Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > tgcgrcoml | Structured version Visualization version GIF version |
Description: Congruence commutes on the LHS. Variant of Theorem 2.5 of [Schwabhauser] p. 27, but in a convenient form for a common case. (Contributed by David A. Wheeler, 29-Jun-2020.) |
Ref | Expression |
---|---|
tkgeom.p | ⊢ 𝑃 = (Base‘𝐺) |
tkgeom.d | ⊢ − = (dist‘𝐺) |
tkgeom.i | ⊢ 𝐼 = (Itv‘𝐺) |
tkgeom.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
tgcgrcomr.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
tgcgrcomr.b | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
tgcgrcomr.c | ⊢ (𝜑 → 𝐶 ∈ 𝑃) |
tgcgrcomr.d | ⊢ (𝜑 → 𝐷 ∈ 𝑃) |
tgcgrcomr.6 | ⊢ (𝜑 → (𝐴 − 𝐵) = (𝐶 − 𝐷)) |
Ref | Expression |
---|---|
tgcgrcoml | ⊢ (𝜑 → (𝐵 − 𝐴) = (𝐶 − 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tkgeom.p | . . 3 ⊢ 𝑃 = (Base‘𝐺) | |
2 | tkgeom.d | . . 3 ⊢ − = (dist‘𝐺) | |
3 | tkgeom.i | . . 3 ⊢ 𝐼 = (Itv‘𝐺) | |
4 | tkgeom.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
5 | tgcgrcomr.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
6 | tgcgrcomr.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
7 | 1, 2, 3, 4, 5, 6 | axtgcgrrflx 27111 | . 2 ⊢ (𝜑 → (𝐴 − 𝐵) = (𝐵 − 𝐴)) |
8 | tgcgrcomr.6 | . 2 ⊢ (𝜑 → (𝐴 − 𝐵) = (𝐶 − 𝐷)) | |
9 | 7, 8 | eqtr3d 2779 | 1 ⊢ (𝜑 → (𝐵 − 𝐴) = (𝐶 − 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2106 ‘cfv 6483 (class class class)co 7341 Basecbs 17009 distcds 17068 TarskiGcstrkg 27076 Itvcitv 27082 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2708 ax-nul 5254 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2715 df-cleq 2729 df-clel 2815 df-ne 2942 df-ral 3063 df-rab 3405 df-v 3444 df-sbc 3731 df-dif 3904 df-un 3906 df-in 3908 df-ss 3918 df-nul 4274 df-if 4478 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4857 df-br 5097 df-iota 6435 df-fv 6491 df-ov 7344 df-trkgc 27097 df-trkg 27102 |
This theorem is referenced by: hlcgrex 27265 dfcgra2 27479 |
Copyright terms: Public domain | W3C validator |