MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgcgrcomr Structured version   Visualization version   GIF version

Theorem tgcgrcomr 27993
Description: Congruence commutes on the RHS. Variant of Theorem 2.5 of [Schwabhauser] p. 27, but in a convenient form for a common case. (Contributed by David A. Wheeler, 29-Jun-2020.)
Hypotheses
Ref Expression
tkgeom.p 𝑃 = (Baseβ€˜πΊ)
tkgeom.d βˆ’ = (distβ€˜πΊ)
tkgeom.i 𝐼 = (Itvβ€˜πΊ)
tkgeom.g (πœ‘ β†’ 𝐺 ∈ TarskiG)
tgcgrcomr.a (πœ‘ β†’ 𝐴 ∈ 𝑃)
tgcgrcomr.b (πœ‘ β†’ 𝐡 ∈ 𝑃)
tgcgrcomr.c (πœ‘ β†’ 𝐢 ∈ 𝑃)
tgcgrcomr.d (πœ‘ β†’ 𝐷 ∈ 𝑃)
tgcgrcomr.6 (πœ‘ β†’ (𝐴 βˆ’ 𝐡) = (𝐢 βˆ’ 𝐷))
Assertion
Ref Expression
tgcgrcomr (πœ‘ β†’ (𝐴 βˆ’ 𝐡) = (𝐷 βˆ’ 𝐢))

Proof of Theorem tgcgrcomr
StepHypRef Expression
1 tgcgrcomr.6 . 2 (πœ‘ β†’ (𝐴 βˆ’ 𝐡) = (𝐢 βˆ’ 𝐷))
2 tkgeom.p . . 3 𝑃 = (Baseβ€˜πΊ)
3 tkgeom.d . . 3 βˆ’ = (distβ€˜πΊ)
4 tkgeom.i . . 3 𝐼 = (Itvβ€˜πΊ)
5 tkgeom.g . . 3 (πœ‘ β†’ 𝐺 ∈ TarskiG)
6 tgcgrcomr.c . . 3 (πœ‘ β†’ 𝐢 ∈ 𝑃)
7 tgcgrcomr.d . . 3 (πœ‘ β†’ 𝐷 ∈ 𝑃)
82, 3, 4, 5, 6, 7axtgcgrrflx 27977 . 2 (πœ‘ β†’ (𝐢 βˆ’ 𝐷) = (𝐷 βˆ’ 𝐢))
91, 8eqtrd 2771 1 (πœ‘ β†’ (𝐴 βˆ’ 𝐡) = (𝐷 βˆ’ 𝐢))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   = wceq 1540   ∈ wcel 2105  β€˜cfv 6544  (class class class)co 7412  Basecbs 17149  distcds 17211  TarskiGcstrkg 27942  Itvcitv 27948
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2702  ax-nul 5307
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-sb 2067  df-clab 2709  df-cleq 2723  df-clel 2809  df-ne 2940  df-ral 3061  df-rab 3432  df-v 3475  df-sbc 3779  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-iota 6496  df-fv 6552  df-ov 7415  df-trkgc 27963  df-trkg 27968
This theorem is referenced by:  tgbtwnconn1lem1  28087  dfcgra2  28345
  Copyright terms: Public domain W3C validator