Step | Hyp | Ref
| Expression |
1 | | tgjustc2.p |
. . . . 5
⊢ 𝑃 = (Base‘𝐺) |
2 | 1 | fvexi 6788 |
. . . 4
⊢ 𝑃 ∈ V |
3 | 2, 2 | xpex 7603 |
. . 3
⊢ (𝑃 × 𝑃) ∈ V |
4 | | tgjustc2.d |
. . 3
⊢ 𝑅 Er (𝑃 × 𝑃) |
5 | | tgjustr 26835 |
. . 3
⊢ (((𝑃 × 𝑃) ∈ V ∧ 𝑅 Er (𝑃 × 𝑃)) → ∃𝑑(𝑑 Fn (𝑃 × 𝑃) ∧ ∀𝑢 ∈ (𝑃 × 𝑃)∀𝑣 ∈ (𝑃 × 𝑃)(𝑢𝑅𝑣 ↔ (𝑑‘𝑢) = (𝑑‘𝑣)))) |
6 | 3, 4, 5 | mp2an 689 |
. 2
⊢
∃𝑑(𝑑 Fn (𝑃 × 𝑃) ∧ ∀𝑢 ∈ (𝑃 × 𝑃)∀𝑣 ∈ (𝑃 × 𝑃)(𝑢𝑅𝑣 ↔ (𝑑‘𝑢) = (𝑑‘𝑣))) |
7 | | simplrl 774 |
. . . . . . 7
⊢
(((∀𝑢 ∈
(𝑃 × 𝑃)∀𝑣 ∈ (𝑃 × 𝑃)(𝑢𝑅𝑣 ↔ (𝑑‘𝑢) = (𝑑‘𝑣)) ∧ (𝑤 ∈ 𝑃 ∧ 𝑥 ∈ 𝑃)) ∧ (𝑦 ∈ 𝑃 ∧ 𝑧 ∈ 𝑃)) → 𝑤 ∈ 𝑃) |
8 | | simplrr 775 |
. . . . . . 7
⊢
(((∀𝑢 ∈
(𝑃 × 𝑃)∀𝑣 ∈ (𝑃 × 𝑃)(𝑢𝑅𝑣 ↔ (𝑑‘𝑢) = (𝑑‘𝑣)) ∧ (𝑤 ∈ 𝑃 ∧ 𝑥 ∈ 𝑃)) ∧ (𝑦 ∈ 𝑃 ∧ 𝑧 ∈ 𝑃)) → 𝑥 ∈ 𝑃) |
9 | 7, 8 | opelxpd 5627 |
. . . . . 6
⊢
(((∀𝑢 ∈
(𝑃 × 𝑃)∀𝑣 ∈ (𝑃 × 𝑃)(𝑢𝑅𝑣 ↔ (𝑑‘𝑢) = (𝑑‘𝑣)) ∧ (𝑤 ∈ 𝑃 ∧ 𝑥 ∈ 𝑃)) ∧ (𝑦 ∈ 𝑃 ∧ 𝑧 ∈ 𝑃)) → 〈𝑤, 𝑥〉 ∈ (𝑃 × 𝑃)) |
10 | | simprl 768 |
. . . . . . 7
⊢
(((∀𝑢 ∈
(𝑃 × 𝑃)∀𝑣 ∈ (𝑃 × 𝑃)(𝑢𝑅𝑣 ↔ (𝑑‘𝑢) = (𝑑‘𝑣)) ∧ (𝑤 ∈ 𝑃 ∧ 𝑥 ∈ 𝑃)) ∧ (𝑦 ∈ 𝑃 ∧ 𝑧 ∈ 𝑃)) → 𝑦 ∈ 𝑃) |
11 | | simprr 770 |
. . . . . . 7
⊢
(((∀𝑢 ∈
(𝑃 × 𝑃)∀𝑣 ∈ (𝑃 × 𝑃)(𝑢𝑅𝑣 ↔ (𝑑‘𝑢) = (𝑑‘𝑣)) ∧ (𝑤 ∈ 𝑃 ∧ 𝑥 ∈ 𝑃)) ∧ (𝑦 ∈ 𝑃 ∧ 𝑧 ∈ 𝑃)) → 𝑧 ∈ 𝑃) |
12 | 10, 11 | opelxpd 5627 |
. . . . . 6
⊢
(((∀𝑢 ∈
(𝑃 × 𝑃)∀𝑣 ∈ (𝑃 × 𝑃)(𝑢𝑅𝑣 ↔ (𝑑‘𝑢) = (𝑑‘𝑣)) ∧ (𝑤 ∈ 𝑃 ∧ 𝑥 ∈ 𝑃)) ∧ (𝑦 ∈ 𝑃 ∧ 𝑧 ∈ 𝑃)) → 〈𝑦, 𝑧〉 ∈ (𝑃 × 𝑃)) |
13 | | simpll 764 |
. . . . . 6
⊢
(((∀𝑢 ∈
(𝑃 × 𝑃)∀𝑣 ∈ (𝑃 × 𝑃)(𝑢𝑅𝑣 ↔ (𝑑‘𝑢) = (𝑑‘𝑣)) ∧ (𝑤 ∈ 𝑃 ∧ 𝑥 ∈ 𝑃)) ∧ (𝑦 ∈ 𝑃 ∧ 𝑧 ∈ 𝑃)) → ∀𝑢 ∈ (𝑃 × 𝑃)∀𝑣 ∈ (𝑃 × 𝑃)(𝑢𝑅𝑣 ↔ (𝑑‘𝑢) = (𝑑‘𝑣))) |
14 | | breq1 5077 |
. . . . . . . 8
⊢ (𝑢 = 〈𝑤, 𝑥〉 → (𝑢𝑅𝑣 ↔ 〈𝑤, 𝑥〉𝑅𝑣)) |
15 | | fveq2 6774 |
. . . . . . . . . 10
⊢ (𝑢 = 〈𝑤, 𝑥〉 → (𝑑‘𝑢) = (𝑑‘〈𝑤, 𝑥〉)) |
16 | | df-ov 7278 |
. . . . . . . . . 10
⊢ (𝑤𝑑𝑥) = (𝑑‘〈𝑤, 𝑥〉) |
17 | 15, 16 | eqtr4di 2796 |
. . . . . . . . 9
⊢ (𝑢 = 〈𝑤, 𝑥〉 → (𝑑‘𝑢) = (𝑤𝑑𝑥)) |
18 | 17 | eqeq1d 2740 |
. . . . . . . 8
⊢ (𝑢 = 〈𝑤, 𝑥〉 → ((𝑑‘𝑢) = (𝑑‘𝑣) ↔ (𝑤𝑑𝑥) = (𝑑‘𝑣))) |
19 | 14, 18 | bibi12d 346 |
. . . . . . 7
⊢ (𝑢 = 〈𝑤, 𝑥〉 → ((𝑢𝑅𝑣 ↔ (𝑑‘𝑢) = (𝑑‘𝑣)) ↔ (〈𝑤, 𝑥〉𝑅𝑣 ↔ (𝑤𝑑𝑥) = (𝑑‘𝑣)))) |
20 | | breq2 5078 |
. . . . . . . 8
⊢ (𝑣 = 〈𝑦, 𝑧〉 → (〈𝑤, 𝑥〉𝑅𝑣 ↔ 〈𝑤, 𝑥〉𝑅〈𝑦, 𝑧〉)) |
21 | | fveq2 6774 |
. . . . . . . . . 10
⊢ (𝑣 = 〈𝑦, 𝑧〉 → (𝑑‘𝑣) = (𝑑‘〈𝑦, 𝑧〉)) |
22 | | df-ov 7278 |
. . . . . . . . . 10
⊢ (𝑦𝑑𝑧) = (𝑑‘〈𝑦, 𝑧〉) |
23 | 21, 22 | eqtr4di 2796 |
. . . . . . . . 9
⊢ (𝑣 = 〈𝑦, 𝑧〉 → (𝑑‘𝑣) = (𝑦𝑑𝑧)) |
24 | 23 | eqeq2d 2749 |
. . . . . . . 8
⊢ (𝑣 = 〈𝑦, 𝑧〉 → ((𝑤𝑑𝑥) = (𝑑‘𝑣) ↔ (𝑤𝑑𝑥) = (𝑦𝑑𝑧))) |
25 | 20, 24 | bibi12d 346 |
. . . . . . 7
⊢ (𝑣 = 〈𝑦, 𝑧〉 → ((〈𝑤, 𝑥〉𝑅𝑣 ↔ (𝑤𝑑𝑥) = (𝑑‘𝑣)) ↔ (〈𝑤, 𝑥〉𝑅〈𝑦, 𝑧〉 ↔ (𝑤𝑑𝑥) = (𝑦𝑑𝑧)))) |
26 | 19, 25 | rspc2va 3571 |
. . . . . 6
⊢
(((〈𝑤, 𝑥〉 ∈ (𝑃 × 𝑃) ∧ 〈𝑦, 𝑧〉 ∈ (𝑃 × 𝑃)) ∧ ∀𝑢 ∈ (𝑃 × 𝑃)∀𝑣 ∈ (𝑃 × 𝑃)(𝑢𝑅𝑣 ↔ (𝑑‘𝑢) = (𝑑‘𝑣))) → (〈𝑤, 𝑥〉𝑅〈𝑦, 𝑧〉 ↔ (𝑤𝑑𝑥) = (𝑦𝑑𝑧))) |
27 | 9, 12, 13, 26 | syl21anc 835 |
. . . . 5
⊢
(((∀𝑢 ∈
(𝑃 × 𝑃)∀𝑣 ∈ (𝑃 × 𝑃)(𝑢𝑅𝑣 ↔ (𝑑‘𝑢) = (𝑑‘𝑣)) ∧ (𝑤 ∈ 𝑃 ∧ 𝑥 ∈ 𝑃)) ∧ (𝑦 ∈ 𝑃 ∧ 𝑧 ∈ 𝑃)) → (〈𝑤, 𝑥〉𝑅〈𝑦, 𝑧〉 ↔ (𝑤𝑑𝑥) = (𝑦𝑑𝑧))) |
28 | 27 | ralrimivva 3123 |
. . . 4
⊢
((∀𝑢 ∈
(𝑃 × 𝑃)∀𝑣 ∈ (𝑃 × 𝑃)(𝑢𝑅𝑣 ↔ (𝑑‘𝑢) = (𝑑‘𝑣)) ∧ (𝑤 ∈ 𝑃 ∧ 𝑥 ∈ 𝑃)) → ∀𝑦 ∈ 𝑃 ∀𝑧 ∈ 𝑃 (〈𝑤, 𝑥〉𝑅〈𝑦, 𝑧〉 ↔ (𝑤𝑑𝑥) = (𝑦𝑑𝑧))) |
29 | 28 | ralrimivva 3123 |
. . 3
⊢
(∀𝑢 ∈
(𝑃 × 𝑃)∀𝑣 ∈ (𝑃 × 𝑃)(𝑢𝑅𝑣 ↔ (𝑑‘𝑢) = (𝑑‘𝑣)) → ∀𝑤 ∈ 𝑃 ∀𝑥 ∈ 𝑃 ∀𝑦 ∈ 𝑃 ∀𝑧 ∈ 𝑃 (〈𝑤, 𝑥〉𝑅〈𝑦, 𝑧〉 ↔ (𝑤𝑑𝑥) = (𝑦𝑑𝑧))) |
30 | 29 | anim2i 617 |
. 2
⊢ ((𝑑 Fn (𝑃 × 𝑃) ∧ ∀𝑢 ∈ (𝑃 × 𝑃)∀𝑣 ∈ (𝑃 × 𝑃)(𝑢𝑅𝑣 ↔ (𝑑‘𝑢) = (𝑑‘𝑣))) → (𝑑 Fn (𝑃 × 𝑃) ∧ ∀𝑤 ∈ 𝑃 ∀𝑥 ∈ 𝑃 ∀𝑦 ∈ 𝑃 ∀𝑧 ∈ 𝑃 (〈𝑤, 𝑥〉𝑅〈𝑦, 𝑧〉 ↔ (𝑤𝑑𝑥) = (𝑦𝑑𝑧)))) |
31 | 6, 30 | eximii 1839 |
1
⊢
∃𝑑(𝑑 Fn (𝑃 × 𝑃) ∧ ∀𝑤 ∈ 𝑃 ∀𝑥 ∈ 𝑃 ∀𝑦 ∈ 𝑃 ∀𝑧 ∈ 𝑃 (〈𝑤, 𝑥〉𝑅〈𝑦, 𝑧〉 ↔ (𝑤𝑑𝑥) = (𝑦𝑑𝑧))) |