| Step | Hyp | Ref
| Expression |
| 1 | | tgjustc2.p |
. . . . 5
⊢ 𝑃 = (Base‘𝐺) |
| 2 | 1 | fvexi 6895 |
. . . 4
⊢ 𝑃 ∈ V |
| 3 | 2, 2 | xpex 7752 |
. . 3
⊢ (𝑃 × 𝑃) ∈ V |
| 4 | | tgjustc2.d |
. . 3
⊢ 𝑅 Er (𝑃 × 𝑃) |
| 5 | | tgjustr 28458 |
. . 3
⊢ (((𝑃 × 𝑃) ∈ V ∧ 𝑅 Er (𝑃 × 𝑃)) → ∃𝑑(𝑑 Fn (𝑃 × 𝑃) ∧ ∀𝑢 ∈ (𝑃 × 𝑃)∀𝑣 ∈ (𝑃 × 𝑃)(𝑢𝑅𝑣 ↔ (𝑑‘𝑢) = (𝑑‘𝑣)))) |
| 6 | 3, 4, 5 | mp2an 692 |
. 2
⊢
∃𝑑(𝑑 Fn (𝑃 × 𝑃) ∧ ∀𝑢 ∈ (𝑃 × 𝑃)∀𝑣 ∈ (𝑃 × 𝑃)(𝑢𝑅𝑣 ↔ (𝑑‘𝑢) = (𝑑‘𝑣))) |
| 7 | | simplrl 776 |
. . . . . . 7
⊢
(((∀𝑢 ∈
(𝑃 × 𝑃)∀𝑣 ∈ (𝑃 × 𝑃)(𝑢𝑅𝑣 ↔ (𝑑‘𝑢) = (𝑑‘𝑣)) ∧ (𝑤 ∈ 𝑃 ∧ 𝑥 ∈ 𝑃)) ∧ (𝑦 ∈ 𝑃 ∧ 𝑧 ∈ 𝑃)) → 𝑤 ∈ 𝑃) |
| 8 | | simplrr 777 |
. . . . . . 7
⊢
(((∀𝑢 ∈
(𝑃 × 𝑃)∀𝑣 ∈ (𝑃 × 𝑃)(𝑢𝑅𝑣 ↔ (𝑑‘𝑢) = (𝑑‘𝑣)) ∧ (𝑤 ∈ 𝑃 ∧ 𝑥 ∈ 𝑃)) ∧ (𝑦 ∈ 𝑃 ∧ 𝑧 ∈ 𝑃)) → 𝑥 ∈ 𝑃) |
| 9 | 7, 8 | opelxpd 5698 |
. . . . . 6
⊢
(((∀𝑢 ∈
(𝑃 × 𝑃)∀𝑣 ∈ (𝑃 × 𝑃)(𝑢𝑅𝑣 ↔ (𝑑‘𝑢) = (𝑑‘𝑣)) ∧ (𝑤 ∈ 𝑃 ∧ 𝑥 ∈ 𝑃)) ∧ (𝑦 ∈ 𝑃 ∧ 𝑧 ∈ 𝑃)) → 〈𝑤, 𝑥〉 ∈ (𝑃 × 𝑃)) |
| 10 | | simprl 770 |
. . . . . . 7
⊢
(((∀𝑢 ∈
(𝑃 × 𝑃)∀𝑣 ∈ (𝑃 × 𝑃)(𝑢𝑅𝑣 ↔ (𝑑‘𝑢) = (𝑑‘𝑣)) ∧ (𝑤 ∈ 𝑃 ∧ 𝑥 ∈ 𝑃)) ∧ (𝑦 ∈ 𝑃 ∧ 𝑧 ∈ 𝑃)) → 𝑦 ∈ 𝑃) |
| 11 | | simprr 772 |
. . . . . . 7
⊢
(((∀𝑢 ∈
(𝑃 × 𝑃)∀𝑣 ∈ (𝑃 × 𝑃)(𝑢𝑅𝑣 ↔ (𝑑‘𝑢) = (𝑑‘𝑣)) ∧ (𝑤 ∈ 𝑃 ∧ 𝑥 ∈ 𝑃)) ∧ (𝑦 ∈ 𝑃 ∧ 𝑧 ∈ 𝑃)) → 𝑧 ∈ 𝑃) |
| 12 | 10, 11 | opelxpd 5698 |
. . . . . 6
⊢
(((∀𝑢 ∈
(𝑃 × 𝑃)∀𝑣 ∈ (𝑃 × 𝑃)(𝑢𝑅𝑣 ↔ (𝑑‘𝑢) = (𝑑‘𝑣)) ∧ (𝑤 ∈ 𝑃 ∧ 𝑥 ∈ 𝑃)) ∧ (𝑦 ∈ 𝑃 ∧ 𝑧 ∈ 𝑃)) → 〈𝑦, 𝑧〉 ∈ (𝑃 × 𝑃)) |
| 13 | | simpll 766 |
. . . . . 6
⊢
(((∀𝑢 ∈
(𝑃 × 𝑃)∀𝑣 ∈ (𝑃 × 𝑃)(𝑢𝑅𝑣 ↔ (𝑑‘𝑢) = (𝑑‘𝑣)) ∧ (𝑤 ∈ 𝑃 ∧ 𝑥 ∈ 𝑃)) ∧ (𝑦 ∈ 𝑃 ∧ 𝑧 ∈ 𝑃)) → ∀𝑢 ∈ (𝑃 × 𝑃)∀𝑣 ∈ (𝑃 × 𝑃)(𝑢𝑅𝑣 ↔ (𝑑‘𝑢) = (𝑑‘𝑣))) |
| 14 | | breq1 5127 |
. . . . . . . 8
⊢ (𝑢 = 〈𝑤, 𝑥〉 → (𝑢𝑅𝑣 ↔ 〈𝑤, 𝑥〉𝑅𝑣)) |
| 15 | | fveq2 6881 |
. . . . . . . . . 10
⊢ (𝑢 = 〈𝑤, 𝑥〉 → (𝑑‘𝑢) = (𝑑‘〈𝑤, 𝑥〉)) |
| 16 | | df-ov 7413 |
. . . . . . . . . 10
⊢ (𝑤𝑑𝑥) = (𝑑‘〈𝑤, 𝑥〉) |
| 17 | 15, 16 | eqtr4di 2789 |
. . . . . . . . 9
⊢ (𝑢 = 〈𝑤, 𝑥〉 → (𝑑‘𝑢) = (𝑤𝑑𝑥)) |
| 18 | 17 | eqeq1d 2738 |
. . . . . . . 8
⊢ (𝑢 = 〈𝑤, 𝑥〉 → ((𝑑‘𝑢) = (𝑑‘𝑣) ↔ (𝑤𝑑𝑥) = (𝑑‘𝑣))) |
| 19 | 14, 18 | bibi12d 345 |
. . . . . . 7
⊢ (𝑢 = 〈𝑤, 𝑥〉 → ((𝑢𝑅𝑣 ↔ (𝑑‘𝑢) = (𝑑‘𝑣)) ↔ (〈𝑤, 𝑥〉𝑅𝑣 ↔ (𝑤𝑑𝑥) = (𝑑‘𝑣)))) |
| 20 | | breq2 5128 |
. . . . . . . 8
⊢ (𝑣 = 〈𝑦, 𝑧〉 → (〈𝑤, 𝑥〉𝑅𝑣 ↔ 〈𝑤, 𝑥〉𝑅〈𝑦, 𝑧〉)) |
| 21 | | fveq2 6881 |
. . . . . . . . . 10
⊢ (𝑣 = 〈𝑦, 𝑧〉 → (𝑑‘𝑣) = (𝑑‘〈𝑦, 𝑧〉)) |
| 22 | | df-ov 7413 |
. . . . . . . . . 10
⊢ (𝑦𝑑𝑧) = (𝑑‘〈𝑦, 𝑧〉) |
| 23 | 21, 22 | eqtr4di 2789 |
. . . . . . . . 9
⊢ (𝑣 = 〈𝑦, 𝑧〉 → (𝑑‘𝑣) = (𝑦𝑑𝑧)) |
| 24 | 23 | eqeq2d 2747 |
. . . . . . . 8
⊢ (𝑣 = 〈𝑦, 𝑧〉 → ((𝑤𝑑𝑥) = (𝑑‘𝑣) ↔ (𝑤𝑑𝑥) = (𝑦𝑑𝑧))) |
| 25 | 20, 24 | bibi12d 345 |
. . . . . . 7
⊢ (𝑣 = 〈𝑦, 𝑧〉 → ((〈𝑤, 𝑥〉𝑅𝑣 ↔ (𝑤𝑑𝑥) = (𝑑‘𝑣)) ↔ (〈𝑤, 𝑥〉𝑅〈𝑦, 𝑧〉 ↔ (𝑤𝑑𝑥) = (𝑦𝑑𝑧)))) |
| 26 | 19, 25 | rspc2va 3618 |
. . . . . 6
⊢
(((〈𝑤, 𝑥〉 ∈ (𝑃 × 𝑃) ∧ 〈𝑦, 𝑧〉 ∈ (𝑃 × 𝑃)) ∧ ∀𝑢 ∈ (𝑃 × 𝑃)∀𝑣 ∈ (𝑃 × 𝑃)(𝑢𝑅𝑣 ↔ (𝑑‘𝑢) = (𝑑‘𝑣))) → (〈𝑤, 𝑥〉𝑅〈𝑦, 𝑧〉 ↔ (𝑤𝑑𝑥) = (𝑦𝑑𝑧))) |
| 27 | 9, 12, 13, 26 | syl21anc 837 |
. . . . 5
⊢
(((∀𝑢 ∈
(𝑃 × 𝑃)∀𝑣 ∈ (𝑃 × 𝑃)(𝑢𝑅𝑣 ↔ (𝑑‘𝑢) = (𝑑‘𝑣)) ∧ (𝑤 ∈ 𝑃 ∧ 𝑥 ∈ 𝑃)) ∧ (𝑦 ∈ 𝑃 ∧ 𝑧 ∈ 𝑃)) → (〈𝑤, 𝑥〉𝑅〈𝑦, 𝑧〉 ↔ (𝑤𝑑𝑥) = (𝑦𝑑𝑧))) |
| 28 | 27 | ralrimivva 3188 |
. . . 4
⊢
((∀𝑢 ∈
(𝑃 × 𝑃)∀𝑣 ∈ (𝑃 × 𝑃)(𝑢𝑅𝑣 ↔ (𝑑‘𝑢) = (𝑑‘𝑣)) ∧ (𝑤 ∈ 𝑃 ∧ 𝑥 ∈ 𝑃)) → ∀𝑦 ∈ 𝑃 ∀𝑧 ∈ 𝑃 (〈𝑤, 𝑥〉𝑅〈𝑦, 𝑧〉 ↔ (𝑤𝑑𝑥) = (𝑦𝑑𝑧))) |
| 29 | 28 | ralrimivva 3188 |
. . 3
⊢
(∀𝑢 ∈
(𝑃 × 𝑃)∀𝑣 ∈ (𝑃 × 𝑃)(𝑢𝑅𝑣 ↔ (𝑑‘𝑢) = (𝑑‘𝑣)) → ∀𝑤 ∈ 𝑃 ∀𝑥 ∈ 𝑃 ∀𝑦 ∈ 𝑃 ∀𝑧 ∈ 𝑃 (〈𝑤, 𝑥〉𝑅〈𝑦, 𝑧〉 ↔ (𝑤𝑑𝑥) = (𝑦𝑑𝑧))) |
| 30 | 29 | anim2i 617 |
. 2
⊢ ((𝑑 Fn (𝑃 × 𝑃) ∧ ∀𝑢 ∈ (𝑃 × 𝑃)∀𝑣 ∈ (𝑃 × 𝑃)(𝑢𝑅𝑣 ↔ (𝑑‘𝑢) = (𝑑‘𝑣))) → (𝑑 Fn (𝑃 × 𝑃) ∧ ∀𝑤 ∈ 𝑃 ∀𝑥 ∈ 𝑃 ∀𝑦 ∈ 𝑃 ∀𝑧 ∈ 𝑃 (〈𝑤, 𝑥〉𝑅〈𝑦, 𝑧〉 ↔ (𝑤𝑑𝑥) = (𝑦𝑑𝑧)))) |
| 31 | 6, 30 | eximii 1837 |
1
⊢
∃𝑑(𝑑 Fn (𝑃 × 𝑃) ∧ ∀𝑤 ∈ 𝑃 ∀𝑥 ∈ 𝑃 ∀𝑦 ∈ 𝑃 ∀𝑧 ∈ 𝑃 (〈𝑤, 𝑥〉𝑅〈𝑦, 𝑧〉 ↔ (𝑤𝑑𝑥) = (𝑦𝑑𝑧))) |