MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgjustc2 Structured version   Visualization version   GIF version

Theorem tgjustc2 28220
Description: A justification for using distance equality instead of the textbook relation on pairs of points for congruence. (Contributed by Thierry Arnoux, 29-Jan-2023.)
Hypotheses
Ref Expression
tgjustc2.p 𝑃 = (Base‘𝐺)
tgjustc2.d 𝑅 Er (𝑃 × 𝑃)
Assertion
Ref Expression
tgjustc2 𝑑(𝑑 Fn (𝑃 × 𝑃) ∧ ∀𝑤𝑃𝑥𝑃𝑦𝑃𝑧𝑃 (⟨𝑤, 𝑥𝑅𝑦, 𝑧⟩ ↔ (𝑤𝑑𝑥) = (𝑦𝑑𝑧)))
Distinct variable groups:   𝑃,𝑑,𝑤,𝑥,𝑦,𝑧   𝑅,𝑑,𝑤,𝑥,𝑦,𝑧
Allowed substitution hints:   𝐺(𝑥,𝑦,𝑧,𝑤,𝑑)

Proof of Theorem tgjustc2
Dummy variables 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tgjustc2.p . . . . 5 𝑃 = (Base‘𝐺)
21fvexi 6896 . . . 4 𝑃 ∈ V
32, 2xpex 7734 . . 3 (𝑃 × 𝑃) ∈ V
4 tgjustc2.d . . 3 𝑅 Er (𝑃 × 𝑃)
5 tgjustr 28218 . . 3 (((𝑃 × 𝑃) ∈ V ∧ 𝑅 Er (𝑃 × 𝑃)) → ∃𝑑(𝑑 Fn (𝑃 × 𝑃) ∧ ∀𝑢 ∈ (𝑃 × 𝑃)∀𝑣 ∈ (𝑃 × 𝑃)(𝑢𝑅𝑣 ↔ (𝑑𝑢) = (𝑑𝑣))))
63, 4, 5mp2an 689 . 2 𝑑(𝑑 Fn (𝑃 × 𝑃) ∧ ∀𝑢 ∈ (𝑃 × 𝑃)∀𝑣 ∈ (𝑃 × 𝑃)(𝑢𝑅𝑣 ↔ (𝑑𝑢) = (𝑑𝑣)))
7 simplrl 774 . . . . . . 7 (((∀𝑢 ∈ (𝑃 × 𝑃)∀𝑣 ∈ (𝑃 × 𝑃)(𝑢𝑅𝑣 ↔ (𝑑𝑢) = (𝑑𝑣)) ∧ (𝑤𝑃𝑥𝑃)) ∧ (𝑦𝑃𝑧𝑃)) → 𝑤𝑃)
8 simplrr 775 . . . . . . 7 (((∀𝑢 ∈ (𝑃 × 𝑃)∀𝑣 ∈ (𝑃 × 𝑃)(𝑢𝑅𝑣 ↔ (𝑑𝑢) = (𝑑𝑣)) ∧ (𝑤𝑃𝑥𝑃)) ∧ (𝑦𝑃𝑧𝑃)) → 𝑥𝑃)
97, 8opelxpd 5706 . . . . . 6 (((∀𝑢 ∈ (𝑃 × 𝑃)∀𝑣 ∈ (𝑃 × 𝑃)(𝑢𝑅𝑣 ↔ (𝑑𝑢) = (𝑑𝑣)) ∧ (𝑤𝑃𝑥𝑃)) ∧ (𝑦𝑃𝑧𝑃)) → ⟨𝑤, 𝑥⟩ ∈ (𝑃 × 𝑃))
10 simprl 768 . . . . . . 7 (((∀𝑢 ∈ (𝑃 × 𝑃)∀𝑣 ∈ (𝑃 × 𝑃)(𝑢𝑅𝑣 ↔ (𝑑𝑢) = (𝑑𝑣)) ∧ (𝑤𝑃𝑥𝑃)) ∧ (𝑦𝑃𝑧𝑃)) → 𝑦𝑃)
11 simprr 770 . . . . . . 7 (((∀𝑢 ∈ (𝑃 × 𝑃)∀𝑣 ∈ (𝑃 × 𝑃)(𝑢𝑅𝑣 ↔ (𝑑𝑢) = (𝑑𝑣)) ∧ (𝑤𝑃𝑥𝑃)) ∧ (𝑦𝑃𝑧𝑃)) → 𝑧𝑃)
1210, 11opelxpd 5706 . . . . . 6 (((∀𝑢 ∈ (𝑃 × 𝑃)∀𝑣 ∈ (𝑃 × 𝑃)(𝑢𝑅𝑣 ↔ (𝑑𝑢) = (𝑑𝑣)) ∧ (𝑤𝑃𝑥𝑃)) ∧ (𝑦𝑃𝑧𝑃)) → ⟨𝑦, 𝑧⟩ ∈ (𝑃 × 𝑃))
13 simpll 764 . . . . . 6 (((∀𝑢 ∈ (𝑃 × 𝑃)∀𝑣 ∈ (𝑃 × 𝑃)(𝑢𝑅𝑣 ↔ (𝑑𝑢) = (𝑑𝑣)) ∧ (𝑤𝑃𝑥𝑃)) ∧ (𝑦𝑃𝑧𝑃)) → ∀𝑢 ∈ (𝑃 × 𝑃)∀𝑣 ∈ (𝑃 × 𝑃)(𝑢𝑅𝑣 ↔ (𝑑𝑢) = (𝑑𝑣)))
14 breq1 5142 . . . . . . . 8 (𝑢 = ⟨𝑤, 𝑥⟩ → (𝑢𝑅𝑣 ↔ ⟨𝑤, 𝑥𝑅𝑣))
15 fveq2 6882 . . . . . . . . . 10 (𝑢 = ⟨𝑤, 𝑥⟩ → (𝑑𝑢) = (𝑑‘⟨𝑤, 𝑥⟩))
16 df-ov 7405 . . . . . . . . . 10 (𝑤𝑑𝑥) = (𝑑‘⟨𝑤, 𝑥⟩)
1715, 16eqtr4di 2782 . . . . . . . . 9 (𝑢 = ⟨𝑤, 𝑥⟩ → (𝑑𝑢) = (𝑤𝑑𝑥))
1817eqeq1d 2726 . . . . . . . 8 (𝑢 = ⟨𝑤, 𝑥⟩ → ((𝑑𝑢) = (𝑑𝑣) ↔ (𝑤𝑑𝑥) = (𝑑𝑣)))
1914, 18bibi12d 345 . . . . . . 7 (𝑢 = ⟨𝑤, 𝑥⟩ → ((𝑢𝑅𝑣 ↔ (𝑑𝑢) = (𝑑𝑣)) ↔ (⟨𝑤, 𝑥𝑅𝑣 ↔ (𝑤𝑑𝑥) = (𝑑𝑣))))
20 breq2 5143 . . . . . . . 8 (𝑣 = ⟨𝑦, 𝑧⟩ → (⟨𝑤, 𝑥𝑅𝑣 ↔ ⟨𝑤, 𝑥𝑅𝑦, 𝑧⟩))
21 fveq2 6882 . . . . . . . . . 10 (𝑣 = ⟨𝑦, 𝑧⟩ → (𝑑𝑣) = (𝑑‘⟨𝑦, 𝑧⟩))
22 df-ov 7405 . . . . . . . . . 10 (𝑦𝑑𝑧) = (𝑑‘⟨𝑦, 𝑧⟩)
2321, 22eqtr4di 2782 . . . . . . . . 9 (𝑣 = ⟨𝑦, 𝑧⟩ → (𝑑𝑣) = (𝑦𝑑𝑧))
2423eqeq2d 2735 . . . . . . . 8 (𝑣 = ⟨𝑦, 𝑧⟩ → ((𝑤𝑑𝑥) = (𝑑𝑣) ↔ (𝑤𝑑𝑥) = (𝑦𝑑𝑧)))
2520, 24bibi12d 345 . . . . . . 7 (𝑣 = ⟨𝑦, 𝑧⟩ → ((⟨𝑤, 𝑥𝑅𝑣 ↔ (𝑤𝑑𝑥) = (𝑑𝑣)) ↔ (⟨𝑤, 𝑥𝑅𝑦, 𝑧⟩ ↔ (𝑤𝑑𝑥) = (𝑦𝑑𝑧))))
2619, 25rspc2va 3616 . . . . . 6 (((⟨𝑤, 𝑥⟩ ∈ (𝑃 × 𝑃) ∧ ⟨𝑦, 𝑧⟩ ∈ (𝑃 × 𝑃)) ∧ ∀𝑢 ∈ (𝑃 × 𝑃)∀𝑣 ∈ (𝑃 × 𝑃)(𝑢𝑅𝑣 ↔ (𝑑𝑢) = (𝑑𝑣))) → (⟨𝑤, 𝑥𝑅𝑦, 𝑧⟩ ↔ (𝑤𝑑𝑥) = (𝑦𝑑𝑧)))
279, 12, 13, 26syl21anc 835 . . . . 5 (((∀𝑢 ∈ (𝑃 × 𝑃)∀𝑣 ∈ (𝑃 × 𝑃)(𝑢𝑅𝑣 ↔ (𝑑𝑢) = (𝑑𝑣)) ∧ (𝑤𝑃𝑥𝑃)) ∧ (𝑦𝑃𝑧𝑃)) → (⟨𝑤, 𝑥𝑅𝑦, 𝑧⟩ ↔ (𝑤𝑑𝑥) = (𝑦𝑑𝑧)))
2827ralrimivva 3192 . . . 4 ((∀𝑢 ∈ (𝑃 × 𝑃)∀𝑣 ∈ (𝑃 × 𝑃)(𝑢𝑅𝑣 ↔ (𝑑𝑢) = (𝑑𝑣)) ∧ (𝑤𝑃𝑥𝑃)) → ∀𝑦𝑃𝑧𝑃 (⟨𝑤, 𝑥𝑅𝑦, 𝑧⟩ ↔ (𝑤𝑑𝑥) = (𝑦𝑑𝑧)))
2928ralrimivva 3192 . . 3 (∀𝑢 ∈ (𝑃 × 𝑃)∀𝑣 ∈ (𝑃 × 𝑃)(𝑢𝑅𝑣 ↔ (𝑑𝑢) = (𝑑𝑣)) → ∀𝑤𝑃𝑥𝑃𝑦𝑃𝑧𝑃 (⟨𝑤, 𝑥𝑅𝑦, 𝑧⟩ ↔ (𝑤𝑑𝑥) = (𝑦𝑑𝑧)))
3029anim2i 616 . 2 ((𝑑 Fn (𝑃 × 𝑃) ∧ ∀𝑢 ∈ (𝑃 × 𝑃)∀𝑣 ∈ (𝑃 × 𝑃)(𝑢𝑅𝑣 ↔ (𝑑𝑢) = (𝑑𝑣))) → (𝑑 Fn (𝑃 × 𝑃) ∧ ∀𝑤𝑃𝑥𝑃𝑦𝑃𝑧𝑃 (⟨𝑤, 𝑥𝑅𝑦, 𝑧⟩ ↔ (𝑤𝑑𝑥) = (𝑦𝑑𝑧))))
316, 30eximii 1831 1 𝑑(𝑑 Fn (𝑃 × 𝑃) ∧ ∀𝑤𝑃𝑥𝑃𝑦𝑃𝑧𝑃 (⟨𝑤, 𝑥𝑅𝑦, 𝑧⟩ ↔ (𝑤𝑑𝑥) = (𝑦𝑑𝑧)))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395   = wceq 1533  wex 1773  wcel 2098  wral 3053  Vcvv 3466  cop 4627   class class class wbr 5139   × cxp 5665   Fn wfn 6529  cfv 6534  (class class class)co 7402   Er wer 8697  Basecbs 17149
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5276  ax-sep 5290  ax-nul 5297  ax-pow 5354  ax-pr 5418  ax-un 7719
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-ral 3054  df-rex 3063  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3771  df-csb 3887  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-nul 4316  df-if 4522  df-pw 4597  df-sn 4622  df-pr 4624  df-op 4628  df-uni 4901  df-iun 4990  df-br 5140  df-opab 5202  df-mpt 5223  df-id 5565  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-iota 6486  df-fun 6536  df-fn 6537  df-f 6538  df-f1 6539  df-fo 6540  df-f1o 6541  df-fv 6542  df-ov 7405  df-er 8700  df-ec 8702  df-qs 8706
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator