjustc2 𝑑(𝑑 Fn (𝑃 × 𝑃) ∧ ∀𝑤𝑃𝑥𝑃𝑦𝑃𝑧𝑃 (⟨𝑤, 𝑥𝑅𝑦, 𝑧⟩ ↔ (𝑤𝑑𝑥) = (𝑦𝑑𝑧)))
Distinct variable groups:   𝑃,𝑑,𝑤,𝑥,𝑦,𝑧   𝑅,𝑑,𝑤,𝑥,𝑦,𝑧
Allowed substitution hints:   𝐺(𝑥,𝑦,𝑧,𝑤,𝑑)

Proof of Theorem tgjustc2
Dummy variables 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tgjustc2.p . . . . 5 𝑃 = (Base‘𝐺)
21fvexi 6836 . . . 4 𝑃 ∈ V
32, 2xpex 7686 . . 3 (𝑃 × 𝑃) ∈ V
4 tgjustc2.d . . 3 𝑅 Er (𝑃 × 𝑃)
5 tgjustr 28452 . . 3 (((𝑃 × 𝑃) ∈ V ∧ 𝑅 Er (𝑃 × 𝑃)) → ∃𝑑(𝑑 Fn (𝑃 × 𝑃) ∧ ∀𝑢 ∈ (𝑃 × 𝑃)∀𝑣 ∈ (𝑃 × 𝑃)(𝑢𝑅𝑣 ↔ (𝑑𝑢) = (𝑑𝑣))))
63, 4, 5mp2an 692 . 2 𝑑(𝑑 Fn (𝑃 × 𝑃) ∧ ∀𝑢 ∈ (𝑃 × 𝑃)∀𝑣 ∈ (𝑃 × 𝑃)(𝑢𝑅𝑣 ↔ (𝑑𝑢) = (𝑑𝑣)))
7 simplrl 776 . . . . . . 7 (((∀𝑢 ∈ (𝑃 × 𝑃)∀𝑣 ∈ (𝑃 × 𝑃)(𝑢𝑅𝑣 ↔ (𝑑𝑢) = (𝑑𝑣)) ∧ (𝑤𝑃𝑥𝑃)) ∧ (𝑦𝑃𝑧𝑃)) → 𝑤𝑃)
8 simplrr 777 . . . . . . 7 (((∀𝑢 ∈ (𝑃 × 𝑃)∀𝑣 ∈ (𝑃 × 𝑃)(𝑢𝑅𝑣 ↔ (𝑑𝑢) = (𝑑𝑣)) ∧ (𝑤𝑃𝑥𝑃)) ∧ (𝑦𝑃𝑧𝑃)) → 𝑥𝑃)
97, 8opelxpd 5653 . . . . . 6 (((∀𝑢 ∈ (𝑃 × 𝑃)∀𝑣 ∈ (𝑃 × 𝑃)(𝑢𝑅𝑣 ↔ (𝑑𝑢) = (𝑑𝑣)) ∧ (𝑤𝑃𝑥𝑃)) ∧ (𝑦𝑃𝑧𝑃)) → ⟨𝑤, 𝑥⟩ ∈ (𝑃 × 𝑃))
10 simprl 770 . . . . . . 7 (((∀𝑢 ∈ (𝑃 × 𝑃)∀𝑣 ∈ (𝑃 × 𝑃)(𝑢𝑅𝑣 ↔ (𝑑𝑢) = (𝑑𝑣)) ∧ (𝑤𝑃𝑥𝑃)) ∧ (𝑦𝑃𝑧𝑃)) → 𝑦𝑃)
11 simprr 772 . . . . . . 7 (((∀𝑢 ∈ (𝑃 × 𝑃)∀𝑣 ∈ (𝑃 × 𝑃)(𝑢𝑅𝑣 ↔ (𝑑𝑢) = (𝑑𝑣)) ∧ (𝑤𝑃𝑥𝑃)) ∧ (𝑦𝑃𝑧𝑃)) → 𝑧𝑃)
1210, 11opelxpd 5653 . . . . . 6 (((∀𝑢 ∈ (𝑃 × 𝑃)∀𝑣 ∈ (𝑃 × 𝑃)(𝑢𝑅𝑣 ↔ (𝑑𝑢) = (𝑑𝑣)) ∧ (𝑤𝑃𝑥𝑃)) ∧ (𝑦𝑃𝑧𝑃)) → ⟨𝑦, 𝑧⟩ ∈ (𝑃 × 𝑃))
13 simpll 766 . . . . . 6 (((∀𝑢 ∈ (𝑃 × 𝑃)∀𝑣 ∈ (𝑃 × 𝑃)(𝑢𝑅𝑣 ↔ (𝑑𝑢) = (𝑑𝑣)) ∧ (𝑤𝑃𝑥𝑃)) ∧ (𝑦𝑃𝑧𝑃)) → ∀𝑢 ∈ (𝑃 × 𝑃)∀𝑣 ∈ (𝑃 × 𝑃)(𝑢𝑅𝑣 ↔ (𝑑𝑢) = (𝑑𝑣)))
14 breq1 5092 . . . . . . . 8 (𝑢 = ⟨𝑤, 𝑥⟩ → (𝑢𝑅𝑣 ↔ ⟨𝑤, 𝑥𝑅𝑣))
15 fveq2 6822 . . . . . . . . . 10 (𝑢 = ⟨𝑤, 𝑥⟩ → (𝑑𝑢) = (𝑑‘⟨𝑤, 𝑥⟩))
16 df-ov 7349 . . . . . . . . . 10 (𝑤𝑑𝑥) = (𝑑‘⟨𝑤, 𝑥⟩)
1715, 16eqtr4di 2784 . . . . . . . . 9 (𝑢 = ⟨𝑤, 𝑥⟩ → (𝑑𝑢) = (𝑤𝑑𝑥))
1817eqeq1d 2733 . . . . . . . 8 (𝑢 = ⟨𝑤, 𝑥⟩ → ((𝑑𝑢) = (𝑑𝑣) ↔ (𝑤𝑑𝑥) = (𝑑𝑣)))
1914, 18bibi12d 345 . . . . . . 7 (𝑢 = ⟨𝑤, 𝑥⟩ → ((𝑢𝑅𝑣 ↔ (𝑑𝑢) = (𝑑𝑣)) ↔ (⟨𝑤, 𝑥𝑅𝑣 ↔ (𝑤𝑑𝑥) = (𝑑𝑣))))
20 breq2 5093 . . . . . . . 8 (𝑣 = ⟨𝑦, 𝑧⟩ → (⟨𝑤, 𝑥𝑅𝑣 ↔ ⟨𝑤, 𝑥𝑅𝑦, 𝑧⟩))
21 fveq2 6822 . . . . . . . . . 10 (𝑣 = ⟨𝑦, 𝑧⟩ → (𝑑𝑣) = (𝑑‘⟨𝑦, 𝑧⟩))
22 df-ov 7349 . . . . . . . . . 10 (𝑦𝑑𝑧) = (𝑑‘⟨𝑦, 𝑧⟩)
2321, 22eqtr4di 2784 . . . . . . . . 9 (𝑣 = ⟨𝑦, 𝑧⟩ → (𝑑𝑣) = (𝑦𝑑𝑧))
2423eqeq2d 2742 . . . . . . . 8 (𝑣 = ⟨𝑦, 𝑧⟩ → ((𝑤𝑑𝑥) = (𝑑𝑣) ↔ (𝑤𝑑𝑥) = (𝑦𝑑𝑧)))
2520, 24bibi12d 345 . . . . . . 7 (𝑣 = ⟨𝑦, 𝑧⟩ → ((⟨𝑤, 𝑥𝑅𝑣 ↔ (𝑤𝑑𝑥) = (𝑑𝑣)) ↔ (⟨𝑤, 𝑥𝑅𝑦, 𝑧⟩ ↔ (𝑤𝑑𝑥) = (𝑦𝑑𝑧))))
2619, 25rspc2va 3584 . . . . . 6 (((⟨𝑤, 𝑥⟩ ∈ (𝑃 × 𝑃) ∧ ⟨𝑦, 𝑧⟩ ∈ (𝑃 × 𝑃)) ∧ ∀𝑢 ∈ (𝑃 × 𝑃)∀𝑣 ∈ (𝑃 × 𝑃)(𝑢𝑅𝑣 ↔ (𝑑𝑢) = (𝑑𝑣))) → (⟨𝑤, 𝑥𝑅𝑦, 𝑧⟩ ↔ (𝑤𝑑𝑥) = (𝑦𝑑𝑧)))
279, 12, 13, 26syl21anc 837 . . . . 5 (((∀𝑢 ∈ (𝑃 × 𝑃)∀𝑣 ∈ (𝑃 × 𝑃)(𝑢𝑅𝑣 ↔ (𝑑𝑢) = (𝑑𝑣)) ∧ (𝑤𝑃𝑥𝑃)) ∧ (𝑦𝑃𝑧𝑃)) → (⟨𝑤, 𝑥𝑅𝑦, 𝑧⟩ ↔ (𝑤𝑑𝑥) = (𝑦𝑑𝑧)))
2827ralrimivva 3175 . . . 4 ((∀𝑢 ∈ (𝑃 × 𝑃)∀𝑣 ∈ (𝑃 × 𝑃)(𝑢𝑅𝑣 ↔ (𝑑𝑢) = (𝑑𝑣)) ∧ (𝑤𝑃𝑥𝑃)) → ∀𝑦𝑃𝑧𝑃 (⟨𝑤, 𝑥𝑅𝑦, 𝑧⟩ ↔ (𝑤𝑑𝑥) = (𝑦𝑑𝑧)))
2928ralrimivva 3175 . . 3 (∀𝑢 ∈ (𝑃 × 𝑃)∀𝑣 ∈ (𝑃 × 𝑃)(𝑢𝑅𝑣 ↔ (𝑑𝑢) = (𝑑𝑣)) → ∀𝑤𝑃𝑥𝑃𝑦𝑃𝑧𝑃 (⟨𝑤, 𝑥𝑅𝑦, 𝑧⟩ ↔ (𝑤𝑑𝑥) = (𝑦𝑑𝑧)))
3029anim2i 617 . 2 ((𝑑 Fn (𝑃 × 𝑃) ∧ ∀𝑢 ∈ (𝑃 × 𝑃)∀𝑣 ∈ (𝑃 × 𝑃)(𝑢𝑅𝑣 ↔ (𝑑𝑢) = (𝑑𝑣))) → (𝑑 Fn (𝑃 × 𝑃) ∧ ∀𝑤𝑃𝑥𝑃𝑦𝑃𝑧𝑃 (⟨𝑤, 𝑥𝑅𝑦, 𝑧⟩ ↔ (𝑤𝑑𝑥) = (𝑦𝑑𝑧))))
316, 30eximii 1838 1 𝑑(𝑑 Fn (𝑃 × 𝑃) ∧ ∀𝑤𝑃𝑥𝑃𝑦𝑃𝑧𝑃 (⟨𝑤, 𝑥𝑅𝑦, 𝑧⟩ ↔ (𝑤𝑑𝑥) = (𝑦𝑑𝑧)))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1541  wex 1780  wcel 2111  wral 3047  Vcvv 3436  cop 4579   class class class wbr 5089   × cxp 5612   Fn wfn 6476  cfv 6481  (class class class)co 7346   Er wer 8619  Basecbs 17120
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-er 8622  df-ec 8624  df-qs 8628
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator