MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgcgrcomr Structured version   Visualization version   GIF version

Theorem tgcgrcomr 26275
Description: Congruence commutes on the RHS. Variant of Theorem 2.5 of [Schwabhauser] p. 27, but in a convenient form for a common case. (Contributed by David A. Wheeler, 29-Jun-2020.)
Hypotheses
Ref Expression
tkgeom.p 𝑃 = (Base‘𝐺)
tkgeom.d = (dist‘𝐺)
tkgeom.i 𝐼 = (Itv‘𝐺)
tkgeom.g (𝜑𝐺 ∈ TarskiG)
tgcgrcomr.a (𝜑𝐴𝑃)
tgcgrcomr.b (𝜑𝐵𝑃)
tgcgrcomr.c (𝜑𝐶𝑃)
tgcgrcomr.d (𝜑𝐷𝑃)
tgcgrcomr.6 (𝜑 → (𝐴 𝐵) = (𝐶 𝐷))
Assertion
Ref Expression
tgcgrcomr (𝜑 → (𝐴 𝐵) = (𝐷 𝐶))

Proof of Theorem tgcgrcomr
StepHypRef Expression
1 tgcgrcomr.6 . 2 (𝜑 → (𝐴 𝐵) = (𝐶 𝐷))
2 tkgeom.p . . 3 𝑃 = (Base‘𝐺)
3 tkgeom.d . . 3 = (dist‘𝐺)
4 tkgeom.i . . 3 𝐼 = (Itv‘𝐺)
5 tkgeom.g . . 3 (𝜑𝐺 ∈ TarskiG)
6 tgcgrcomr.c . . 3 (𝜑𝐶𝑃)
7 tgcgrcomr.d . . 3 (𝜑𝐷𝑃)
82, 3, 4, 5, 6, 7axtgcgrrflx 26259 . 2 (𝜑 → (𝐶 𝐷) = (𝐷 𝐶))
91, 8eqtrd 2859 1 (𝜑 → (𝐴 𝐵) = (𝐷 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1538  wcel 2115  cfv 6343  (class class class)co 7149  Basecbs 16483  distcds 16574  TarskiGcstrkg 26227  Itvcitv 26233
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-nul 5196
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ral 3138  df-rex 3139  df-v 3482  df-sbc 3759  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-nul 4277  df-sn 4551  df-pr 4553  df-op 4557  df-uni 4825  df-br 5053  df-iota 6302  df-fv 6351  df-ov 7152  df-trkgc 26245  df-trkg 26250
This theorem is referenced by:  tgbtwnconn1lem1  26369  dfcgra2  26627
  Copyright terms: Public domain W3C validator