Step | Hyp | Ref
| Expression |
1 | | tgbtwnconn1.p |
. 2
β’ π = (BaseβπΊ) |
2 | | tgbtwnconn1.m |
. 2
β’ β =
(distβπΊ) |
3 | | tgbtwnconn1.i |
. 2
β’ πΌ = (ItvβπΊ) |
4 | | tgbtwnconn1.g |
. 2
β’ (π β πΊ β TarskiG) |
5 | | tgbtwnconn1.b |
. 2
β’ (π β π΅ β π) |
6 | | tgbtwnconn1.j |
. 2
β’ (π β π½ β π) |
7 | | tgbtwnconn1.a |
. 2
β’ (π β π΄ β π) |
8 | | tgbtwnconn1.h |
. 2
β’ (π β π» β π) |
9 | | tgbtwnconn1.1 |
. 2
β’ (π β π΄ β π΅) |
10 | | tgbtwnconn1.e |
. . 3
β’ (π β πΈ β π) |
11 | | tgbtwnconn1.d |
. . . 4
β’ (π β π· β π) |
12 | | tgbtwnconn1.3 |
. . . 4
β’ (π β π΅ β (π΄πΌπ·)) |
13 | | tgbtwnconn1.4 |
. . . 4
β’ (π β π· β (π΄πΌπΈ)) |
14 | 1, 2, 3, 4, 7, 5, 11, 10, 12, 13 | tgbtwnexch 28017 |
. . 3
β’ (π β π΅ β (π΄πΌπΈ)) |
15 | | tgbtwnconn1.6 |
. . 3
β’ (π β πΈ β (π΄πΌπ»)) |
16 | 1, 2, 3, 4, 7, 5, 10, 8, 14, 15 | tgbtwnexch 28017 |
. 2
β’ (π β π΅ β (π΄πΌπ»)) |
17 | | tgbtwnconn1.f |
. . 3
β’ (π β πΉ β π) |
18 | | tgbtwnconn1.c |
. . . 4
β’ (π β πΆ β π) |
19 | | tgbtwnconn1.2 |
. . . 4
β’ (π β π΅ β (π΄πΌπΆ)) |
20 | | tgbtwnconn1.5 |
. . . 4
β’ (π β πΆ β (π΄πΌπΉ)) |
21 | 1, 2, 3, 4, 7, 5, 18, 17, 19, 20 | tgbtwnexch 28017 |
. . 3
β’ (π β π΅ β (π΄πΌπΉ)) |
22 | | tgbtwnconn1.7 |
. . 3
β’ (π β πΉ β (π΄πΌπ½)) |
23 | 1, 2, 3, 4, 7, 5, 17, 6, 21, 22 | tgbtwnexch 28017 |
. 2
β’ (π β π΅ β (π΄πΌπ½)) |
24 | 1, 2, 3, 4, 7, 5, 10, 8, 14, 15 | tgbtwnexch3 28013 |
. . 3
β’ (π β πΈ β (π΅πΌπ»)) |
25 | 1, 2, 3, 4, 7, 18,
17, 6, 20, 22 | tgbtwnexch 28017 |
. . . . 5
β’ (π β πΆ β (π΄πΌπ½)) |
26 | 1, 2, 3, 4, 7, 5, 18, 6, 19, 25 | tgbtwnexch3 28013 |
. . . 4
β’ (π β πΆ β (π΅πΌπ½)) |
27 | 1, 2, 3, 4, 5, 18,
6, 26 | tgbtwncom 28007 |
. . 3
β’ (π β πΆ β (π½πΌπ΅)) |
28 | 1, 2, 3, 4, 7, 5, 11, 10, 12, 13 | tgbtwnexch3 28013 |
. . . 4
β’ (π β π· β (π΅πΌπΈ)) |
29 | 1, 2, 3, 4, 7, 18,
17, 6, 20, 22 | tgbtwnexch3 28013 |
. . . . 5
β’ (π β πΉ β (πΆπΌπ½)) |
30 | 1, 2, 3, 4, 18, 17, 6, 29 | tgbtwncom 28007 |
. . . 4
β’ (π β πΉ β (π½πΌπΆ)) |
31 | 1, 2, 3, 4, 6, 17 | axtgcgrrflx 27981 |
. . . . 5
β’ (π β (π½ β πΉ) = (πΉ β π½)) |
32 | | tgbtwnconn1.11 |
. . . . 5
β’ (π β (πΉ β π½) = (π΅ β π·)) |
33 | 31, 32 | eqtr2d 2772 |
. . . 4
β’ (π β (π΅ β π·) = (π½ β πΉ)) |
34 | | tgbtwnconn1.8 |
. . . . . 6
β’ (π β (πΈ β π·) = (πΆ β π·)) |
35 | | tgbtwnconn1.9 |
. . . . . 6
β’ (π β (πΆ β πΉ) = (πΆ β π·)) |
36 | 34, 35 | eqtr4d 2774 |
. . . . 5
β’ (π β (πΈ β π·) = (πΆ β πΉ)) |
37 | 1, 2, 3, 4, 10, 11, 18, 17, 36 | tgcgrcomlr 27999 |
. . . 4
β’ (π β (π· β πΈ) = (πΉ β πΆ)) |
38 | 1, 2, 3, 4, 5, 11,
10, 6, 17, 18, 28, 30, 33, 37 | tgcgrextend 28004 |
. . 3
β’ (π β (π΅ β πΈ) = (π½ β πΆ)) |
39 | | tgbtwnconn1.10 |
. . . 4
β’ (π β (πΈ β π») = (π΅ β πΆ)) |
40 | 1, 2, 3, 4, 10, 8,
5, 18, 39 | tgcgrcomr 27997 |
. . 3
β’ (π β (πΈ β π») = (πΆ β π΅)) |
41 | 1, 2, 3, 4, 5, 10,
8, 6, 18, 5, 24, 27, 38, 40 | tgcgrextend 28004 |
. 2
β’ (π β (π΅ β π») = (π½ β π΅)) |
42 | 1, 2, 3, 4, 5, 6 | axtgcgrrflx 27981 |
. 2
β’ (π β (π΅ β π½) = (π½ β π΅)) |
43 | 1, 2, 3, 4, 5, 6, 5, 7, 8, 6, 9, 16, 23, 41, 42 | tgsegconeq 28005 |
1
β’ (π β π» = π½) |