MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hlcgrex Structured version   Visualization version   GIF version

Theorem hlcgrex 27558
Description: Construct a point on a half-line, at a given distance of its origin. (Contributed by Thierry Arnoux, 1-Aug-2020.)
Hypotheses
Ref Expression
ishlg.p 𝑃 = (Base‘𝐺)
ishlg.i 𝐼 = (Itv‘𝐺)
ishlg.k 𝐾 = (hlG‘𝐺)
ishlg.a (𝜑𝐴𝑃)
ishlg.b (𝜑𝐵𝑃)
ishlg.c (𝜑𝐶𝑃)
hlln.1 (𝜑𝐺 ∈ TarskiG)
hltr.d (𝜑𝐷𝑃)
hlcgrex.m = (dist‘𝐺)
hlcgrex.1 (𝜑𝐷𝐴)
hlcgrex.2 (𝜑𝐵𝐶)
Assertion
Ref Expression
hlcgrex (𝜑 → ∃𝑥𝑃 (𝑥(𝐾𝐴)𝐷 ∧ (𝐴 𝑥) = (𝐵 𝐶)))
Distinct variable groups:   𝑥,   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶   𝑥,𝐷   𝑥,𝐾   𝑥,𝐼   𝑥,𝑃   𝜑,𝑥
Allowed substitution hint:   𝐺(𝑥)

Proof of Theorem hlcgrex
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 ishlg.p . . . 4 𝑃 = (Base‘𝐺)
2 hlcgrex.m . . . 4 = (dist‘𝐺)
3 ishlg.i . . . 4 𝐼 = (Itv‘𝐺)
4 hlln.1 . . . . 5 (𝜑𝐺 ∈ TarskiG)
54ad2antrr 724 . . . 4 (((𝜑𝑦𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴𝑦)) → 𝐺 ∈ TarskiG)
6 simplr 767 . . . 4 (((𝜑𝑦𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴𝑦)) → 𝑦𝑃)
7 ishlg.a . . . . 5 (𝜑𝐴𝑃)
87ad2antrr 724 . . . 4 (((𝜑𝑦𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴𝑦)) → 𝐴𝑃)
9 ishlg.b . . . . 5 (𝜑𝐵𝑃)
109ad2antrr 724 . . . 4 (((𝜑𝑦𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴𝑦)) → 𝐵𝑃)
11 ishlg.c . . . . 5 (𝜑𝐶𝑃)
1211ad2antrr 724 . . . 4 (((𝜑𝑦𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴𝑦)) → 𝐶𝑃)
131, 2, 3, 5, 6, 8, 10, 12axtgsegcon 27406 . . 3 (((𝜑𝑦𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴𝑦)) → ∃𝑥𝑃 (𝐴 ∈ (𝑦𝐼𝑥) ∧ (𝐴 𝑥) = (𝐵 𝐶)))
145ad2antrr 724 . . . . . . . 8 (((((𝜑𝑦𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴𝑦)) ∧ 𝑥𝑃) ∧ (𝐴 ∈ (𝑦𝐼𝑥) ∧ (𝐴 𝑥) = (𝐵 𝐶))) → 𝐺 ∈ TarskiG)
1510ad2antrr 724 . . . . . . . 8 (((((𝜑𝑦𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴𝑦)) ∧ 𝑥𝑃) ∧ (𝐴 ∈ (𝑦𝐼𝑥) ∧ (𝐴 𝑥) = (𝐵 𝐶))) → 𝐵𝑃)
1612ad2antrr 724 . . . . . . . 8 (((((𝜑𝑦𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴𝑦)) ∧ 𝑥𝑃) ∧ (𝐴 ∈ (𝑦𝐼𝑥) ∧ (𝐴 𝑥) = (𝐵 𝐶))) → 𝐶𝑃)
17 simplr 767 . . . . . . . 8 (((((𝜑𝑦𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴𝑦)) ∧ 𝑥𝑃) ∧ (𝐴 ∈ (𝑦𝐼𝑥) ∧ (𝐴 𝑥) = (𝐵 𝐶))) → 𝑥𝑃)
188ad2antrr 724 . . . . . . . 8 (((((𝜑𝑦𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴𝑦)) ∧ 𝑥𝑃) ∧ (𝐴 ∈ (𝑦𝐼𝑥) ∧ (𝐴 𝑥) = (𝐵 𝐶))) → 𝐴𝑃)
19 simprr 771 . . . . . . . . . 10 (((((𝜑𝑦𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴𝑦)) ∧ 𝑥𝑃) ∧ (𝐴 ∈ (𝑦𝐼𝑥) ∧ (𝐴 𝑥) = (𝐵 𝐶))) → (𝐴 𝑥) = (𝐵 𝐶))
201, 2, 3, 14, 18, 17, 15, 16, 19tgcgrcoml 27421 . . . . . . . . 9 (((((𝜑𝑦𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴𝑦)) ∧ 𝑥𝑃) ∧ (𝐴 ∈ (𝑦𝐼𝑥) ∧ (𝐴 𝑥) = (𝐵 𝐶))) → (𝑥 𝐴) = (𝐵 𝐶))
2120eqcomd 2742 . . . . . . . 8 (((((𝜑𝑦𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴𝑦)) ∧ 𝑥𝑃) ∧ (𝐴 ∈ (𝑦𝐼𝑥) ∧ (𝐴 𝑥) = (𝐵 𝐶))) → (𝐵 𝐶) = (𝑥 𝐴))
22 hlcgrex.2 . . . . . . . . 9 (𝜑𝐵𝐶)
2322ad4antr 730 . . . . . . . 8 (((((𝜑𝑦𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴𝑦)) ∧ 𝑥𝑃) ∧ (𝐴 ∈ (𝑦𝐼𝑥) ∧ (𝐴 𝑥) = (𝐵 𝐶))) → 𝐵𝐶)
241, 2, 3, 14, 15, 16, 17, 18, 21, 23tgcgrneq 27425 . . . . . . 7 (((((𝜑𝑦𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴𝑦)) ∧ 𝑥𝑃) ∧ (𝐴 ∈ (𝑦𝐼𝑥) ∧ (𝐴 𝑥) = (𝐵 𝐶))) → 𝑥𝐴)
25 hlcgrex.1 . . . . . . . 8 (𝜑𝐷𝐴)
2625ad4antr 730 . . . . . . 7 (((((𝜑𝑦𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴𝑦)) ∧ 𝑥𝑃) ∧ (𝐴 ∈ (𝑦𝐼𝑥) ∧ (𝐴 𝑥) = (𝐵 𝐶))) → 𝐷𝐴)
276ad2antrr 724 . . . . . . . 8 (((((𝜑𝑦𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴𝑦)) ∧ 𝑥𝑃) ∧ (𝐴 ∈ (𝑦𝐼𝑥) ∧ (𝐴 𝑥) = (𝐵 𝐶))) → 𝑦𝑃)
28 hltr.d . . . . . . . . 9 (𝜑𝐷𝑃)
2928ad4antr 730 . . . . . . . 8 (((((𝜑𝑦𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴𝑦)) ∧ 𝑥𝑃) ∧ (𝐴 ∈ (𝑦𝐼𝑥) ∧ (𝐴 𝑥) = (𝐵 𝐶))) → 𝐷𝑃)
30 simpllr 774 . . . . . . . . . 10 (((((𝜑𝑦𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴𝑦)) ∧ 𝑥𝑃) ∧ (𝐴 ∈ (𝑦𝐼𝑥) ∧ (𝐴 𝑥) = (𝐵 𝐶))) → (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴𝑦))
3130simprd 496 . . . . . . . . 9 (((((𝜑𝑦𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴𝑦)) ∧ 𝑥𝑃) ∧ (𝐴 ∈ (𝑦𝐼𝑥) ∧ (𝐴 𝑥) = (𝐵 𝐶))) → 𝐴𝑦)
3231necomd 2999 . . . . . . . 8 (((((𝜑𝑦𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴𝑦)) ∧ 𝑥𝑃) ∧ (𝐴 ∈ (𝑦𝐼𝑥) ∧ (𝐴 𝑥) = (𝐵 𝐶))) → 𝑦𝐴)
33 simprl 769 . . . . . . . 8 (((((𝜑𝑦𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴𝑦)) ∧ 𝑥𝑃) ∧ (𝐴 ∈ (𝑦𝐼𝑥) ∧ (𝐴 𝑥) = (𝐵 𝐶))) → 𝐴 ∈ (𝑦𝐼𝑥))
3430simpld 495 . . . . . . . . 9 (((((𝜑𝑦𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴𝑦)) ∧ 𝑥𝑃) ∧ (𝐴 ∈ (𝑦𝐼𝑥) ∧ (𝐴 𝑥) = (𝐵 𝐶))) → 𝐴 ∈ (𝐷𝐼𝑦))
351, 2, 3, 14, 29, 18, 27, 34tgbtwncom 27430 . . . . . . . 8 (((((𝜑𝑦𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴𝑦)) ∧ 𝑥𝑃) ∧ (𝐴 ∈ (𝑦𝐼𝑥) ∧ (𝐴 𝑥) = (𝐵 𝐶))) → 𝐴 ∈ (𝑦𝐼𝐷))
361, 3, 14, 27, 18, 17, 29, 32, 33, 35tgbtwnconn2 27518 . . . . . . 7 (((((𝜑𝑦𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴𝑦)) ∧ 𝑥𝑃) ∧ (𝐴 ∈ (𝑦𝐼𝑥) ∧ (𝐴 𝑥) = (𝐵 𝐶))) → (𝑥 ∈ (𝐴𝐼𝐷) ∨ 𝐷 ∈ (𝐴𝐼𝑥)))
37 ishlg.k . . . . . . . 8 𝐾 = (hlG‘𝐺)
381, 3, 37, 17, 29, 18, 14ishlg 27544 . . . . . . 7 (((((𝜑𝑦𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴𝑦)) ∧ 𝑥𝑃) ∧ (𝐴 ∈ (𝑦𝐼𝑥) ∧ (𝐴 𝑥) = (𝐵 𝐶))) → (𝑥(𝐾𝐴)𝐷 ↔ (𝑥𝐴𝐷𝐴 ∧ (𝑥 ∈ (𝐴𝐼𝐷) ∨ 𝐷 ∈ (𝐴𝐼𝑥)))))
3924, 26, 36, 38mpbir3and 1342 . . . . . 6 (((((𝜑𝑦𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴𝑦)) ∧ 𝑥𝑃) ∧ (𝐴 ∈ (𝑦𝐼𝑥) ∧ (𝐴 𝑥) = (𝐵 𝐶))) → 𝑥(𝐾𝐴)𝐷)
4039, 19jca 512 . . . . 5 (((((𝜑𝑦𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴𝑦)) ∧ 𝑥𝑃) ∧ (𝐴 ∈ (𝑦𝐼𝑥) ∧ (𝐴 𝑥) = (𝐵 𝐶))) → (𝑥(𝐾𝐴)𝐷 ∧ (𝐴 𝑥) = (𝐵 𝐶)))
4140ex 413 . . . 4 ((((𝜑𝑦𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴𝑦)) ∧ 𝑥𝑃) → ((𝐴 ∈ (𝑦𝐼𝑥) ∧ (𝐴 𝑥) = (𝐵 𝐶)) → (𝑥(𝐾𝐴)𝐷 ∧ (𝐴 𝑥) = (𝐵 𝐶))))
4241reximdva 3165 . . 3 (((𝜑𝑦𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴𝑦)) → (∃𝑥𝑃 (𝐴 ∈ (𝑦𝐼𝑥) ∧ (𝐴 𝑥) = (𝐵 𝐶)) → ∃𝑥𝑃 (𝑥(𝐾𝐴)𝐷 ∧ (𝐴 𝑥) = (𝐵 𝐶))))
4313, 42mpd 15 . 2 (((𝜑𝑦𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴𝑦)) → ∃𝑥𝑃 (𝑥(𝐾𝐴)𝐷 ∧ (𝐴 𝑥) = (𝐵 𝐶)))
441fvexi 6856 . . . . 5 𝑃 ∈ V
4544a1i 11 . . . 4 (𝜑𝑃 ∈ V)
4645, 9, 11, 22nehash2 14373 . . 3 (𝜑 → 2 ≤ (♯‘𝑃))
471, 2, 3, 4, 28, 7, 46tgbtwndiff 27448 . 2 (𝜑 → ∃𝑦𝑃 (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴𝑦))
4843, 47r19.29a 3159 1 (𝜑 → ∃𝑥𝑃 (𝑥(𝐾𝐴)𝐷 ∧ (𝐴 𝑥) = (𝐵 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wo 845   = wceq 1541  wcel 2106  wne 2943  wrex 3073  Vcvv 3445   class class class wbr 5105  cfv 6496  (class class class)co 7357  Basecbs 17083  distcds 17142  TarskiGcstrkg 27369  Itvcitv 27375  hlGchlg 27542
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-oadd 8416  df-er 8648  df-pm 8768  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-dju 9837  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-2 12216  df-3 12217  df-n0 12414  df-xnn0 12486  df-z 12500  df-uz 12764  df-fz 13425  df-fzo 13568  df-hash 14231  df-word 14403  df-concat 14459  df-s1 14484  df-s2 14737  df-s3 14738  df-trkgc 27390  df-trkgb 27391  df-trkgcb 27392  df-trkg 27395  df-cgrg 27453  df-hlg 27543
This theorem is referenced by:  hlcgreu  27560  trgcopy  27746  cgraswap  27762  cgracom  27764  cgratr  27765  acopy  27775  acopyeu  27776  tgasa1  27800
  Copyright terms: Public domain W3C validator