| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tgcgrcomlr | Structured version Visualization version GIF version | ||
| Description: Congruence commutes on both sides. (Contributed by Thierry Arnoux, 23-Mar-2019.) |
| Ref | Expression |
|---|---|
| tkgeom.p | ⊢ 𝑃 = (Base‘𝐺) |
| tkgeom.d | ⊢ − = (dist‘𝐺) |
| tkgeom.i | ⊢ 𝐼 = (Itv‘𝐺) |
| tkgeom.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
| tgcgrcomlr.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
| tgcgrcomlr.b | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
| tgcgrcomlr.c | ⊢ (𝜑 → 𝐶 ∈ 𝑃) |
| tgcgrcomlr.d | ⊢ (𝜑 → 𝐷 ∈ 𝑃) |
| tgcgrcomlr.6 | ⊢ (𝜑 → (𝐴 − 𝐵) = (𝐶 − 𝐷)) |
| Ref | Expression |
|---|---|
| tgcgrcomlr | ⊢ (𝜑 → (𝐵 − 𝐴) = (𝐷 − 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tgcgrcomlr.6 | . 2 ⊢ (𝜑 → (𝐴 − 𝐵) = (𝐶 − 𝐷)) | |
| 2 | tkgeom.p | . . 3 ⊢ 𝑃 = (Base‘𝐺) | |
| 3 | tkgeom.d | . . 3 ⊢ − = (dist‘𝐺) | |
| 4 | tkgeom.i | . . 3 ⊢ 𝐼 = (Itv‘𝐺) | |
| 5 | tkgeom.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
| 6 | tgcgrcomlr.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
| 7 | tgcgrcomlr.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
| 8 | 2, 3, 4, 5, 6, 7 | axtgcgrrflx 28387 | . 2 ⊢ (𝜑 → (𝐴 − 𝐵) = (𝐵 − 𝐴)) |
| 9 | tgcgrcomlr.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ 𝑃) | |
| 10 | tgcgrcomlr.d | . . 3 ⊢ (𝜑 → 𝐷 ∈ 𝑃) | |
| 11 | 2, 3, 4, 5, 9, 10 | axtgcgrrflx 28387 | . 2 ⊢ (𝜑 → (𝐶 − 𝐷) = (𝐷 − 𝐶)) |
| 12 | 1, 8, 11 | 3eqtr3d 2778 | 1 ⊢ (𝜑 → (𝐵 − 𝐴) = (𝐷 − 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 ‘cfv 6530 (class class class)co 7403 Basecbs 17226 distcds 17278 TarskiGcstrkg 28352 Itvcitv 28358 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-nul 5276 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ne 2933 df-ral 3052 df-rab 3416 df-v 3461 df-sbc 3766 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-iota 6483 df-fv 6538 df-ov 7406 df-trkgc 28373 df-trkg 28378 |
| This theorem is referenced by: tgcgrextend 28410 tgifscgr 28433 tgcgrsub 28434 iscgrglt 28439 trgcgrg 28440 tgcgrxfr 28443 cgr3swap12 28448 cgr3swap23 28449 tgbtwnxfr 28455 lnext 28492 tgbtwnconn1lem1 28497 tgbtwnconn1lem2 28498 tgbtwnconn1lem3 28499 tgbtwnconn1 28500 legov2 28511 legtri3 28515 legbtwn 28519 tgcgrsub2 28520 miriso 28595 mircgrextend 28607 mirtrcgr 28608 miduniq 28610 colmid 28613 symquadlem 28614 krippenlem 28615 midexlem 28617 ragcom 28623 ragflat 28629 ragcgr 28632 footexALT 28643 footexlem1 28644 footexlem2 28645 colperpexlem1 28655 mideulem2 28659 opphllem 28660 opphllem3 28674 lmiisolem 28721 hypcgrlem1 28724 trgcopy 28729 trgcopyeulem 28730 iscgra1 28735 cgracgr 28743 cgraswap 28745 cgrcgra 28746 cgracom 28747 cgratr 28748 flatcgra 28749 dfcgra2 28755 acopy 28758 acopyeu 28759 cgrg3col4 28778 tgsas1 28779 tgsas3 28782 tgasa1 28783 |
| Copyright terms: Public domain | W3C validator |