MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgcgrcomlr Structured version   Visualization version   GIF version

Theorem tgcgrcomlr 28361
Description: Congruence commutes on both sides. (Contributed by Thierry Arnoux, 23-Mar-2019.)
Hypotheses
Ref Expression
tkgeom.p 𝑃 = (Base‘𝐺)
tkgeom.d = (dist‘𝐺)
tkgeom.i 𝐼 = (Itv‘𝐺)
tkgeom.g (𝜑𝐺 ∈ TarskiG)
tgcgrcomlr.a (𝜑𝐴𝑃)
tgcgrcomlr.b (𝜑𝐵𝑃)
tgcgrcomlr.c (𝜑𝐶𝑃)
tgcgrcomlr.d (𝜑𝐷𝑃)
tgcgrcomlr.6 (𝜑 → (𝐴 𝐵) = (𝐶 𝐷))
Assertion
Ref Expression
tgcgrcomlr (𝜑 → (𝐵 𝐴) = (𝐷 𝐶))

Proof of Theorem tgcgrcomlr
StepHypRef Expression
1 tgcgrcomlr.6 . 2 (𝜑 → (𝐴 𝐵) = (𝐶 𝐷))
2 tkgeom.p . . 3 𝑃 = (Base‘𝐺)
3 tkgeom.d . . 3 = (dist‘𝐺)
4 tkgeom.i . . 3 𝐼 = (Itv‘𝐺)
5 tkgeom.g . . 3 (𝜑𝐺 ∈ TarskiG)
6 tgcgrcomlr.a . . 3 (𝜑𝐴𝑃)
7 tgcgrcomlr.b . . 3 (𝜑𝐵𝑃)
82, 3, 4, 5, 6, 7axtgcgrrflx 28343 . 2 (𝜑 → (𝐴 𝐵) = (𝐵 𝐴))
9 tgcgrcomlr.c . . 3 (𝜑𝐶𝑃)
10 tgcgrcomlr.d . . 3 (𝜑𝐷𝑃)
112, 3, 4, 5, 9, 10axtgcgrrflx 28343 . 2 (𝜑 → (𝐶 𝐷) = (𝐷 𝐶))
121, 8, 113eqtr3d 2773 1 (𝜑 → (𝐵 𝐴) = (𝐷 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1533  wcel 2098  cfv 6549  (class class class)co 7419  Basecbs 17188  distcds 17250  TarskiGcstrkg 28308  Itvcitv 28314
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2696  ax-nul 5307
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2703  df-cleq 2717  df-clel 2802  df-ne 2930  df-ral 3051  df-rab 3419  df-v 3463  df-sbc 3774  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4323  df-if 4531  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-br 5150  df-iota 6501  df-fv 6557  df-ov 7422  df-trkgc 28329  df-trkg 28334
This theorem is referenced by:  tgcgrextend  28366  tgifscgr  28389  tgcgrsub  28390  iscgrglt  28395  trgcgrg  28396  tgcgrxfr  28399  cgr3swap12  28404  cgr3swap23  28405  tgbtwnxfr  28411  lnext  28448  tgbtwnconn1lem1  28453  tgbtwnconn1lem2  28454  tgbtwnconn1lem3  28455  tgbtwnconn1  28456  legov2  28467  legtri3  28471  legbtwn  28475  tgcgrsub2  28476  miriso  28551  mircgrextend  28563  mirtrcgr  28564  miduniq  28566  colmid  28569  symquadlem  28570  krippenlem  28571  midexlem  28573  ragcom  28579  ragflat  28585  ragcgr  28588  footexALT  28599  footexlem1  28600  footexlem2  28601  colperpexlem1  28611  mideulem2  28615  opphllem  28616  opphllem3  28630  lmiisolem  28677  hypcgrlem1  28680  trgcopy  28685  trgcopyeulem  28686  iscgra1  28691  cgracgr  28699  cgraswap  28701  cgrcgra  28702  cgracom  28703  cgratr  28704  flatcgra  28705  dfcgra2  28711  acopy  28714  acopyeu  28715  cgrg3col4  28734  tgsas1  28735  tgsas3  28738  tgasa1  28739
  Copyright terms: Public domain W3C validator