| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tgcgrcomlr | Structured version Visualization version GIF version | ||
| Description: Congruence commutes on both sides. (Contributed by Thierry Arnoux, 23-Mar-2019.) |
| Ref | Expression |
|---|---|
| tkgeom.p | ⊢ 𝑃 = (Base‘𝐺) |
| tkgeom.d | ⊢ − = (dist‘𝐺) |
| tkgeom.i | ⊢ 𝐼 = (Itv‘𝐺) |
| tkgeom.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
| tgcgrcomlr.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
| tgcgrcomlr.b | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
| tgcgrcomlr.c | ⊢ (𝜑 → 𝐶 ∈ 𝑃) |
| tgcgrcomlr.d | ⊢ (𝜑 → 𝐷 ∈ 𝑃) |
| tgcgrcomlr.6 | ⊢ (𝜑 → (𝐴 − 𝐵) = (𝐶 − 𝐷)) |
| Ref | Expression |
|---|---|
| tgcgrcomlr | ⊢ (𝜑 → (𝐵 − 𝐴) = (𝐷 − 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tgcgrcomlr.6 | . 2 ⊢ (𝜑 → (𝐴 − 𝐵) = (𝐶 − 𝐷)) | |
| 2 | tkgeom.p | . . 3 ⊢ 𝑃 = (Base‘𝐺) | |
| 3 | tkgeom.d | . . 3 ⊢ − = (dist‘𝐺) | |
| 4 | tkgeom.i | . . 3 ⊢ 𝐼 = (Itv‘𝐺) | |
| 5 | tkgeom.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
| 6 | tgcgrcomlr.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
| 7 | tgcgrcomlr.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
| 8 | 2, 3, 4, 5, 6, 7 | axtgcgrrflx 28433 | . 2 ⊢ (𝜑 → (𝐴 − 𝐵) = (𝐵 − 𝐴)) |
| 9 | tgcgrcomlr.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ 𝑃) | |
| 10 | tgcgrcomlr.d | . . 3 ⊢ (𝜑 → 𝐷 ∈ 𝑃) | |
| 11 | 2, 3, 4, 5, 9, 10 | axtgcgrrflx 28433 | . 2 ⊢ (𝜑 → (𝐶 − 𝐷) = (𝐷 − 𝐶)) |
| 12 | 1, 8, 11 | 3eqtr3d 2773 | 1 ⊢ (𝜑 → (𝐵 − 𝐴) = (𝐷 − 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2110 ‘cfv 6477 (class class class)co 7341 Basecbs 17112 distcds 17162 TarskiGcstrkg 28398 Itvcitv 28404 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-ext 2702 ax-nul 5242 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-ral 3046 df-rab 3394 df-v 3436 df-sbc 3740 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-nul 4282 df-if 4474 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-br 5090 df-iota 6433 df-fv 6485 df-ov 7344 df-trkgc 28419 df-trkg 28424 |
| This theorem is referenced by: tgcgrextend 28456 tgifscgr 28479 tgcgrsub 28480 iscgrglt 28485 trgcgrg 28486 tgcgrxfr 28489 cgr3swap12 28494 cgr3swap23 28495 tgbtwnxfr 28501 lnext 28538 tgbtwnconn1lem1 28543 tgbtwnconn1lem2 28544 tgbtwnconn1lem3 28545 tgbtwnconn1 28546 legov2 28557 legtri3 28561 legbtwn 28565 tgcgrsub2 28566 miriso 28641 mircgrextend 28653 mirtrcgr 28654 miduniq 28656 colmid 28659 symquadlem 28660 krippenlem 28661 midexlem 28663 ragcom 28669 ragflat 28675 ragcgr 28678 footexALT 28689 footexlem1 28690 footexlem2 28691 colperpexlem1 28701 mideulem2 28705 opphllem 28706 opphllem3 28720 lmiisolem 28767 hypcgrlem1 28770 trgcopy 28775 trgcopyeulem 28776 iscgra1 28781 cgracgr 28789 cgraswap 28791 cgrcgra 28792 cgracom 28793 cgratr 28794 flatcgra 28795 dfcgra2 28801 acopy 28804 acopyeu 28805 cgrg3col4 28824 tgsas1 28825 tgsas3 28828 tgasa1 28829 |
| Copyright terms: Public domain | W3C validator |