Proof of Theorem tgbtwnconn1lem1
Step | Hyp | Ref
| Expression |
1 | | tgbtwnconn1.p |
. 2
⊢ 𝑃 = (Base‘𝐺) |
2 | | tgbtwnconn1.m |
. 2
⊢ − =
(dist‘𝐺) |
3 | | tgbtwnconn1.i |
. 2
⊢ 𝐼 = (Itv‘𝐺) |
4 | | tgbtwnconn1.g |
. 2
⊢ (𝜑 → 𝐺 ∈ TarskiG) |
5 | | tgbtwnconn1.b |
. 2
⊢ (𝜑 → 𝐵 ∈ 𝑃) |
6 | | tgbtwnconn1.j |
. 2
⊢ (𝜑 → 𝐽 ∈ 𝑃) |
7 | | tgbtwnconn1.a |
. 2
⊢ (𝜑 → 𝐴 ∈ 𝑃) |
8 | | tgbtwnconn1.h |
. 2
⊢ (𝜑 → 𝐻 ∈ 𝑃) |
9 | | tgbtwnconn1.1 |
. 2
⊢ (𝜑 → 𝐴 ≠ 𝐵) |
10 | | tgbtwnconn1.e |
. . 3
⊢ (𝜑 → 𝐸 ∈ 𝑃) |
11 | | tgbtwnconn1.d |
. . . 4
⊢ (𝜑 → 𝐷 ∈ 𝑃) |
12 | | tgbtwnconn1.3 |
. . . 4
⊢ (𝜑 → 𝐵 ∈ (𝐴𝐼𝐷)) |
13 | | tgbtwnconn1.4 |
. . . 4
⊢ (𝜑 → 𝐷 ∈ (𝐴𝐼𝐸)) |
14 | 1, 2, 3, 4, 7, 5, 11, 10, 12, 13 | tgbtwnexch 26763 |
. . 3
⊢ (𝜑 → 𝐵 ∈ (𝐴𝐼𝐸)) |
15 | | tgbtwnconn1.6 |
. . 3
⊢ (𝜑 → 𝐸 ∈ (𝐴𝐼𝐻)) |
16 | 1, 2, 3, 4, 7, 5, 10, 8, 14, 15 | tgbtwnexch 26763 |
. 2
⊢ (𝜑 → 𝐵 ∈ (𝐴𝐼𝐻)) |
17 | | tgbtwnconn1.f |
. . 3
⊢ (𝜑 → 𝐹 ∈ 𝑃) |
18 | | tgbtwnconn1.c |
. . . 4
⊢ (𝜑 → 𝐶 ∈ 𝑃) |
19 | | tgbtwnconn1.2 |
. . . 4
⊢ (𝜑 → 𝐵 ∈ (𝐴𝐼𝐶)) |
20 | | tgbtwnconn1.5 |
. . . 4
⊢ (𝜑 → 𝐶 ∈ (𝐴𝐼𝐹)) |
21 | 1, 2, 3, 4, 7, 5, 18, 17, 19, 20 | tgbtwnexch 26763 |
. . 3
⊢ (𝜑 → 𝐵 ∈ (𝐴𝐼𝐹)) |
22 | | tgbtwnconn1.7 |
. . 3
⊢ (𝜑 → 𝐹 ∈ (𝐴𝐼𝐽)) |
23 | 1, 2, 3, 4, 7, 5, 17, 6, 21, 22 | tgbtwnexch 26763 |
. 2
⊢ (𝜑 → 𝐵 ∈ (𝐴𝐼𝐽)) |
24 | 1, 2, 3, 4, 7, 5, 10, 8, 14, 15 | tgbtwnexch3 26759 |
. . 3
⊢ (𝜑 → 𝐸 ∈ (𝐵𝐼𝐻)) |
25 | 1, 2, 3, 4, 7, 18,
17, 6, 20, 22 | tgbtwnexch 26763 |
. . . . 5
⊢ (𝜑 → 𝐶 ∈ (𝐴𝐼𝐽)) |
26 | 1, 2, 3, 4, 7, 5, 18, 6, 19, 25 | tgbtwnexch3 26759 |
. . . 4
⊢ (𝜑 → 𝐶 ∈ (𝐵𝐼𝐽)) |
27 | 1, 2, 3, 4, 5, 18,
6, 26 | tgbtwncom 26753 |
. . 3
⊢ (𝜑 → 𝐶 ∈ (𝐽𝐼𝐵)) |
28 | 1, 2, 3, 4, 7, 5, 11, 10, 12, 13 | tgbtwnexch3 26759 |
. . . 4
⊢ (𝜑 → 𝐷 ∈ (𝐵𝐼𝐸)) |
29 | 1, 2, 3, 4, 7, 18,
17, 6, 20, 22 | tgbtwnexch3 26759 |
. . . . 5
⊢ (𝜑 → 𝐹 ∈ (𝐶𝐼𝐽)) |
30 | 1, 2, 3, 4, 18, 17, 6, 29 | tgbtwncom 26753 |
. . . 4
⊢ (𝜑 → 𝐹 ∈ (𝐽𝐼𝐶)) |
31 | 1, 2, 3, 4, 6, 17 | axtgcgrrflx 26727 |
. . . . 5
⊢ (𝜑 → (𝐽 − 𝐹) = (𝐹 − 𝐽)) |
32 | | tgbtwnconn1.11 |
. . . . 5
⊢ (𝜑 → (𝐹 − 𝐽) = (𝐵 − 𝐷)) |
33 | 31, 32 | eqtr2d 2779 |
. . . 4
⊢ (𝜑 → (𝐵 − 𝐷) = (𝐽 − 𝐹)) |
34 | | tgbtwnconn1.8 |
. . . . . 6
⊢ (𝜑 → (𝐸 − 𝐷) = (𝐶 − 𝐷)) |
35 | | tgbtwnconn1.9 |
. . . . . 6
⊢ (𝜑 → (𝐶 − 𝐹) = (𝐶 − 𝐷)) |
36 | 34, 35 | eqtr4d 2781 |
. . . . 5
⊢ (𝜑 → (𝐸 − 𝐷) = (𝐶 − 𝐹)) |
37 | 1, 2, 3, 4, 10, 11, 18, 17, 36 | tgcgrcomlr 26745 |
. . . 4
⊢ (𝜑 → (𝐷 − 𝐸) = (𝐹 − 𝐶)) |
38 | 1, 2, 3, 4, 5, 11,
10, 6, 17, 18, 28, 30, 33, 37 | tgcgrextend 26750 |
. . 3
⊢ (𝜑 → (𝐵 − 𝐸) = (𝐽 − 𝐶)) |
39 | | tgbtwnconn1.10 |
. . . 4
⊢ (𝜑 → (𝐸 − 𝐻) = (𝐵 − 𝐶)) |
40 | 1, 2, 3, 4, 10, 8,
5, 18, 39 | tgcgrcomr 26743 |
. . 3
⊢ (𝜑 → (𝐸 − 𝐻) = (𝐶 − 𝐵)) |
41 | 1, 2, 3, 4, 5, 10,
8, 6, 18, 5, 24, 27, 38, 40 | tgcgrextend 26750 |
. 2
⊢ (𝜑 → (𝐵 − 𝐻) = (𝐽 − 𝐵)) |
42 | 1, 2, 3, 4, 5, 6 | axtgcgrrflx 26727 |
. 2
⊢ (𝜑 → (𝐵 − 𝐽) = (𝐽 − 𝐵)) |
43 | 1, 2, 3, 4, 5, 6, 5, 7, 8, 6, 9, 16, 23, 41, 42 | tgsegconeq 26751 |
1
⊢ (𝜑 → 𝐻 = 𝐽) |