MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgcgrcomlr Structured version   Visualization version   GIF version

Theorem tgcgrcomlr 28200
Description: Congruence commutes on both sides. (Contributed by Thierry Arnoux, 23-Mar-2019.)
Hypotheses
Ref Expression
tkgeom.p 𝑃 = (Baseβ€˜πΊ)
tkgeom.d βˆ’ = (distβ€˜πΊ)
tkgeom.i 𝐼 = (Itvβ€˜πΊ)
tkgeom.g (πœ‘ β†’ 𝐺 ∈ TarskiG)
tgcgrcomlr.a (πœ‘ β†’ 𝐴 ∈ 𝑃)
tgcgrcomlr.b (πœ‘ β†’ 𝐡 ∈ 𝑃)
tgcgrcomlr.c (πœ‘ β†’ 𝐢 ∈ 𝑃)
tgcgrcomlr.d (πœ‘ β†’ 𝐷 ∈ 𝑃)
tgcgrcomlr.6 (πœ‘ β†’ (𝐴 βˆ’ 𝐡) = (𝐢 βˆ’ 𝐷))
Assertion
Ref Expression
tgcgrcomlr (πœ‘ β†’ (𝐡 βˆ’ 𝐴) = (𝐷 βˆ’ 𝐢))

Proof of Theorem tgcgrcomlr
StepHypRef Expression
1 tgcgrcomlr.6 . 2 (πœ‘ β†’ (𝐴 βˆ’ 𝐡) = (𝐢 βˆ’ 𝐷))
2 tkgeom.p . . 3 𝑃 = (Baseβ€˜πΊ)
3 tkgeom.d . . 3 βˆ’ = (distβ€˜πΊ)
4 tkgeom.i . . 3 𝐼 = (Itvβ€˜πΊ)
5 tkgeom.g . . 3 (πœ‘ β†’ 𝐺 ∈ TarskiG)
6 tgcgrcomlr.a . . 3 (πœ‘ β†’ 𝐴 ∈ 𝑃)
7 tgcgrcomlr.b . . 3 (πœ‘ β†’ 𝐡 ∈ 𝑃)
82, 3, 4, 5, 6, 7axtgcgrrflx 28182 . 2 (πœ‘ β†’ (𝐴 βˆ’ 𝐡) = (𝐡 βˆ’ 𝐴))
9 tgcgrcomlr.c . . 3 (πœ‘ β†’ 𝐢 ∈ 𝑃)
10 tgcgrcomlr.d . . 3 (πœ‘ β†’ 𝐷 ∈ 𝑃)
112, 3, 4, 5, 9, 10axtgcgrrflx 28182 . 2 (πœ‘ β†’ (𝐢 βˆ’ 𝐷) = (𝐷 βˆ’ 𝐢))
121, 8, 113eqtr3d 2772 1 (πœ‘ β†’ (𝐡 βˆ’ 𝐴) = (𝐷 βˆ’ 𝐢))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   = wceq 1533   ∈ wcel 2098  β€˜cfv 6533  (class class class)co 7401  Basecbs 17143  distcds 17205  TarskiGcstrkg 28147  Itvcitv 28153
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2695  ax-nul 5296
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2702  df-cleq 2716  df-clel 2802  df-ne 2933  df-ral 3054  df-rab 3425  df-v 3468  df-sbc 3770  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-nul 4315  df-if 4521  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-br 5139  df-iota 6485  df-fv 6541  df-ov 7404  df-trkgc 28168  df-trkg 28173
This theorem is referenced by:  tgcgrextend  28205  tgifscgr  28228  tgcgrsub  28229  iscgrglt  28234  trgcgrg  28235  tgcgrxfr  28238  cgr3swap12  28243  cgr3swap23  28244  tgbtwnxfr  28250  lnext  28287  tgbtwnconn1lem1  28292  tgbtwnconn1lem2  28293  tgbtwnconn1lem3  28294  tgbtwnconn1  28295  legov2  28306  legtri3  28310  legbtwn  28314  tgcgrsub2  28315  miriso  28390  mircgrextend  28402  mirtrcgr  28403  miduniq  28405  colmid  28408  symquadlem  28409  krippenlem  28410  midexlem  28412  ragcom  28418  ragflat  28424  ragcgr  28427  footexALT  28438  footexlem1  28439  footexlem2  28440  colperpexlem1  28450  mideulem2  28454  opphllem  28455  opphllem3  28469  lmiisolem  28516  hypcgrlem1  28519  trgcopy  28524  trgcopyeulem  28525  iscgra1  28530  cgracgr  28538  cgraswap  28540  cgrcgra  28541  cgracom  28542  cgratr  28543  flatcgra  28544  dfcgra2  28550  acopy  28553  acopyeu  28554  cgrg3col4  28573  tgsas1  28574  tgsas3  28577  tgasa1  28578
  Copyright terms: Public domain W3C validator