| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tgcgrcoml | Structured version Visualization version GIF version | ||
| Description: Congruence commutes on the LHS. Variant of Theorem 2.5 of [Schwabhauser] p. 27, but in a convenient form for a common case. (Contributed by David A. Wheeler, 29-Jun-2020.) |
| Ref | Expression |
|---|---|
| tkgeom.p | ⊢ 𝑃 = (Base‘𝐺) |
| tkgeom.d | ⊢ − = (dist‘𝐺) |
| tkgeom.i | ⊢ 𝐼 = (Itv‘𝐺) |
| tkgeom.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
| tgcgrcomr.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
| tgcgrcomr.b | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
| tgcgrcomr.c | ⊢ (𝜑 → 𝐶 ∈ 𝑃) |
| tgcgrcomr.d | ⊢ (𝜑 → 𝐷 ∈ 𝑃) |
| tgcgrcomr.6 | ⊢ (𝜑 → (𝐴 − 𝐵) = (𝐶 − 𝐷)) |
| Ref | Expression |
|---|---|
| tgcgrcoml | ⊢ (𝜑 → (𝐵 − 𝐴) = (𝐶 − 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tkgeom.p | . . 3 ⊢ 𝑃 = (Base‘𝐺) | |
| 2 | tkgeom.d | . . 3 ⊢ − = (dist‘𝐺) | |
| 3 | tkgeom.i | . . 3 ⊢ 𝐼 = (Itv‘𝐺) | |
| 4 | tkgeom.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
| 5 | tgcgrcomr.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
| 6 | tgcgrcomr.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
| 7 | 1, 2, 3, 4, 5, 6 | axtgcgrrflx 28441 | . 2 ⊢ (𝜑 → (𝐴 − 𝐵) = (𝐵 − 𝐴)) |
| 8 | tgcgrcomr.6 | . 2 ⊢ (𝜑 → (𝐴 − 𝐵) = (𝐶 − 𝐷)) | |
| 9 | 7, 8 | eqtr3d 2772 | 1 ⊢ (𝜑 → (𝐵 − 𝐴) = (𝐶 − 𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 ‘cfv 6531 (class class class)co 7405 Basecbs 17228 distcds 17280 TarskiGcstrkg 28406 Itvcitv 28412 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-nul 5276 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ne 2933 df-ral 3052 df-rab 3416 df-v 3461 df-sbc 3766 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-iota 6484 df-fv 6539 df-ov 7408 df-trkgc 28427 df-trkg 28432 |
| This theorem is referenced by: hlcgrex 28595 dfcgra2 28809 |
| Copyright terms: Public domain | W3C validator |