MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgcgrcomlr Structured version   Visualization version   GIF version

Theorem tgcgrcomlr 26822
Description: Congruence commutes on both sides. (Contributed by Thierry Arnoux, 23-Mar-2019.)
Hypotheses
Ref Expression
tkgeom.p 𝑃 = (Base‘𝐺)
tkgeom.d = (dist‘𝐺)
tkgeom.i 𝐼 = (Itv‘𝐺)
tkgeom.g (𝜑𝐺 ∈ TarskiG)
tgcgrcomlr.a (𝜑𝐴𝑃)
tgcgrcomlr.b (𝜑𝐵𝑃)
tgcgrcomlr.c (𝜑𝐶𝑃)
tgcgrcomlr.d (𝜑𝐷𝑃)
tgcgrcomlr.6 (𝜑 → (𝐴 𝐵) = (𝐶 𝐷))
Assertion
Ref Expression
tgcgrcomlr (𝜑 → (𝐵 𝐴) = (𝐷 𝐶))

Proof of Theorem tgcgrcomlr
StepHypRef Expression
1 tgcgrcomlr.6 . 2 (𝜑 → (𝐴 𝐵) = (𝐶 𝐷))
2 tkgeom.p . . 3 𝑃 = (Base‘𝐺)
3 tkgeom.d . . 3 = (dist‘𝐺)
4 tkgeom.i . . 3 𝐼 = (Itv‘𝐺)
5 tkgeom.g . . 3 (𝜑𝐺 ∈ TarskiG)
6 tgcgrcomlr.a . . 3 (𝜑𝐴𝑃)
7 tgcgrcomlr.b . . 3 (𝜑𝐵𝑃)
82, 3, 4, 5, 6, 7axtgcgrrflx 26804 . 2 (𝜑 → (𝐴 𝐵) = (𝐵 𝐴))
9 tgcgrcomlr.c . . 3 (𝜑𝐶𝑃)
10 tgcgrcomlr.d . . 3 (𝜑𝐷𝑃)
112, 3, 4, 5, 9, 10axtgcgrrflx 26804 . 2 (𝜑 → (𝐶 𝐷) = (𝐷 𝐶))
121, 8, 113eqtr3d 2787 1 (𝜑 → (𝐵 𝐴) = (𝐷 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2109  cfv 6430  (class class class)co 7268  Basecbs 16893  distcds 16952  TarskiGcstrkg 26769  Itvcitv 26775
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-nul 5233
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-ral 3070  df-rex 3071  df-rab 3074  df-v 3432  df-sbc 3720  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-if 4465  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4845  df-br 5079  df-iota 6388  df-fv 6438  df-ov 7271  df-trkgc 26790  df-trkg 26795
This theorem is referenced by:  tgcgrextend  26827  tgifscgr  26850  tgcgrsub  26851  iscgrglt  26856  trgcgrg  26857  tgcgrxfr  26860  cgr3swap12  26865  cgr3swap23  26866  tgbtwnxfr  26872  lnext  26909  tgbtwnconn1lem1  26914  tgbtwnconn1lem2  26915  tgbtwnconn1lem3  26916  tgbtwnconn1  26917  legov2  26928  legtri3  26932  legbtwn  26936  tgcgrsub2  26937  miriso  27012  mircgrextend  27024  mirtrcgr  27025  miduniq  27027  colmid  27030  symquadlem  27031  krippenlem  27032  midexlem  27034  ragcom  27040  ragflat  27046  ragcgr  27049  footexALT  27060  footexlem1  27061  footexlem2  27062  colperpexlem1  27072  mideulem2  27076  opphllem  27077  opphllem3  27091  lmiisolem  27138  hypcgrlem1  27141  trgcopy  27146  trgcopyeulem  27147  iscgra1  27152  cgracgr  27160  cgraswap  27162  cgrcgra  27163  cgracom  27164  cgratr  27165  flatcgra  27166  dfcgra2  27172  acopy  27175  acopyeu  27176  cgrg3col4  27195  tgsas1  27196  tgsas3  27199  tgasa1  27200
  Copyright terms: Public domain W3C validator