![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tgcgrcomr | Structured version Visualization version GIF version |
Description: Congruence commutes on the RHS. Variant of Theorem 2.5 of [Schwabhauser] p. 27, but in a convenient form for a common case. (Contributed by David A. Wheeler, 29-Jun-2020.) |
Ref | Expression |
---|---|
tkgeom.p | β’ π = (BaseβπΊ) |
tkgeom.d | β’ β = (distβπΊ) |
tkgeom.i | β’ πΌ = (ItvβπΊ) |
tkgeom.g | β’ (π β πΊ β TarskiG) |
tgcgrcomr.a | β’ (π β π΄ β π) |
tgcgrcomr.b | β’ (π β π΅ β π) |
tgcgrcomr.c | β’ (π β πΆ β π) |
tgcgrcomr.d | β’ (π β π· β π) |
tgcgrcomr.6 | β’ (π β (π΄ β π΅) = (πΆ β π·)) |
Ref | Expression |
---|---|
tgcgrcomr | β’ (π β (π΄ β π΅) = (π· β πΆ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tgcgrcomr.6 | . 2 β’ (π β (π΄ β π΅) = (πΆ β π·)) | |
2 | tkgeom.p | . . 3 β’ π = (BaseβπΊ) | |
3 | tkgeom.d | . . 3 β’ β = (distβπΊ) | |
4 | tkgeom.i | . . 3 β’ πΌ = (ItvβπΊ) | |
5 | tkgeom.g | . . 3 β’ (π β πΊ β TarskiG) | |
6 | tgcgrcomr.c | . . 3 β’ (π β πΆ β π) | |
7 | tgcgrcomr.d | . . 3 β’ (π β π· β π) | |
8 | 2, 3, 4, 5, 6, 7 | axtgcgrrflx 27977 | . 2 β’ (π β (πΆ β π·) = (π· β πΆ)) |
9 | 1, 8 | eqtrd 2771 | 1 β’ (π β (π΄ β π΅) = (π· β πΆ)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1540 β wcel 2105 βcfv 6544 (class class class)co 7412 Basecbs 17149 distcds 17211 TarskiGcstrkg 27942 Itvcitv 27948 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2702 ax-nul 5307 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2723 df-clel 2809 df-ne 2940 df-ral 3061 df-rab 3432 df-v 3475 df-sbc 3779 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-iota 6496 df-fv 6552 df-ov 7415 df-trkgc 27963 df-trkg 27968 |
This theorem is referenced by: tgbtwnconn1lem1 28087 dfcgra2 28345 |
Copyright terms: Public domain | W3C validator |