MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hlcgrex Structured version   Visualization version   GIF version

Theorem hlcgrex 28600
Description: Construct a point on a half-line, at a given distance of its origin. (Contributed by Thierry Arnoux, 1-Aug-2020.)
Hypotheses
Ref Expression
ishlg.p 𝑃 = (Base‘𝐺)
ishlg.i 𝐼 = (Itv‘𝐺)
ishlg.k 𝐾 = (hlG‘𝐺)
ishlg.a (𝜑𝐴𝑃)
ishlg.b (𝜑𝐵𝑃)
ishlg.c (𝜑𝐶𝑃)
hlln.1 (𝜑𝐺 ∈ TarskiG)
hltr.d (𝜑𝐷𝑃)
hlcgrex.m = (dist‘𝐺)
hlcgrex.1 (𝜑𝐷𝐴)
hlcgrex.2 (𝜑𝐵𝐶)
Assertion
Ref Expression
hlcgrex (𝜑 → ∃𝑥𝑃 (𝑥(𝐾𝐴)𝐷 ∧ (𝐴 𝑥) = (𝐵 𝐶)))
Distinct variable groups:   𝑥,   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶   𝑥,𝐷   𝑥,𝐾   𝑥,𝐼   𝑥,𝑃   𝜑,𝑥
Allowed substitution hint:   𝐺(𝑥)

Proof of Theorem hlcgrex
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 ishlg.p . . . 4 𝑃 = (Base‘𝐺)
2 hlcgrex.m . . . 4 = (dist‘𝐺)
3 ishlg.i . . . 4 𝐼 = (Itv‘𝐺)
4 hlln.1 . . . . 5 (𝜑𝐺 ∈ TarskiG)
54ad2antrr 726 . . . 4 (((𝜑𝑦𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴𝑦)) → 𝐺 ∈ TarskiG)
6 simplr 768 . . . 4 (((𝜑𝑦𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴𝑦)) → 𝑦𝑃)
7 ishlg.a . . . . 5 (𝜑𝐴𝑃)
87ad2antrr 726 . . . 4 (((𝜑𝑦𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴𝑦)) → 𝐴𝑃)
9 ishlg.b . . . . 5 (𝜑𝐵𝑃)
109ad2antrr 726 . . . 4 (((𝜑𝑦𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴𝑦)) → 𝐵𝑃)
11 ishlg.c . . . . 5 (𝜑𝐶𝑃)
1211ad2antrr 726 . . . 4 (((𝜑𝑦𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴𝑦)) → 𝐶𝑃)
131, 2, 3, 5, 6, 8, 10, 12axtgsegcon 28448 . . 3 (((𝜑𝑦𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴𝑦)) → ∃𝑥𝑃 (𝐴 ∈ (𝑦𝐼𝑥) ∧ (𝐴 𝑥) = (𝐵 𝐶)))
145ad2antrr 726 . . . . . . . 8 (((((𝜑𝑦𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴𝑦)) ∧ 𝑥𝑃) ∧ (𝐴 ∈ (𝑦𝐼𝑥) ∧ (𝐴 𝑥) = (𝐵 𝐶))) → 𝐺 ∈ TarskiG)
1510ad2antrr 726 . . . . . . . 8 (((((𝜑𝑦𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴𝑦)) ∧ 𝑥𝑃) ∧ (𝐴 ∈ (𝑦𝐼𝑥) ∧ (𝐴 𝑥) = (𝐵 𝐶))) → 𝐵𝑃)
1612ad2antrr 726 . . . . . . . 8 (((((𝜑𝑦𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴𝑦)) ∧ 𝑥𝑃) ∧ (𝐴 ∈ (𝑦𝐼𝑥) ∧ (𝐴 𝑥) = (𝐵 𝐶))) → 𝐶𝑃)
17 simplr 768 . . . . . . . 8 (((((𝜑𝑦𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴𝑦)) ∧ 𝑥𝑃) ∧ (𝐴 ∈ (𝑦𝐼𝑥) ∧ (𝐴 𝑥) = (𝐵 𝐶))) → 𝑥𝑃)
188ad2antrr 726 . . . . . . . 8 (((((𝜑𝑦𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴𝑦)) ∧ 𝑥𝑃) ∧ (𝐴 ∈ (𝑦𝐼𝑥) ∧ (𝐴 𝑥) = (𝐵 𝐶))) → 𝐴𝑃)
19 simprr 772 . . . . . . . . . 10 (((((𝜑𝑦𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴𝑦)) ∧ 𝑥𝑃) ∧ (𝐴 ∈ (𝑦𝐼𝑥) ∧ (𝐴 𝑥) = (𝐵 𝐶))) → (𝐴 𝑥) = (𝐵 𝐶))
201, 2, 3, 14, 18, 17, 15, 16, 19tgcgrcoml 28463 . . . . . . . . 9 (((((𝜑𝑦𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴𝑦)) ∧ 𝑥𝑃) ∧ (𝐴 ∈ (𝑦𝐼𝑥) ∧ (𝐴 𝑥) = (𝐵 𝐶))) → (𝑥 𝐴) = (𝐵 𝐶))
2120eqcomd 2742 . . . . . . . 8 (((((𝜑𝑦𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴𝑦)) ∧ 𝑥𝑃) ∧ (𝐴 ∈ (𝑦𝐼𝑥) ∧ (𝐴 𝑥) = (𝐵 𝐶))) → (𝐵 𝐶) = (𝑥 𝐴))
22 hlcgrex.2 . . . . . . . . 9 (𝜑𝐵𝐶)
2322ad4antr 732 . . . . . . . 8 (((((𝜑𝑦𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴𝑦)) ∧ 𝑥𝑃) ∧ (𝐴 ∈ (𝑦𝐼𝑥) ∧ (𝐴 𝑥) = (𝐵 𝐶))) → 𝐵𝐶)
241, 2, 3, 14, 15, 16, 17, 18, 21, 23tgcgrneq 28467 . . . . . . 7 (((((𝜑𝑦𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴𝑦)) ∧ 𝑥𝑃) ∧ (𝐴 ∈ (𝑦𝐼𝑥) ∧ (𝐴 𝑥) = (𝐵 𝐶))) → 𝑥𝐴)
25 hlcgrex.1 . . . . . . . 8 (𝜑𝐷𝐴)
2625ad4antr 732 . . . . . . 7 (((((𝜑𝑦𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴𝑦)) ∧ 𝑥𝑃) ∧ (𝐴 ∈ (𝑦𝐼𝑥) ∧ (𝐴 𝑥) = (𝐵 𝐶))) → 𝐷𝐴)
276ad2antrr 726 . . . . . . . 8 (((((𝜑𝑦𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴𝑦)) ∧ 𝑥𝑃) ∧ (𝐴 ∈ (𝑦𝐼𝑥) ∧ (𝐴 𝑥) = (𝐵 𝐶))) → 𝑦𝑃)
28 hltr.d . . . . . . . . 9 (𝜑𝐷𝑃)
2928ad4antr 732 . . . . . . . 8 (((((𝜑𝑦𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴𝑦)) ∧ 𝑥𝑃) ∧ (𝐴 ∈ (𝑦𝐼𝑥) ∧ (𝐴 𝑥) = (𝐵 𝐶))) → 𝐷𝑃)
30 simpllr 775 . . . . . . . . . 10 (((((𝜑𝑦𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴𝑦)) ∧ 𝑥𝑃) ∧ (𝐴 ∈ (𝑦𝐼𝑥) ∧ (𝐴 𝑥) = (𝐵 𝐶))) → (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴𝑦))
3130simprd 495 . . . . . . . . 9 (((((𝜑𝑦𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴𝑦)) ∧ 𝑥𝑃) ∧ (𝐴 ∈ (𝑦𝐼𝑥) ∧ (𝐴 𝑥) = (𝐵 𝐶))) → 𝐴𝑦)
3231necomd 2988 . . . . . . . 8 (((((𝜑𝑦𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴𝑦)) ∧ 𝑥𝑃) ∧ (𝐴 ∈ (𝑦𝐼𝑥) ∧ (𝐴 𝑥) = (𝐵 𝐶))) → 𝑦𝐴)
33 simprl 770 . . . . . . . 8 (((((𝜑𝑦𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴𝑦)) ∧ 𝑥𝑃) ∧ (𝐴 ∈ (𝑦𝐼𝑥) ∧ (𝐴 𝑥) = (𝐵 𝐶))) → 𝐴 ∈ (𝑦𝐼𝑥))
3430simpld 494 . . . . . . . . 9 (((((𝜑𝑦𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴𝑦)) ∧ 𝑥𝑃) ∧ (𝐴 ∈ (𝑦𝐼𝑥) ∧ (𝐴 𝑥) = (𝐵 𝐶))) → 𝐴 ∈ (𝐷𝐼𝑦))
351, 2, 3, 14, 29, 18, 27, 34tgbtwncom 28472 . . . . . . . 8 (((((𝜑𝑦𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴𝑦)) ∧ 𝑥𝑃) ∧ (𝐴 ∈ (𝑦𝐼𝑥) ∧ (𝐴 𝑥) = (𝐵 𝐶))) → 𝐴 ∈ (𝑦𝐼𝐷))
361, 3, 14, 27, 18, 17, 29, 32, 33, 35tgbtwnconn2 28560 . . . . . . 7 (((((𝜑𝑦𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴𝑦)) ∧ 𝑥𝑃) ∧ (𝐴 ∈ (𝑦𝐼𝑥) ∧ (𝐴 𝑥) = (𝐵 𝐶))) → (𝑥 ∈ (𝐴𝐼𝐷) ∨ 𝐷 ∈ (𝐴𝐼𝑥)))
37 ishlg.k . . . . . . . 8 𝐾 = (hlG‘𝐺)
381, 3, 37, 17, 29, 18, 14ishlg 28586 . . . . . . 7 (((((𝜑𝑦𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴𝑦)) ∧ 𝑥𝑃) ∧ (𝐴 ∈ (𝑦𝐼𝑥) ∧ (𝐴 𝑥) = (𝐵 𝐶))) → (𝑥(𝐾𝐴)𝐷 ↔ (𝑥𝐴𝐷𝐴 ∧ (𝑥 ∈ (𝐴𝐼𝐷) ∨ 𝐷 ∈ (𝐴𝐼𝑥)))))
3924, 26, 36, 38mpbir3and 1343 . . . . . 6 (((((𝜑𝑦𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴𝑦)) ∧ 𝑥𝑃) ∧ (𝐴 ∈ (𝑦𝐼𝑥) ∧ (𝐴 𝑥) = (𝐵 𝐶))) → 𝑥(𝐾𝐴)𝐷)
4039, 19jca 511 . . . . 5 (((((𝜑𝑦𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴𝑦)) ∧ 𝑥𝑃) ∧ (𝐴 ∈ (𝑦𝐼𝑥) ∧ (𝐴 𝑥) = (𝐵 𝐶))) → (𝑥(𝐾𝐴)𝐷 ∧ (𝐴 𝑥) = (𝐵 𝐶)))
4140ex 412 . . . 4 ((((𝜑𝑦𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴𝑦)) ∧ 𝑥𝑃) → ((𝐴 ∈ (𝑦𝐼𝑥) ∧ (𝐴 𝑥) = (𝐵 𝐶)) → (𝑥(𝐾𝐴)𝐷 ∧ (𝐴 𝑥) = (𝐵 𝐶))))
4241reximdva 3154 . . 3 (((𝜑𝑦𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴𝑦)) → (∃𝑥𝑃 (𝐴 ∈ (𝑦𝐼𝑥) ∧ (𝐴 𝑥) = (𝐵 𝐶)) → ∃𝑥𝑃 (𝑥(𝐾𝐴)𝐷 ∧ (𝐴 𝑥) = (𝐵 𝐶))))
4313, 42mpd 15 . 2 (((𝜑𝑦𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴𝑦)) → ∃𝑥𝑃 (𝑥(𝐾𝐴)𝐷 ∧ (𝐴 𝑥) = (𝐵 𝐶)))
441fvexi 6895 . . . . 5 𝑃 ∈ V
4544a1i 11 . . . 4 (𝜑𝑃 ∈ V)
4645, 9, 11, 22nehash2 14497 . . 3 (𝜑 → 2 ≤ (♯‘𝑃))
471, 2, 3, 4, 28, 7, 46tgbtwndiff 28490 . 2 (𝜑 → ∃𝑦𝑃 (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴𝑦))
4843, 47r19.29a 3149 1 (𝜑 → ∃𝑥𝑃 (𝑥(𝐾𝐴)𝐷 ∧ (𝐴 𝑥) = (𝐵 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847   = wceq 1540  wcel 2109  wne 2933  wrex 3061  Vcvv 3464   class class class wbr 5124  cfv 6536  (class class class)co 7410  Basecbs 17233  distcds 17285  TarskiGcstrkg 28411  Itvcitv 28417  hlGchlg 28584
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-oadd 8489  df-er 8724  df-pm 8848  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-dju 9920  df-card 9958  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-2 12308  df-3 12309  df-n0 12507  df-xnn0 12580  df-z 12594  df-uz 12858  df-fz 13530  df-fzo 13677  df-hash 14354  df-word 14537  df-concat 14594  df-s1 14619  df-s2 14872  df-s3 14873  df-trkgc 28432  df-trkgb 28433  df-trkgcb 28434  df-trkg 28437  df-cgrg 28495  df-hlg 28585
This theorem is referenced by:  hlcgreu  28602  trgcopy  28788  cgraswap  28804  cgracom  28806  cgratr  28807  acopy  28817  acopyeu  28818  tgasa1  28842
  Copyright terms: Public domain W3C validator