Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > tgcgrcomlr | Structured version Visualization version GIF version |
Description: Congruence commutes on both sides. (Contributed by Thierry Arnoux, 23-Mar-2019.) |
Ref | Expression |
---|---|
tkgeom.p | ⊢ 𝑃 = (Base‘𝐺) |
tkgeom.d | ⊢ − = (dist‘𝐺) |
tkgeom.i | ⊢ 𝐼 = (Itv‘𝐺) |
tkgeom.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
tgcgrcomlr.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
tgcgrcomlr.b | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
tgcgrcomlr.c | ⊢ (𝜑 → 𝐶 ∈ 𝑃) |
tgcgrcomlr.d | ⊢ (𝜑 → 𝐷 ∈ 𝑃) |
tgcgrcomlr.6 | ⊢ (𝜑 → (𝐴 − 𝐵) = (𝐶 − 𝐷)) |
Ref | Expression |
---|---|
tgcgrcomlr | ⊢ (𝜑 → (𝐵 − 𝐴) = (𝐷 − 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tgcgrcomlr.6 | . 2 ⊢ (𝜑 → (𝐴 − 𝐵) = (𝐶 − 𝐷)) | |
2 | tkgeom.p | . . 3 ⊢ 𝑃 = (Base‘𝐺) | |
3 | tkgeom.d | . . 3 ⊢ − = (dist‘𝐺) | |
4 | tkgeom.i | . . 3 ⊢ 𝐼 = (Itv‘𝐺) | |
5 | tkgeom.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
6 | tgcgrcomlr.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
7 | tgcgrcomlr.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
8 | 2, 3, 4, 5, 6, 7 | axtgcgrrflx 26821 | . 2 ⊢ (𝜑 → (𝐴 − 𝐵) = (𝐵 − 𝐴)) |
9 | tgcgrcomlr.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ 𝑃) | |
10 | tgcgrcomlr.d | . . 3 ⊢ (𝜑 → 𝐷 ∈ 𝑃) | |
11 | 2, 3, 4, 5, 9, 10 | axtgcgrrflx 26821 | . 2 ⊢ (𝜑 → (𝐶 − 𝐷) = (𝐷 − 𝐶)) |
12 | 1, 8, 11 | 3eqtr3d 2788 | 1 ⊢ (𝜑 → (𝐵 − 𝐴) = (𝐷 − 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 ∈ wcel 2110 ‘cfv 6432 (class class class)co 7271 Basecbs 16910 distcds 16969 TarskiGcstrkg 26786 Itvcitv 26792 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-nul 5234 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-ral 3071 df-rex 3072 df-rab 3075 df-v 3433 df-sbc 3721 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-br 5080 df-iota 6390 df-fv 6440 df-ov 7274 df-trkgc 26807 df-trkg 26812 |
This theorem is referenced by: tgcgrextend 26844 tgifscgr 26867 tgcgrsub 26868 iscgrglt 26873 trgcgrg 26874 tgcgrxfr 26877 cgr3swap12 26882 cgr3swap23 26883 tgbtwnxfr 26889 lnext 26926 tgbtwnconn1lem1 26931 tgbtwnconn1lem2 26932 tgbtwnconn1lem3 26933 tgbtwnconn1 26934 legov2 26945 legtri3 26949 legbtwn 26953 tgcgrsub2 26954 miriso 27029 mircgrextend 27041 mirtrcgr 27042 miduniq 27044 colmid 27047 symquadlem 27048 krippenlem 27049 midexlem 27051 ragcom 27057 ragflat 27063 ragcgr 27066 footexALT 27077 footexlem1 27078 footexlem2 27079 colperpexlem1 27089 mideulem2 27093 opphllem 27094 opphllem3 27108 lmiisolem 27155 hypcgrlem1 27158 trgcopy 27163 trgcopyeulem 27164 iscgra1 27169 cgracgr 27177 cgraswap 27179 cgrcgra 27180 cgracom 27181 cgratr 27182 flatcgra 27183 dfcgra2 27189 acopy 27192 acopyeu 27193 cgrg3col4 27212 tgsas1 27213 tgsas3 27216 tgasa1 27217 |
Copyright terms: Public domain | W3C validator |