| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > thincssc | Structured version Visualization version GIF version | ||
| Description: A thin category is a category. (Contributed by Zhi Wang, 17-Sep-2024.) |
| Ref | Expression |
|---|---|
| thincssc | ⊢ ThinCat ⊆ Cat |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | thincc 49411 | . 2 ⊢ (𝑐 ∈ ThinCat → 𝑐 ∈ Cat) | |
| 2 | 1 | ssriv 3950 | 1 ⊢ ThinCat ⊆ Cat |
| Colors of variables: wff setvar class |
| Syntax hints: ⊆ wss 3914 Catccat 17625 ThinCatcthinc 49406 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-nul 5261 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-mo 2533 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-iota 6464 df-fv 6519 df-ov 7390 df-thinc 49407 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |