![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tgcgrcoml | Structured version Visualization version GIF version |
Description: Congruence commutes on the LHS. Variant of Theorem 2.5 of [Schwabhauser] p. 27, but in a convenient form for a common case. (Contributed by David A. Wheeler, 29-Jun-2020.) |
Ref | Expression |
---|---|
tkgeom.p | β’ π = (BaseβπΊ) |
tkgeom.d | β’ β = (distβπΊ) |
tkgeom.i | β’ πΌ = (ItvβπΊ) |
tkgeom.g | β’ (π β πΊ β TarskiG) |
tgcgrcomr.a | β’ (π β π΄ β π) |
tgcgrcomr.b | β’ (π β π΅ β π) |
tgcgrcomr.c | β’ (π β πΆ β π) |
tgcgrcomr.d | β’ (π β π· β π) |
tgcgrcomr.6 | β’ (π β (π΄ β π΅) = (πΆ β π·)) |
Ref | Expression |
---|---|
tgcgrcoml | β’ (π β (π΅ β π΄) = (πΆ β π·)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tkgeom.p | . . 3 β’ π = (BaseβπΊ) | |
2 | tkgeom.d | . . 3 β’ β = (distβπΊ) | |
3 | tkgeom.i | . . 3 β’ πΌ = (ItvβπΊ) | |
4 | tkgeom.g | . . 3 β’ (π β πΊ β TarskiG) | |
5 | tgcgrcomr.a | . . 3 β’ (π β π΄ β π) | |
6 | tgcgrcomr.b | . . 3 β’ (π β π΅ β π) | |
7 | 1, 2, 3, 4, 5, 6 | axtgcgrrflx 27980 | . 2 β’ (π β (π΄ β π΅) = (π΅ β π΄)) |
8 | tgcgrcomr.6 | . 2 β’ (π β (π΄ β π΅) = (πΆ β π·)) | |
9 | 7, 8 | eqtr3d 2772 | 1 β’ (π β (π΅ β π΄) = (πΆ β π·)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1539 β wcel 2104 βcfv 6542 (class class class)co 7411 Basecbs 17148 distcds 17210 TarskiGcstrkg 27945 Itvcitv 27951 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2701 ax-nul 5305 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2722 df-clel 2808 df-ne 2939 df-ral 3060 df-rab 3431 df-v 3474 df-sbc 3777 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-iota 6494 df-fv 6550 df-ov 7414 df-trkgc 27966 df-trkg 27971 |
This theorem is referenced by: hlcgrex 28134 dfcgra2 28348 |
Copyright terms: Public domain | W3C validator |