MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgcgrcomr Structured version   Visualization version   GIF version

Theorem tgcgrcomr 26937
Description: Congruence commutes on the RHS. Variant of Theorem 2.5 of [Schwabhauser] p. 27, but in a convenient form for a common case. (Contributed by David A. Wheeler, 29-Jun-2020.)
Hypotheses
Ref Expression
tkgeom.p 𝑃 = (Base‘𝐺)
tkgeom.d = (dist‘𝐺)
tkgeom.i 𝐼 = (Itv‘𝐺)
tkgeom.g (𝜑𝐺 ∈ TarskiG)
tgcgrcomr.a (𝜑𝐴𝑃)
tgcgrcomr.b (𝜑𝐵𝑃)
tgcgrcomr.c (𝜑𝐶𝑃)
tgcgrcomr.d (𝜑𝐷𝑃)
tgcgrcomr.6 (𝜑 → (𝐴 𝐵) = (𝐶 𝐷))
Assertion
Ref Expression
tgcgrcomr (𝜑 → (𝐴 𝐵) = (𝐷 𝐶))

Proof of Theorem tgcgrcomr
StepHypRef Expression
1 tgcgrcomr.6 . 2 (𝜑 → (𝐴 𝐵) = (𝐶 𝐷))
2 tkgeom.p . . 3 𝑃 = (Base‘𝐺)
3 tkgeom.d . . 3 = (dist‘𝐺)
4 tkgeom.i . . 3 𝐼 = (Itv‘𝐺)
5 tkgeom.g . . 3 (𝜑𝐺 ∈ TarskiG)
6 tgcgrcomr.c . . 3 (𝜑𝐶𝑃)
7 tgcgrcomr.d . . 3 (𝜑𝐷𝑃)
82, 3, 4, 5, 6, 7axtgcgrrflx 26921 . 2 (𝜑 → (𝐶 𝐷) = (𝐷 𝐶))
91, 8eqtrd 2775 1 (𝜑 → (𝐴 𝐵) = (𝐷 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1538  wcel 2103  cfv 6458  (class class class)co 7308  Basecbs 16971  distcds 17030  TarskiGcstrkg 26886  Itvcitv 26892
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1968  ax-7 2008  ax-8 2105  ax-9 2113  ax-ext 2706  ax-nul 5238
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1541  df-fal 1551  df-ex 1779  df-sb 2065  df-clab 2713  df-cleq 2727  df-clel 2813  df-ne 2940  df-ral 3061  df-rab 3357  df-v 3438  df-sbc 3721  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-if 4465  df-sn 4565  df-pr 4567  df-op 4571  df-uni 4844  df-br 5081  df-iota 6410  df-fv 6466  df-ov 7311  df-trkgc 26907  df-trkg 26912
This theorem is referenced by:  tgbtwnconn1lem1  27031  dfcgra2  27289
  Copyright terms: Public domain W3C validator