MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgjustc2 Structured version   Visualization version   GIF version

Theorem tgjustc2 26270
Description: A justification for using distance equality instead of the textbook relation on pairs of points for congruence. (Contributed by Thierry Arnoux, 29-Jan-2023.)
Hypotheses
Ref Expression
tgjustc2.p 𝑃 = (Base‘𝐺)
tgjustc2.d 𝑅 Er (𝑃 × 𝑃)
Assertion
Ref Expression
tgjustc2 𝑑(𝑑 Fn (𝑃 × 𝑃) ∧ ∀𝑤𝑃𝑥𝑃𝑦𝑃𝑧𝑃 (⟨𝑤, 𝑥𝑅𝑦, 𝑧⟩ ↔ (𝑤𝑑𝑥) = (𝑦𝑑𝑧)))
Distinct variable groups:   𝑃,𝑑,𝑤,𝑥,𝑦,𝑧   𝑅,𝑑,𝑤,𝑥,𝑦,𝑧
Allowed substitution hints:   𝐺(𝑥,𝑦,𝑧,𝑤,𝑑)

Proof of Theorem tgjustc2
Dummy variables 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tgjustc2.p . . . . 5 𝑃 = (Base‘𝐺)
21fvexi 6659 . . . 4 𝑃 ∈ V
32, 2xpex 7456 . . 3 (𝑃 × 𝑃) ∈ V
4 tgjustc2.d . . 3 𝑅 Er (𝑃 × 𝑃)
5 tgjustr 26268 . . 3 (((𝑃 × 𝑃) ∈ V ∧ 𝑅 Er (𝑃 × 𝑃)) → ∃𝑑(𝑑 Fn (𝑃 × 𝑃) ∧ ∀𝑢 ∈ (𝑃 × 𝑃)∀𝑣 ∈ (𝑃 × 𝑃)(𝑢𝑅𝑣 ↔ (𝑑𝑢) = (𝑑𝑣))))
63, 4, 5mp2an 691 . 2 𝑑(𝑑 Fn (𝑃 × 𝑃) ∧ ∀𝑢 ∈ (𝑃 × 𝑃)∀𝑣 ∈ (𝑃 × 𝑃)(𝑢𝑅𝑣 ↔ (𝑑𝑢) = (𝑑𝑣)))
7 simplrl 776 . . . . . . 7 (((∀𝑢 ∈ (𝑃 × 𝑃)∀𝑣 ∈ (𝑃 × 𝑃)(𝑢𝑅𝑣 ↔ (𝑑𝑢) = (𝑑𝑣)) ∧ (𝑤𝑃𝑥𝑃)) ∧ (𝑦𝑃𝑧𝑃)) → 𝑤𝑃)
8 simplrr 777 . . . . . . 7 (((∀𝑢 ∈ (𝑃 × 𝑃)∀𝑣 ∈ (𝑃 × 𝑃)(𝑢𝑅𝑣 ↔ (𝑑𝑢) = (𝑑𝑣)) ∧ (𝑤𝑃𝑥𝑃)) ∧ (𝑦𝑃𝑧𝑃)) → 𝑥𝑃)
97, 8opelxpd 5557 . . . . . 6 (((∀𝑢 ∈ (𝑃 × 𝑃)∀𝑣 ∈ (𝑃 × 𝑃)(𝑢𝑅𝑣 ↔ (𝑑𝑢) = (𝑑𝑣)) ∧ (𝑤𝑃𝑥𝑃)) ∧ (𝑦𝑃𝑧𝑃)) → ⟨𝑤, 𝑥⟩ ∈ (𝑃 × 𝑃))
10 simprl 770 . . . . . . 7 (((∀𝑢 ∈ (𝑃 × 𝑃)∀𝑣 ∈ (𝑃 × 𝑃)(𝑢𝑅𝑣 ↔ (𝑑𝑢) = (𝑑𝑣)) ∧ (𝑤𝑃𝑥𝑃)) ∧ (𝑦𝑃𝑧𝑃)) → 𝑦𝑃)
11 simprr 772 . . . . . . 7 (((∀𝑢 ∈ (𝑃 × 𝑃)∀𝑣 ∈ (𝑃 × 𝑃)(𝑢𝑅𝑣 ↔ (𝑑𝑢) = (𝑑𝑣)) ∧ (𝑤𝑃𝑥𝑃)) ∧ (𝑦𝑃𝑧𝑃)) → 𝑧𝑃)
1210, 11opelxpd 5557 . . . . . 6 (((∀𝑢 ∈ (𝑃 × 𝑃)∀𝑣 ∈ (𝑃 × 𝑃)(𝑢𝑅𝑣 ↔ (𝑑𝑢) = (𝑑𝑣)) ∧ (𝑤𝑃𝑥𝑃)) ∧ (𝑦𝑃𝑧𝑃)) → ⟨𝑦, 𝑧⟩ ∈ (𝑃 × 𝑃))
13 simpll 766 . . . . . 6 (((∀𝑢 ∈ (𝑃 × 𝑃)∀𝑣 ∈ (𝑃 × 𝑃)(𝑢𝑅𝑣 ↔ (𝑑𝑢) = (𝑑𝑣)) ∧ (𝑤𝑃𝑥𝑃)) ∧ (𝑦𝑃𝑧𝑃)) → ∀𝑢 ∈ (𝑃 × 𝑃)∀𝑣 ∈ (𝑃 × 𝑃)(𝑢𝑅𝑣 ↔ (𝑑𝑢) = (𝑑𝑣)))
14 breq1 5033 . . . . . . . 8 (𝑢 = ⟨𝑤, 𝑥⟩ → (𝑢𝑅𝑣 ↔ ⟨𝑤, 𝑥𝑅𝑣))
15 fveq2 6645 . . . . . . . . . 10 (𝑢 = ⟨𝑤, 𝑥⟩ → (𝑑𝑢) = (𝑑‘⟨𝑤, 𝑥⟩))
16 df-ov 7138 . . . . . . . . . 10 (𝑤𝑑𝑥) = (𝑑‘⟨𝑤, 𝑥⟩)
1715, 16eqtr4di 2851 . . . . . . . . 9 (𝑢 = ⟨𝑤, 𝑥⟩ → (𝑑𝑢) = (𝑤𝑑𝑥))
1817eqeq1d 2800 . . . . . . . 8 (𝑢 = ⟨𝑤, 𝑥⟩ → ((𝑑𝑢) = (𝑑𝑣) ↔ (𝑤𝑑𝑥) = (𝑑𝑣)))
1914, 18bibi12d 349 . . . . . . 7 (𝑢 = ⟨𝑤, 𝑥⟩ → ((𝑢𝑅𝑣 ↔ (𝑑𝑢) = (𝑑𝑣)) ↔ (⟨𝑤, 𝑥𝑅𝑣 ↔ (𝑤𝑑𝑥) = (𝑑𝑣))))
20 breq2 5034 . . . . . . . 8 (𝑣 = ⟨𝑦, 𝑧⟩ → (⟨𝑤, 𝑥𝑅𝑣 ↔ ⟨𝑤, 𝑥𝑅𝑦, 𝑧⟩))
21 fveq2 6645 . . . . . . . . . 10 (𝑣 = ⟨𝑦, 𝑧⟩ → (𝑑𝑣) = (𝑑‘⟨𝑦, 𝑧⟩))
22 df-ov 7138 . . . . . . . . . 10 (𝑦𝑑𝑧) = (𝑑‘⟨𝑦, 𝑧⟩)
2321, 22eqtr4di 2851 . . . . . . . . 9 (𝑣 = ⟨𝑦, 𝑧⟩ → (𝑑𝑣) = (𝑦𝑑𝑧))
2423eqeq2d 2809 . . . . . . . 8 (𝑣 = ⟨𝑦, 𝑧⟩ → ((𝑤𝑑𝑥) = (𝑑𝑣) ↔ (𝑤𝑑𝑥) = (𝑦𝑑𝑧)))
2520, 24bibi12d 349 . . . . . . 7 (𝑣 = ⟨𝑦, 𝑧⟩ → ((⟨𝑤, 𝑥𝑅𝑣 ↔ (𝑤𝑑𝑥) = (𝑑𝑣)) ↔ (⟨𝑤, 𝑥𝑅𝑦, 𝑧⟩ ↔ (𝑤𝑑𝑥) = (𝑦𝑑𝑧))))
2619, 25rspc2va 3582 . . . . . 6 (((⟨𝑤, 𝑥⟩ ∈ (𝑃 × 𝑃) ∧ ⟨𝑦, 𝑧⟩ ∈ (𝑃 × 𝑃)) ∧ ∀𝑢 ∈ (𝑃 × 𝑃)∀𝑣 ∈ (𝑃 × 𝑃)(𝑢𝑅𝑣 ↔ (𝑑𝑢) = (𝑑𝑣))) → (⟨𝑤, 𝑥𝑅𝑦, 𝑧⟩ ↔ (𝑤𝑑𝑥) = (𝑦𝑑𝑧)))
279, 12, 13, 26syl21anc 836 . . . . 5 (((∀𝑢 ∈ (𝑃 × 𝑃)∀𝑣 ∈ (𝑃 × 𝑃)(𝑢𝑅𝑣 ↔ (𝑑𝑢) = (𝑑𝑣)) ∧ (𝑤𝑃𝑥𝑃)) ∧ (𝑦𝑃𝑧𝑃)) → (⟨𝑤, 𝑥𝑅𝑦, 𝑧⟩ ↔ (𝑤𝑑𝑥) = (𝑦𝑑𝑧)))
2827ralrimivva 3156 . . . 4 ((∀𝑢 ∈ (𝑃 × 𝑃)∀𝑣 ∈ (𝑃 × 𝑃)(𝑢𝑅𝑣 ↔ (𝑑𝑢) = (𝑑𝑣)) ∧ (𝑤𝑃𝑥𝑃)) → ∀𝑦𝑃𝑧𝑃 (⟨𝑤, 𝑥𝑅𝑦, 𝑧⟩ ↔ (𝑤𝑑𝑥) = (𝑦𝑑𝑧)))
2928ralrimivva 3156 . . 3 (∀𝑢 ∈ (𝑃 × 𝑃)∀𝑣 ∈ (𝑃 × 𝑃)(𝑢𝑅𝑣 ↔ (𝑑𝑢) = (𝑑𝑣)) → ∀𝑤𝑃𝑥𝑃𝑦𝑃𝑧𝑃 (⟨𝑤, 𝑥𝑅𝑦, 𝑧⟩ ↔ (𝑤𝑑𝑥) = (𝑦𝑑𝑧)))
3029anim2i 619 . 2 ((𝑑 Fn (𝑃 × 𝑃) ∧ ∀𝑢 ∈ (𝑃 × 𝑃)∀𝑣 ∈ (𝑃 × 𝑃)(𝑢𝑅𝑣 ↔ (𝑑𝑢) = (𝑑𝑣))) → (𝑑 Fn (𝑃 × 𝑃) ∧ ∀𝑤𝑃𝑥𝑃𝑦𝑃𝑧𝑃 (⟨𝑤, 𝑥𝑅𝑦, 𝑧⟩ ↔ (𝑤𝑑𝑥) = (𝑦𝑑𝑧))))
316, 30eximii 1838 1 𝑑(𝑑 Fn (𝑃 × 𝑃) ∧ ∀𝑤𝑃𝑥𝑃𝑦𝑃𝑧𝑃 (⟨𝑤, 𝑥𝑅𝑦, 𝑧⟩ ↔ (𝑤𝑑𝑥) = (𝑦𝑑𝑧)))
Colors of variables: wff setvar class
Syntax hints:  wb 209  wa 399   = wceq 1538  wex 1781  wcel 2111  wral 3106  Vcvv 3441  cop 4531   class class class wbr 5030   × cxp 5517   Fn wfn 6319  cfv 6324  (class class class)co 7135   Er wer 8269  Basecbs 16475
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-ov 7138  df-er 8272  df-ec 8274  df-qs 8278
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator