| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tgcgrcomlr | Structured version Visualization version GIF version | ||
| Description: Congruence commutes on both sides. (Contributed by Thierry Arnoux, 23-Mar-2019.) |
| Ref | Expression |
|---|---|
| tkgeom.p | ⊢ 𝑃 = (Base‘𝐺) |
| tkgeom.d | ⊢ − = (dist‘𝐺) |
| tkgeom.i | ⊢ 𝐼 = (Itv‘𝐺) |
| tkgeom.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
| tgcgrcomlr.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
| tgcgrcomlr.b | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
| tgcgrcomlr.c | ⊢ (𝜑 → 𝐶 ∈ 𝑃) |
| tgcgrcomlr.d | ⊢ (𝜑 → 𝐷 ∈ 𝑃) |
| tgcgrcomlr.6 | ⊢ (𝜑 → (𝐴 − 𝐵) = (𝐶 − 𝐷)) |
| Ref | Expression |
|---|---|
| tgcgrcomlr | ⊢ (𝜑 → (𝐵 − 𝐴) = (𝐷 − 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tgcgrcomlr.6 | . 2 ⊢ (𝜑 → (𝐴 − 𝐵) = (𝐶 − 𝐷)) | |
| 2 | tkgeom.p | . . 3 ⊢ 𝑃 = (Base‘𝐺) | |
| 3 | tkgeom.d | . . 3 ⊢ − = (dist‘𝐺) | |
| 4 | tkgeom.i | . . 3 ⊢ 𝐼 = (Itv‘𝐺) | |
| 5 | tkgeom.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
| 6 | tgcgrcomlr.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
| 7 | tgcgrcomlr.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
| 8 | 2, 3, 4, 5, 6, 7 | axtgcgrrflx 28389 | . 2 ⊢ (𝜑 → (𝐴 − 𝐵) = (𝐵 − 𝐴)) |
| 9 | tgcgrcomlr.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ 𝑃) | |
| 10 | tgcgrcomlr.d | . . 3 ⊢ (𝜑 → 𝐷 ∈ 𝑃) | |
| 11 | 2, 3, 4, 5, 9, 10 | axtgcgrrflx 28389 | . 2 ⊢ (𝜑 → (𝐶 − 𝐷) = (𝐷 − 𝐶)) |
| 12 | 1, 8, 11 | 3eqtr3d 2772 | 1 ⊢ (𝜑 → (𝐵 − 𝐴) = (𝐷 − 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ‘cfv 6511 (class class class)co 7387 Basecbs 17179 distcds 17229 TarskiGcstrkg 28354 Itvcitv 28360 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-nul 5261 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rab 3406 df-v 3449 df-sbc 3754 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-iota 6464 df-fv 6519 df-ov 7390 df-trkgc 28375 df-trkg 28380 |
| This theorem is referenced by: tgcgrextend 28412 tgifscgr 28435 tgcgrsub 28436 iscgrglt 28441 trgcgrg 28442 tgcgrxfr 28445 cgr3swap12 28450 cgr3swap23 28451 tgbtwnxfr 28457 lnext 28494 tgbtwnconn1lem1 28499 tgbtwnconn1lem2 28500 tgbtwnconn1lem3 28501 tgbtwnconn1 28502 legov2 28513 legtri3 28517 legbtwn 28521 tgcgrsub2 28522 miriso 28597 mircgrextend 28609 mirtrcgr 28610 miduniq 28612 colmid 28615 symquadlem 28616 krippenlem 28617 midexlem 28619 ragcom 28625 ragflat 28631 ragcgr 28634 footexALT 28645 footexlem1 28646 footexlem2 28647 colperpexlem1 28657 mideulem2 28661 opphllem 28662 opphllem3 28676 lmiisolem 28723 hypcgrlem1 28726 trgcopy 28731 trgcopyeulem 28732 iscgra1 28737 cgracgr 28745 cgraswap 28747 cgrcgra 28748 cgracom 28749 cgratr 28750 flatcgra 28751 dfcgra2 28757 acopy 28760 acopyeu 28761 cgrg3col4 28780 tgsas1 28781 tgsas3 28784 tgasa1 28785 |
| Copyright terms: Public domain | W3C validator |