![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tgcgrcomlr | Structured version Visualization version GIF version |
Description: Congruence commutes on both sides. (Contributed by Thierry Arnoux, 23-Mar-2019.) |
Ref | Expression |
---|---|
tkgeom.p | ⊢ 𝑃 = (Base‘𝐺) |
tkgeom.d | ⊢ − = (dist‘𝐺) |
tkgeom.i | ⊢ 𝐼 = (Itv‘𝐺) |
tkgeom.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
tgcgrcomlr.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
tgcgrcomlr.b | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
tgcgrcomlr.c | ⊢ (𝜑 → 𝐶 ∈ 𝑃) |
tgcgrcomlr.d | ⊢ (𝜑 → 𝐷 ∈ 𝑃) |
tgcgrcomlr.6 | ⊢ (𝜑 → (𝐴 − 𝐵) = (𝐶 − 𝐷)) |
Ref | Expression |
---|---|
tgcgrcomlr | ⊢ (𝜑 → (𝐵 − 𝐴) = (𝐷 − 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tgcgrcomlr.6 | . 2 ⊢ (𝜑 → (𝐴 − 𝐵) = (𝐶 − 𝐷)) | |
2 | tkgeom.p | . . 3 ⊢ 𝑃 = (Base‘𝐺) | |
3 | tkgeom.d | . . 3 ⊢ − = (dist‘𝐺) | |
4 | tkgeom.i | . . 3 ⊢ 𝐼 = (Itv‘𝐺) | |
5 | tkgeom.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
6 | tgcgrcomlr.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
7 | tgcgrcomlr.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
8 | 2, 3, 4, 5, 6, 7 | axtgcgrrflx 28488 | . 2 ⊢ (𝜑 → (𝐴 − 𝐵) = (𝐵 − 𝐴)) |
9 | tgcgrcomlr.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ 𝑃) | |
10 | tgcgrcomlr.d | . . 3 ⊢ (𝜑 → 𝐷 ∈ 𝑃) | |
11 | 2, 3, 4, 5, 9, 10 | axtgcgrrflx 28488 | . 2 ⊢ (𝜑 → (𝐶 − 𝐷) = (𝐷 − 𝐶)) |
12 | 1, 8, 11 | 3eqtr3d 2788 | 1 ⊢ (𝜑 → (𝐵 − 𝐴) = (𝐷 − 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 ‘cfv 6573 (class class class)co 7448 Basecbs 17258 distcds 17320 TarskiGcstrkg 28453 Itvcitv 28459 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-nul 5324 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-ral 3068 df-rab 3444 df-v 3490 df-sbc 3805 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-iota 6525 df-fv 6581 df-ov 7451 df-trkgc 28474 df-trkg 28479 |
This theorem is referenced by: tgcgrextend 28511 tgifscgr 28534 tgcgrsub 28535 iscgrglt 28540 trgcgrg 28541 tgcgrxfr 28544 cgr3swap12 28549 cgr3swap23 28550 tgbtwnxfr 28556 lnext 28593 tgbtwnconn1lem1 28598 tgbtwnconn1lem2 28599 tgbtwnconn1lem3 28600 tgbtwnconn1 28601 legov2 28612 legtri3 28616 legbtwn 28620 tgcgrsub2 28621 miriso 28696 mircgrextend 28708 mirtrcgr 28709 miduniq 28711 colmid 28714 symquadlem 28715 krippenlem 28716 midexlem 28718 ragcom 28724 ragflat 28730 ragcgr 28733 footexALT 28744 footexlem1 28745 footexlem2 28746 colperpexlem1 28756 mideulem2 28760 opphllem 28761 opphllem3 28775 lmiisolem 28822 hypcgrlem1 28825 trgcopy 28830 trgcopyeulem 28831 iscgra1 28836 cgracgr 28844 cgraswap 28846 cgrcgra 28847 cgracom 28848 cgratr 28849 flatcgra 28850 dfcgra2 28856 acopy 28859 acopyeu 28860 cgrg3col4 28879 tgsas1 28880 tgsas3 28883 tgasa1 28884 |
Copyright terms: Public domain | W3C validator |