MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgcgrcomlr Structured version   Visualization version   GIF version

Theorem tgcgrcomlr 28502
Description: Congruence commutes on both sides. (Contributed by Thierry Arnoux, 23-Mar-2019.)
Hypotheses
Ref Expression
tkgeom.p 𝑃 = (Base‘𝐺)
tkgeom.d = (dist‘𝐺)
tkgeom.i 𝐼 = (Itv‘𝐺)
tkgeom.g (𝜑𝐺 ∈ TarskiG)
tgcgrcomlr.a (𝜑𝐴𝑃)
tgcgrcomlr.b (𝜑𝐵𝑃)
tgcgrcomlr.c (𝜑𝐶𝑃)
tgcgrcomlr.d (𝜑𝐷𝑃)
tgcgrcomlr.6 (𝜑 → (𝐴 𝐵) = (𝐶 𝐷))
Assertion
Ref Expression
tgcgrcomlr (𝜑 → (𝐵 𝐴) = (𝐷 𝐶))

Proof of Theorem tgcgrcomlr
StepHypRef Expression
1 tgcgrcomlr.6 . 2 (𝜑 → (𝐴 𝐵) = (𝐶 𝐷))
2 tkgeom.p . . 3 𝑃 = (Base‘𝐺)
3 tkgeom.d . . 3 = (dist‘𝐺)
4 tkgeom.i . . 3 𝐼 = (Itv‘𝐺)
5 tkgeom.g . . 3 (𝜑𝐺 ∈ TarskiG)
6 tgcgrcomlr.a . . 3 (𝜑𝐴𝑃)
7 tgcgrcomlr.b . . 3 (𝜑𝐵𝑃)
82, 3, 4, 5, 6, 7axtgcgrrflx 28484 . 2 (𝜑 → (𝐴 𝐵) = (𝐵 𝐴))
9 tgcgrcomlr.c . . 3 (𝜑𝐶𝑃)
10 tgcgrcomlr.d . . 3 (𝜑𝐷𝑃)
112, 3, 4, 5, 9, 10axtgcgrrflx 28484 . 2 (𝜑 → (𝐶 𝐷) = (𝐷 𝐶))
121, 8, 113eqtr3d 2782 1 (𝜑 → (𝐵 𝐴) = (𝐷 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1536  wcel 2105  cfv 6562  (class class class)co 7430  Basecbs 17244  distcds 17306  TarskiGcstrkg 28449  Itvcitv 28455
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-ext 2705  ax-nul 5311
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-sb 2062  df-clab 2712  df-cleq 2726  df-clel 2813  df-ne 2938  df-ral 3059  df-rab 3433  df-v 3479  df-sbc 3791  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-nul 4339  df-if 4531  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-br 5148  df-iota 6515  df-fv 6570  df-ov 7433  df-trkgc 28470  df-trkg 28475
This theorem is referenced by:  tgcgrextend  28507  tgifscgr  28530  tgcgrsub  28531  iscgrglt  28536  trgcgrg  28537  tgcgrxfr  28540  cgr3swap12  28545  cgr3swap23  28546  tgbtwnxfr  28552  lnext  28589  tgbtwnconn1lem1  28594  tgbtwnconn1lem2  28595  tgbtwnconn1lem3  28596  tgbtwnconn1  28597  legov2  28608  legtri3  28612  legbtwn  28616  tgcgrsub2  28617  miriso  28692  mircgrextend  28704  mirtrcgr  28705  miduniq  28707  colmid  28710  symquadlem  28711  krippenlem  28712  midexlem  28714  ragcom  28720  ragflat  28726  ragcgr  28729  footexALT  28740  footexlem1  28741  footexlem2  28742  colperpexlem1  28752  mideulem2  28756  opphllem  28757  opphllem3  28771  lmiisolem  28818  hypcgrlem1  28821  trgcopy  28826  trgcopyeulem  28827  iscgra1  28832  cgracgr  28840  cgraswap  28842  cgrcgra  28843  cgracom  28844  cgratr  28845  flatcgra  28846  dfcgra2  28852  acopy  28855  acopyeu  28856  cgrg3col4  28875  tgsas1  28876  tgsas3  28879  tgasa1  28880
  Copyright terms: Public domain W3C validator