![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tgcgrcomr | Structured version Visualization version GIF version |
Description: Congruence commutes on the RHS. Variant of Theorem 2.5 of [Schwabhauser] p. 27, but in a convenient form for a common case. (Contributed by David A. Wheeler, 29-Jun-2020.) |
Ref | Expression |
---|---|
tkgeom.p | ⊢ 𝑃 = (Base‘𝐺) |
tkgeom.d | ⊢ − = (dist‘𝐺) |
tkgeom.i | ⊢ 𝐼 = (Itv‘𝐺) |
tkgeom.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
tgcgrcomr.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
tgcgrcomr.b | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
tgcgrcomr.c | ⊢ (𝜑 → 𝐶 ∈ 𝑃) |
tgcgrcomr.d | ⊢ (𝜑 → 𝐷 ∈ 𝑃) |
tgcgrcomr.6 | ⊢ (𝜑 → (𝐴 − 𝐵) = (𝐶 − 𝐷)) |
Ref | Expression |
---|---|
tgcgrcomr | ⊢ (𝜑 → (𝐴 − 𝐵) = (𝐷 − 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tgcgrcomr.6 | . 2 ⊢ (𝜑 → (𝐴 − 𝐵) = (𝐶 − 𝐷)) | |
2 | tkgeom.p | . . 3 ⊢ 𝑃 = (Base‘𝐺) | |
3 | tkgeom.d | . . 3 ⊢ − = (dist‘𝐺) | |
4 | tkgeom.i | . . 3 ⊢ 𝐼 = (Itv‘𝐺) | |
5 | tkgeom.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
6 | tgcgrcomr.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ 𝑃) | |
7 | tgcgrcomr.d | . . 3 ⊢ (𝜑 → 𝐷 ∈ 𝑃) | |
8 | 2, 3, 4, 5, 6, 7 | axtgcgrrflx 28484 | . 2 ⊢ (𝜑 → (𝐶 − 𝐷) = (𝐷 − 𝐶)) |
9 | 1, 8 | eqtrd 2774 | 1 ⊢ (𝜑 → (𝐴 − 𝐵) = (𝐷 − 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1536 ∈ wcel 2105 ‘cfv 6562 (class class class)co 7430 Basecbs 17244 distcds 17306 TarskiGcstrkg 28449 Itvcitv 28455 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-ext 2705 ax-nul 5311 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-ne 2938 df-ral 3059 df-rab 3433 df-v 3479 df-sbc 3791 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-nul 4339 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-br 5148 df-iota 6515 df-fv 6570 df-ov 7433 df-trkgc 28470 df-trkg 28475 |
This theorem is referenced by: tgbtwnconn1lem1 28594 dfcgra2 28852 |
Copyright terms: Public domain | W3C validator |