| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tgcgrcomlr | Structured version Visualization version GIF version | ||
| Description: Congruence commutes on both sides. (Contributed by Thierry Arnoux, 23-Mar-2019.) |
| Ref | Expression |
|---|---|
| tkgeom.p | ⊢ 𝑃 = (Base‘𝐺) |
| tkgeom.d | ⊢ − = (dist‘𝐺) |
| tkgeom.i | ⊢ 𝐼 = (Itv‘𝐺) |
| tkgeom.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
| tgcgrcomlr.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
| tgcgrcomlr.b | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
| tgcgrcomlr.c | ⊢ (𝜑 → 𝐶 ∈ 𝑃) |
| tgcgrcomlr.d | ⊢ (𝜑 → 𝐷 ∈ 𝑃) |
| tgcgrcomlr.6 | ⊢ (𝜑 → (𝐴 − 𝐵) = (𝐶 − 𝐷)) |
| Ref | Expression |
|---|---|
| tgcgrcomlr | ⊢ (𝜑 → (𝐵 − 𝐴) = (𝐷 − 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tgcgrcomlr.6 | . 2 ⊢ (𝜑 → (𝐴 − 𝐵) = (𝐶 − 𝐷)) | |
| 2 | tkgeom.p | . . 3 ⊢ 𝑃 = (Base‘𝐺) | |
| 3 | tkgeom.d | . . 3 ⊢ − = (dist‘𝐺) | |
| 4 | tkgeom.i | . . 3 ⊢ 𝐼 = (Itv‘𝐺) | |
| 5 | tkgeom.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
| 6 | tgcgrcomlr.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
| 7 | tgcgrcomlr.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
| 8 | 2, 3, 4, 5, 6, 7 | axtgcgrrflx 28450 | . 2 ⊢ (𝜑 → (𝐴 − 𝐵) = (𝐵 − 𝐴)) |
| 9 | tgcgrcomlr.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ 𝑃) | |
| 10 | tgcgrcomlr.d | . . 3 ⊢ (𝜑 → 𝐷 ∈ 𝑃) | |
| 11 | 2, 3, 4, 5, 9, 10 | axtgcgrrflx 28450 | . 2 ⊢ (𝜑 → (𝐶 − 𝐷) = (𝐷 − 𝐶)) |
| 12 | 1, 8, 11 | 3eqtr3d 2776 | 1 ⊢ (𝜑 → (𝐵 − 𝐴) = (𝐷 − 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2113 ‘cfv 6489 (class class class)co 7355 Basecbs 17130 distcds 17180 TarskiGcstrkg 28415 Itvcitv 28421 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-nul 5248 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ne 2931 df-ral 3050 df-rab 3398 df-v 3440 df-sbc 3739 df-dif 3902 df-un 3904 df-in 3906 df-ss 3916 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-iota 6445 df-fv 6497 df-ov 7358 df-trkgc 28436 df-trkg 28441 |
| This theorem is referenced by: tgcgrextend 28473 tgifscgr 28496 tgcgrsub 28497 iscgrglt 28502 trgcgrg 28503 tgcgrxfr 28506 cgr3swap12 28511 cgr3swap23 28512 tgbtwnxfr 28518 lnext 28555 tgbtwnconn1lem1 28560 tgbtwnconn1lem2 28561 tgbtwnconn1lem3 28562 tgbtwnconn1 28563 legov2 28574 legtri3 28578 legbtwn 28582 tgcgrsub2 28583 miriso 28658 mircgrextend 28670 mirtrcgr 28671 miduniq 28673 colmid 28676 symquadlem 28677 krippenlem 28678 midexlem 28680 ragcom 28686 ragflat 28692 ragcgr 28695 footexALT 28706 footexlem1 28707 footexlem2 28708 colperpexlem1 28718 mideulem2 28722 opphllem 28723 opphllem3 28737 lmiisolem 28784 hypcgrlem1 28787 trgcopy 28792 trgcopyeulem 28793 iscgra1 28798 cgracgr 28806 cgraswap 28808 cgrcgra 28809 cgracom 28810 cgratr 28811 flatcgra 28812 dfcgra2 28818 acopy 28821 acopyeu 28822 cgrg3col4 28841 tgsas1 28842 tgsas3 28845 tgasa1 28846 |
| Copyright terms: Public domain | W3C validator |