MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgcgrcoml Structured version   Visualization version   GIF version

Theorem tgcgrcoml 28458
Description: Congruence commutes on the LHS. Variant of Theorem 2.5 of [Schwabhauser] p. 27, but in a convenient form for a common case. (Contributed by David A. Wheeler, 29-Jun-2020.)
Hypotheses
Ref Expression
tkgeom.p 𝑃 = (Base‘𝐺)
tkgeom.d = (dist‘𝐺)
tkgeom.i 𝐼 = (Itv‘𝐺)
tkgeom.g (𝜑𝐺 ∈ TarskiG)
tgcgrcomr.a (𝜑𝐴𝑃)
tgcgrcomr.b (𝜑𝐵𝑃)
tgcgrcomr.c (𝜑𝐶𝑃)
tgcgrcomr.d (𝜑𝐷𝑃)
tgcgrcomr.6 (𝜑 → (𝐴 𝐵) = (𝐶 𝐷))
Assertion
Ref Expression
tgcgrcoml (𝜑 → (𝐵 𝐴) = (𝐶 𝐷))

Proof of Theorem tgcgrcoml
StepHypRef Expression
1 tkgeom.p . . 3 𝑃 = (Base‘𝐺)
2 tkgeom.d . . 3 = (dist‘𝐺)
3 tkgeom.i . . 3 𝐼 = (Itv‘𝐺)
4 tkgeom.g . . 3 (𝜑𝐺 ∈ TarskiG)
5 tgcgrcomr.a . . 3 (𝜑𝐴𝑃)
6 tgcgrcomr.b . . 3 (𝜑𝐵𝑃)
71, 2, 3, 4, 5, 6axtgcgrrflx 28441 . 2 (𝜑 → (𝐴 𝐵) = (𝐵 𝐴))
8 tgcgrcomr.6 . 2 (𝜑 → (𝐴 𝐵) = (𝐶 𝐷))
97, 8eqtr3d 2770 1 (𝜑 → (𝐵 𝐴) = (𝐶 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2113  cfv 6486  (class class class)co 7352  Basecbs 17122  distcds 17172  TarskiGcstrkg 28406  Itvcitv 28412
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705  ax-nul 5246
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-ne 2930  df-ral 3049  df-rab 3397  df-v 3439  df-sbc 3738  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-iota 6442  df-fv 6494  df-ov 7355  df-trkgc 28427  df-trkg 28432
This theorem is referenced by:  hlcgrex  28595  dfcgra2  28809
  Copyright terms: Public domain W3C validator