MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgcgrcomlr Structured version   Visualization version   GIF version

Theorem tgcgrcomlr 28405
Description: Congruence commutes on both sides. (Contributed by Thierry Arnoux, 23-Mar-2019.)
Hypotheses
Ref Expression
tkgeom.p 𝑃 = (Base‘𝐺)
tkgeom.d = (dist‘𝐺)
tkgeom.i 𝐼 = (Itv‘𝐺)
tkgeom.g (𝜑𝐺 ∈ TarskiG)
tgcgrcomlr.a (𝜑𝐴𝑃)
tgcgrcomlr.b (𝜑𝐵𝑃)
tgcgrcomlr.c (𝜑𝐶𝑃)
tgcgrcomlr.d (𝜑𝐷𝑃)
tgcgrcomlr.6 (𝜑 → (𝐴 𝐵) = (𝐶 𝐷))
Assertion
Ref Expression
tgcgrcomlr (𝜑 → (𝐵 𝐴) = (𝐷 𝐶))

Proof of Theorem tgcgrcomlr
StepHypRef Expression
1 tgcgrcomlr.6 . 2 (𝜑 → (𝐴 𝐵) = (𝐶 𝐷))
2 tkgeom.p . . 3 𝑃 = (Base‘𝐺)
3 tkgeom.d . . 3 = (dist‘𝐺)
4 tkgeom.i . . 3 𝐼 = (Itv‘𝐺)
5 tkgeom.g . . 3 (𝜑𝐺 ∈ TarskiG)
6 tgcgrcomlr.a . . 3 (𝜑𝐴𝑃)
7 tgcgrcomlr.b . . 3 (𝜑𝐵𝑃)
82, 3, 4, 5, 6, 7axtgcgrrflx 28387 . 2 (𝜑 → (𝐴 𝐵) = (𝐵 𝐴))
9 tgcgrcomlr.c . . 3 (𝜑𝐶𝑃)
10 tgcgrcomlr.d . . 3 (𝜑𝐷𝑃)
112, 3, 4, 5, 9, 10axtgcgrrflx 28387 . 2 (𝜑 → (𝐶 𝐷) = (𝐷 𝐶))
121, 8, 113eqtr3d 2778 1 (𝜑 → (𝐵 𝐴) = (𝐷 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2108  cfv 6530  (class class class)co 7403  Basecbs 17226  distcds 17278  TarskiGcstrkg 28352  Itvcitv 28358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707  ax-nul 5276
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-ne 2933  df-ral 3052  df-rab 3416  df-v 3461  df-sbc 3766  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-iota 6483  df-fv 6538  df-ov 7406  df-trkgc 28373  df-trkg 28378
This theorem is referenced by:  tgcgrextend  28410  tgifscgr  28433  tgcgrsub  28434  iscgrglt  28439  trgcgrg  28440  tgcgrxfr  28443  cgr3swap12  28448  cgr3swap23  28449  tgbtwnxfr  28455  lnext  28492  tgbtwnconn1lem1  28497  tgbtwnconn1lem2  28498  tgbtwnconn1lem3  28499  tgbtwnconn1  28500  legov2  28511  legtri3  28515  legbtwn  28519  tgcgrsub2  28520  miriso  28595  mircgrextend  28607  mirtrcgr  28608  miduniq  28610  colmid  28613  symquadlem  28614  krippenlem  28615  midexlem  28617  ragcom  28623  ragflat  28629  ragcgr  28632  footexALT  28643  footexlem1  28644  footexlem2  28645  colperpexlem1  28655  mideulem2  28659  opphllem  28660  opphllem3  28674  lmiisolem  28721  hypcgrlem1  28724  trgcopy  28729  trgcopyeulem  28730  iscgra1  28735  cgracgr  28743  cgraswap  28745  cgrcgra  28746  cgracom  28747  cgratr  28748  flatcgra  28749  dfcgra2  28755  acopy  28758  acopyeu  28759  cgrg3col4  28778  tgsas1  28779  tgsas3  28782  tgasa1  28783
  Copyright terms: Public domain W3C validator