![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tgcgrcomlr | Structured version Visualization version GIF version |
Description: Congruence commutes on both sides. (Contributed by Thierry Arnoux, 23-Mar-2019.) |
Ref | Expression |
---|---|
tkgeom.p | β’ π = (BaseβπΊ) |
tkgeom.d | β’ β = (distβπΊ) |
tkgeom.i | β’ πΌ = (ItvβπΊ) |
tkgeom.g | β’ (π β πΊ β TarskiG) |
tgcgrcomlr.a | β’ (π β π΄ β π) |
tgcgrcomlr.b | β’ (π β π΅ β π) |
tgcgrcomlr.c | β’ (π β πΆ β π) |
tgcgrcomlr.d | β’ (π β π· β π) |
tgcgrcomlr.6 | β’ (π β (π΄ β π΅) = (πΆ β π·)) |
Ref | Expression |
---|---|
tgcgrcomlr | β’ (π β (π΅ β π΄) = (π· β πΆ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tgcgrcomlr.6 | . 2 β’ (π β (π΄ β π΅) = (πΆ β π·)) | |
2 | tkgeom.p | . . 3 β’ π = (BaseβπΊ) | |
3 | tkgeom.d | . . 3 β’ β = (distβπΊ) | |
4 | tkgeom.i | . . 3 β’ πΌ = (ItvβπΊ) | |
5 | tkgeom.g | . . 3 β’ (π β πΊ β TarskiG) | |
6 | tgcgrcomlr.a | . . 3 β’ (π β π΄ β π) | |
7 | tgcgrcomlr.b | . . 3 β’ (π β π΅ β π) | |
8 | 2, 3, 4, 5, 6, 7 | axtgcgrrflx 28182 | . 2 β’ (π β (π΄ β π΅) = (π΅ β π΄)) |
9 | tgcgrcomlr.c | . . 3 β’ (π β πΆ β π) | |
10 | tgcgrcomlr.d | . . 3 β’ (π β π· β π) | |
11 | 2, 3, 4, 5, 9, 10 | axtgcgrrflx 28182 | . 2 β’ (π β (πΆ β π·) = (π· β πΆ)) |
12 | 1, 8, 11 | 3eqtr3d 2772 | 1 β’ (π β (π΅ β π΄) = (π· β πΆ)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1533 β wcel 2098 βcfv 6533 (class class class)co 7401 Basecbs 17143 distcds 17205 TarskiGcstrkg 28147 Itvcitv 28153 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2695 ax-nul 5296 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2702 df-cleq 2716 df-clel 2802 df-ne 2933 df-ral 3054 df-rab 3425 df-v 3468 df-sbc 3770 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-nul 4315 df-if 4521 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-br 5139 df-iota 6485 df-fv 6541 df-ov 7404 df-trkgc 28168 df-trkg 28173 |
This theorem is referenced by: tgcgrextend 28205 tgifscgr 28228 tgcgrsub 28229 iscgrglt 28234 trgcgrg 28235 tgcgrxfr 28238 cgr3swap12 28243 cgr3swap23 28244 tgbtwnxfr 28250 lnext 28287 tgbtwnconn1lem1 28292 tgbtwnconn1lem2 28293 tgbtwnconn1lem3 28294 tgbtwnconn1 28295 legov2 28306 legtri3 28310 legbtwn 28314 tgcgrsub2 28315 miriso 28390 mircgrextend 28402 mirtrcgr 28403 miduniq 28405 colmid 28408 symquadlem 28409 krippenlem 28410 midexlem 28412 ragcom 28418 ragflat 28424 ragcgr 28427 footexALT 28438 footexlem1 28439 footexlem2 28440 colperpexlem1 28450 mideulem2 28454 opphllem 28455 opphllem3 28469 lmiisolem 28516 hypcgrlem1 28519 trgcopy 28524 trgcopyeulem 28525 iscgra1 28530 cgracgr 28538 cgraswap 28540 cgrcgra 28541 cgracom 28542 cgratr 28543 flatcgra 28544 dfcgra2 28550 acopy 28553 acopyeu 28554 cgrg3col4 28573 tgsas1 28574 tgsas3 28577 tgasa1 28578 |
Copyright terms: Public domain | W3C validator |