MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgbtwnconn1lem1 Structured version   Visualization version   GIF version

Theorem tgbtwnconn1lem1 28091
Description: Lemma for tgbtwnconn1 28094. (Contributed by Thierry Arnoux, 30-Apr-2019.)
Hypotheses
Ref Expression
tgbtwnconn1.p 𝑃 = (Baseβ€˜πΊ)
tgbtwnconn1.i 𝐼 = (Itvβ€˜πΊ)
tgbtwnconn1.g (πœ‘ β†’ 𝐺 ∈ TarskiG)
tgbtwnconn1.a (πœ‘ β†’ 𝐴 ∈ 𝑃)
tgbtwnconn1.b (πœ‘ β†’ 𝐡 ∈ 𝑃)
tgbtwnconn1.c (πœ‘ β†’ 𝐢 ∈ 𝑃)
tgbtwnconn1.d (πœ‘ β†’ 𝐷 ∈ 𝑃)
tgbtwnconn1.1 (πœ‘ β†’ 𝐴 β‰  𝐡)
tgbtwnconn1.2 (πœ‘ β†’ 𝐡 ∈ (𝐴𝐼𝐢))
tgbtwnconn1.3 (πœ‘ β†’ 𝐡 ∈ (𝐴𝐼𝐷))
tgbtwnconn1.m βˆ’ = (distβ€˜πΊ)
tgbtwnconn1.e (πœ‘ β†’ 𝐸 ∈ 𝑃)
tgbtwnconn1.f (πœ‘ β†’ 𝐹 ∈ 𝑃)
tgbtwnconn1.h (πœ‘ β†’ 𝐻 ∈ 𝑃)
tgbtwnconn1.j (πœ‘ β†’ 𝐽 ∈ 𝑃)
tgbtwnconn1.4 (πœ‘ β†’ 𝐷 ∈ (𝐴𝐼𝐸))
tgbtwnconn1.5 (πœ‘ β†’ 𝐢 ∈ (𝐴𝐼𝐹))
tgbtwnconn1.6 (πœ‘ β†’ 𝐸 ∈ (𝐴𝐼𝐻))
tgbtwnconn1.7 (πœ‘ β†’ 𝐹 ∈ (𝐴𝐼𝐽))
tgbtwnconn1.8 (πœ‘ β†’ (𝐸 βˆ’ 𝐷) = (𝐢 βˆ’ 𝐷))
tgbtwnconn1.9 (πœ‘ β†’ (𝐢 βˆ’ 𝐹) = (𝐢 βˆ’ 𝐷))
tgbtwnconn1.10 (πœ‘ β†’ (𝐸 βˆ’ 𝐻) = (𝐡 βˆ’ 𝐢))
tgbtwnconn1.11 (πœ‘ β†’ (𝐹 βˆ’ 𝐽) = (𝐡 βˆ’ 𝐷))
Assertion
Ref Expression
tgbtwnconn1lem1 (πœ‘ β†’ 𝐻 = 𝐽)

Proof of Theorem tgbtwnconn1lem1
StepHypRef Expression
1 tgbtwnconn1.p . 2 𝑃 = (Baseβ€˜πΊ)
2 tgbtwnconn1.m . 2 βˆ’ = (distβ€˜πΊ)
3 tgbtwnconn1.i . 2 𝐼 = (Itvβ€˜πΊ)
4 tgbtwnconn1.g . 2 (πœ‘ β†’ 𝐺 ∈ TarskiG)
5 tgbtwnconn1.b . 2 (πœ‘ β†’ 𝐡 ∈ 𝑃)
6 tgbtwnconn1.j . 2 (πœ‘ β†’ 𝐽 ∈ 𝑃)
7 tgbtwnconn1.a . 2 (πœ‘ β†’ 𝐴 ∈ 𝑃)
8 tgbtwnconn1.h . 2 (πœ‘ β†’ 𝐻 ∈ 𝑃)
9 tgbtwnconn1.1 . 2 (πœ‘ β†’ 𝐴 β‰  𝐡)
10 tgbtwnconn1.e . . 3 (πœ‘ β†’ 𝐸 ∈ 𝑃)
11 tgbtwnconn1.d . . . 4 (πœ‘ β†’ 𝐷 ∈ 𝑃)
12 tgbtwnconn1.3 . . . 4 (πœ‘ β†’ 𝐡 ∈ (𝐴𝐼𝐷))
13 tgbtwnconn1.4 . . . 4 (πœ‘ β†’ 𝐷 ∈ (𝐴𝐼𝐸))
141, 2, 3, 4, 7, 5, 11, 10, 12, 13tgbtwnexch 28017 . . 3 (πœ‘ β†’ 𝐡 ∈ (𝐴𝐼𝐸))
15 tgbtwnconn1.6 . . 3 (πœ‘ β†’ 𝐸 ∈ (𝐴𝐼𝐻))
161, 2, 3, 4, 7, 5, 10, 8, 14, 15tgbtwnexch 28017 . 2 (πœ‘ β†’ 𝐡 ∈ (𝐴𝐼𝐻))
17 tgbtwnconn1.f . . 3 (πœ‘ β†’ 𝐹 ∈ 𝑃)
18 tgbtwnconn1.c . . . 4 (πœ‘ β†’ 𝐢 ∈ 𝑃)
19 tgbtwnconn1.2 . . . 4 (πœ‘ β†’ 𝐡 ∈ (𝐴𝐼𝐢))
20 tgbtwnconn1.5 . . . 4 (πœ‘ β†’ 𝐢 ∈ (𝐴𝐼𝐹))
211, 2, 3, 4, 7, 5, 18, 17, 19, 20tgbtwnexch 28017 . . 3 (πœ‘ β†’ 𝐡 ∈ (𝐴𝐼𝐹))
22 tgbtwnconn1.7 . . 3 (πœ‘ β†’ 𝐹 ∈ (𝐴𝐼𝐽))
231, 2, 3, 4, 7, 5, 17, 6, 21, 22tgbtwnexch 28017 . 2 (πœ‘ β†’ 𝐡 ∈ (𝐴𝐼𝐽))
241, 2, 3, 4, 7, 5, 10, 8, 14, 15tgbtwnexch3 28013 . . 3 (πœ‘ β†’ 𝐸 ∈ (𝐡𝐼𝐻))
251, 2, 3, 4, 7, 18, 17, 6, 20, 22tgbtwnexch 28017 . . . . 5 (πœ‘ β†’ 𝐢 ∈ (𝐴𝐼𝐽))
261, 2, 3, 4, 7, 5, 18, 6, 19, 25tgbtwnexch3 28013 . . . 4 (πœ‘ β†’ 𝐢 ∈ (𝐡𝐼𝐽))
271, 2, 3, 4, 5, 18, 6, 26tgbtwncom 28007 . . 3 (πœ‘ β†’ 𝐢 ∈ (𝐽𝐼𝐡))
281, 2, 3, 4, 7, 5, 11, 10, 12, 13tgbtwnexch3 28013 . . . 4 (πœ‘ β†’ 𝐷 ∈ (𝐡𝐼𝐸))
291, 2, 3, 4, 7, 18, 17, 6, 20, 22tgbtwnexch3 28013 . . . . 5 (πœ‘ β†’ 𝐹 ∈ (𝐢𝐼𝐽))
301, 2, 3, 4, 18, 17, 6, 29tgbtwncom 28007 . . . 4 (πœ‘ β†’ 𝐹 ∈ (𝐽𝐼𝐢))
311, 2, 3, 4, 6, 17axtgcgrrflx 27981 . . . . 5 (πœ‘ β†’ (𝐽 βˆ’ 𝐹) = (𝐹 βˆ’ 𝐽))
32 tgbtwnconn1.11 . . . . 5 (πœ‘ β†’ (𝐹 βˆ’ 𝐽) = (𝐡 βˆ’ 𝐷))
3331, 32eqtr2d 2772 . . . 4 (πœ‘ β†’ (𝐡 βˆ’ 𝐷) = (𝐽 βˆ’ 𝐹))
34 tgbtwnconn1.8 . . . . . 6 (πœ‘ β†’ (𝐸 βˆ’ 𝐷) = (𝐢 βˆ’ 𝐷))
35 tgbtwnconn1.9 . . . . . 6 (πœ‘ β†’ (𝐢 βˆ’ 𝐹) = (𝐢 βˆ’ 𝐷))
3634, 35eqtr4d 2774 . . . . 5 (πœ‘ β†’ (𝐸 βˆ’ 𝐷) = (𝐢 βˆ’ 𝐹))
371, 2, 3, 4, 10, 11, 18, 17, 36tgcgrcomlr 27999 . . . 4 (πœ‘ β†’ (𝐷 βˆ’ 𝐸) = (𝐹 βˆ’ 𝐢))
381, 2, 3, 4, 5, 11, 10, 6, 17, 18, 28, 30, 33, 37tgcgrextend 28004 . . 3 (πœ‘ β†’ (𝐡 βˆ’ 𝐸) = (𝐽 βˆ’ 𝐢))
39 tgbtwnconn1.10 . . . 4 (πœ‘ β†’ (𝐸 βˆ’ 𝐻) = (𝐡 βˆ’ 𝐢))
401, 2, 3, 4, 10, 8, 5, 18, 39tgcgrcomr 27997 . . 3 (πœ‘ β†’ (𝐸 βˆ’ 𝐻) = (𝐢 βˆ’ 𝐡))
411, 2, 3, 4, 5, 10, 8, 6, 18, 5, 24, 27, 38, 40tgcgrextend 28004 . 2 (πœ‘ β†’ (𝐡 βˆ’ 𝐻) = (𝐽 βˆ’ 𝐡))
421, 2, 3, 4, 5, 6axtgcgrrflx 27981 . 2 (πœ‘ β†’ (𝐡 βˆ’ 𝐽) = (𝐽 βˆ’ 𝐡))
431, 2, 3, 4, 5, 6, 5, 7, 8, 6, 9, 16, 23, 41, 42tgsegconeq 28005 1 (πœ‘ β†’ 𝐻 = 𝐽)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   = wceq 1540   ∈ wcel 2105   β‰  wne 2939  β€˜cfv 6543  (class class class)co 7412  Basecbs 17149  distcds 17211  TarskiGcstrkg 27946  Itvcitv 27952
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2702  ax-nul 5306
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-sb 2067  df-clab 2709  df-cleq 2723  df-clel 2809  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-sbc 3778  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-iota 6495  df-fv 6551  df-ov 7415  df-trkgc 27967  df-trkgb 27968  df-trkgcb 27969  df-trkg 27972
This theorem is referenced by:  tgbtwnconn1lem2  28092  tgbtwnconn1lem3  28093
  Copyright terms: Public domain W3C validator