MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgcgrcomlr Structured version   Visualization version   GIF version

Theorem tgcgrcomlr 28451
Description: Congruence commutes on both sides. (Contributed by Thierry Arnoux, 23-Mar-2019.)
Hypotheses
Ref Expression
tkgeom.p 𝑃 = (Base‘𝐺)
tkgeom.d = (dist‘𝐺)
tkgeom.i 𝐼 = (Itv‘𝐺)
tkgeom.g (𝜑𝐺 ∈ TarskiG)
tgcgrcomlr.a (𝜑𝐴𝑃)
tgcgrcomlr.b (𝜑𝐵𝑃)
tgcgrcomlr.c (𝜑𝐶𝑃)
tgcgrcomlr.d (𝜑𝐷𝑃)
tgcgrcomlr.6 (𝜑 → (𝐴 𝐵) = (𝐶 𝐷))
Assertion
Ref Expression
tgcgrcomlr (𝜑 → (𝐵 𝐴) = (𝐷 𝐶))

Proof of Theorem tgcgrcomlr
StepHypRef Expression
1 tgcgrcomlr.6 . 2 (𝜑 → (𝐴 𝐵) = (𝐶 𝐷))
2 tkgeom.p . . 3 𝑃 = (Base‘𝐺)
3 tkgeom.d . . 3 = (dist‘𝐺)
4 tkgeom.i . . 3 𝐼 = (Itv‘𝐺)
5 tkgeom.g . . 3 (𝜑𝐺 ∈ TarskiG)
6 tgcgrcomlr.a . . 3 (𝜑𝐴𝑃)
7 tgcgrcomlr.b . . 3 (𝜑𝐵𝑃)
82, 3, 4, 5, 6, 7axtgcgrrflx 28433 . 2 (𝜑 → (𝐴 𝐵) = (𝐵 𝐴))
9 tgcgrcomlr.c . . 3 (𝜑𝐶𝑃)
10 tgcgrcomlr.d . . 3 (𝜑𝐷𝑃)
112, 3, 4, 5, 9, 10axtgcgrrflx 28433 . 2 (𝜑 → (𝐶 𝐷) = (𝐷 𝐶))
121, 8, 113eqtr3d 2773 1 (𝜑 → (𝐵 𝐴) = (𝐷 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2110  cfv 6477  (class class class)co 7341  Basecbs 17112  distcds 17162  TarskiGcstrkg 28398  Itvcitv 28404
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-ext 2702  ax-nul 5242
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2067  df-clab 2709  df-cleq 2722  df-clel 2804  df-ne 2927  df-ral 3046  df-rab 3394  df-v 3436  df-sbc 3740  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-nul 4282  df-if 4474  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-br 5090  df-iota 6433  df-fv 6485  df-ov 7344  df-trkgc 28419  df-trkg 28424
This theorem is referenced by:  tgcgrextend  28456  tgifscgr  28479  tgcgrsub  28480  iscgrglt  28485  trgcgrg  28486  tgcgrxfr  28489  cgr3swap12  28494  cgr3swap23  28495  tgbtwnxfr  28501  lnext  28538  tgbtwnconn1lem1  28543  tgbtwnconn1lem2  28544  tgbtwnconn1lem3  28545  tgbtwnconn1  28546  legov2  28557  legtri3  28561  legbtwn  28565  tgcgrsub2  28566  miriso  28641  mircgrextend  28653  mirtrcgr  28654  miduniq  28656  colmid  28659  symquadlem  28660  krippenlem  28661  midexlem  28663  ragcom  28669  ragflat  28675  ragcgr  28678  footexALT  28689  footexlem1  28690  footexlem2  28691  colperpexlem1  28701  mideulem2  28705  opphllem  28706  opphllem3  28720  lmiisolem  28767  hypcgrlem1  28770  trgcopy  28775  trgcopyeulem  28776  iscgra1  28781  cgracgr  28789  cgraswap  28791  cgrcgra  28792  cgracom  28793  cgratr  28794  flatcgra  28795  dfcgra2  28801  acopy  28804  acopyeu  28805  cgrg3col4  28824  tgsas1  28825  tgsas3  28828  tgasa1  28829
  Copyright terms: Public domain W3C validator