MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgcgrcoml Structured version   Visualization version   GIF version

Theorem tgcgrcoml 28355
Description: Congruence commutes on the LHS. Variant of Theorem 2.5 of [Schwabhauser] p. 27, but in a convenient form for a common case. (Contributed by David A. Wheeler, 29-Jun-2020.)
Hypotheses
Ref Expression
tkgeom.p 𝑃 = (Base‘𝐺)
tkgeom.d = (dist‘𝐺)
tkgeom.i 𝐼 = (Itv‘𝐺)
tkgeom.g (𝜑𝐺 ∈ TarskiG)
tgcgrcomr.a (𝜑𝐴𝑃)
tgcgrcomr.b (𝜑𝐵𝑃)
tgcgrcomr.c (𝜑𝐶𝑃)
tgcgrcomr.d (𝜑𝐷𝑃)
tgcgrcomr.6 (𝜑 → (𝐴 𝐵) = (𝐶 𝐷))
Assertion
Ref Expression
tgcgrcoml (𝜑 → (𝐵 𝐴) = (𝐶 𝐷))

Proof of Theorem tgcgrcoml
StepHypRef Expression
1 tkgeom.p . . 3 𝑃 = (Base‘𝐺)
2 tkgeom.d . . 3 = (dist‘𝐺)
3 tkgeom.i . . 3 𝐼 = (Itv‘𝐺)
4 tkgeom.g . . 3 (𝜑𝐺 ∈ TarskiG)
5 tgcgrcomr.a . . 3 (𝜑𝐴𝑃)
6 tgcgrcomr.b . . 3 (𝜑𝐵𝑃)
71, 2, 3, 4, 5, 6axtgcgrrflx 28338 . 2 (𝜑 → (𝐴 𝐵) = (𝐵 𝐴))
8 tgcgrcomr.6 . 2 (𝜑 → (𝐴 𝐵) = (𝐶 𝐷))
97, 8eqtr3d 2767 1 (𝜑 → (𝐵 𝐴) = (𝐶 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1533  wcel 2098  cfv 6549  (class class class)co 7419  Basecbs 17183  distcds 17245  TarskiGcstrkg 28303  Itvcitv 28309
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2696  ax-nul 5307
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2703  df-cleq 2717  df-clel 2802  df-ne 2930  df-ral 3051  df-rab 3419  df-v 3463  df-sbc 3774  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4323  df-if 4531  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-br 5150  df-iota 6501  df-fv 6557  df-ov 7422  df-trkgc 28324  df-trkg 28329
This theorem is referenced by:  hlcgrex  28492  dfcgra2  28706
  Copyright terms: Public domain W3C validator