| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tgcgrcomlr | Structured version Visualization version GIF version | ||
| Description: Congruence commutes on both sides. (Contributed by Thierry Arnoux, 23-Mar-2019.) |
| Ref | Expression |
|---|---|
| tkgeom.p | ⊢ 𝑃 = (Base‘𝐺) |
| tkgeom.d | ⊢ − = (dist‘𝐺) |
| tkgeom.i | ⊢ 𝐼 = (Itv‘𝐺) |
| tkgeom.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
| tgcgrcomlr.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
| tgcgrcomlr.b | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
| tgcgrcomlr.c | ⊢ (𝜑 → 𝐶 ∈ 𝑃) |
| tgcgrcomlr.d | ⊢ (𝜑 → 𝐷 ∈ 𝑃) |
| tgcgrcomlr.6 | ⊢ (𝜑 → (𝐴 − 𝐵) = (𝐶 − 𝐷)) |
| Ref | Expression |
|---|---|
| tgcgrcomlr | ⊢ (𝜑 → (𝐵 − 𝐴) = (𝐷 − 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tgcgrcomlr.6 | . 2 ⊢ (𝜑 → (𝐴 − 𝐵) = (𝐶 − 𝐷)) | |
| 2 | tkgeom.p | . . 3 ⊢ 𝑃 = (Base‘𝐺) | |
| 3 | tkgeom.d | . . 3 ⊢ − = (dist‘𝐺) | |
| 4 | tkgeom.i | . . 3 ⊢ 𝐼 = (Itv‘𝐺) | |
| 5 | tkgeom.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
| 6 | tgcgrcomlr.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
| 7 | tgcgrcomlr.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
| 8 | 2, 3, 4, 5, 6, 7 | axtgcgrrflx 28396 | . 2 ⊢ (𝜑 → (𝐴 − 𝐵) = (𝐵 − 𝐴)) |
| 9 | tgcgrcomlr.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ 𝑃) | |
| 10 | tgcgrcomlr.d | . . 3 ⊢ (𝜑 → 𝐷 ∈ 𝑃) | |
| 11 | 2, 3, 4, 5, 9, 10 | axtgcgrrflx 28396 | . 2 ⊢ (𝜑 → (𝐶 − 𝐷) = (𝐷 − 𝐶)) |
| 12 | 1, 8, 11 | 3eqtr3d 2773 | 1 ⊢ (𝜑 → (𝐵 − 𝐴) = (𝐷 − 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ‘cfv 6514 (class class class)co 7390 Basecbs 17186 distcds 17236 TarskiGcstrkg 28361 Itvcitv 28367 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-nul 5264 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-ral 3046 df-rab 3409 df-v 3452 df-sbc 3757 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-iota 6467 df-fv 6522 df-ov 7393 df-trkgc 28382 df-trkg 28387 |
| This theorem is referenced by: tgcgrextend 28419 tgifscgr 28442 tgcgrsub 28443 iscgrglt 28448 trgcgrg 28449 tgcgrxfr 28452 cgr3swap12 28457 cgr3swap23 28458 tgbtwnxfr 28464 lnext 28501 tgbtwnconn1lem1 28506 tgbtwnconn1lem2 28507 tgbtwnconn1lem3 28508 tgbtwnconn1 28509 legov2 28520 legtri3 28524 legbtwn 28528 tgcgrsub2 28529 miriso 28604 mircgrextend 28616 mirtrcgr 28617 miduniq 28619 colmid 28622 symquadlem 28623 krippenlem 28624 midexlem 28626 ragcom 28632 ragflat 28638 ragcgr 28641 footexALT 28652 footexlem1 28653 footexlem2 28654 colperpexlem1 28664 mideulem2 28668 opphllem 28669 opphllem3 28683 lmiisolem 28730 hypcgrlem1 28733 trgcopy 28738 trgcopyeulem 28739 iscgra1 28744 cgracgr 28752 cgraswap 28754 cgrcgra 28755 cgracom 28756 cgratr 28757 flatcgra 28758 dfcgra2 28764 acopy 28767 acopyeu 28768 cgrg3col4 28787 tgsas1 28788 tgsas3 28791 tgasa1 28792 |
| Copyright terms: Public domain | W3C validator |