Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  thincssc Structured version   Visualization version   GIF version

Theorem thincssc 46009
Description: A thin category is a category. (Contributed by Zhi Wang, 17-Sep-2024.)
Assertion
Ref Expression
thincssc ThinCat ⊆ Cat

Proof of Theorem thincssc
StepHypRef Expression
1 thincc 46007 . 2 (𝑐 ∈ ThinCat → 𝑐 ∈ Cat)
21ssriv 3920 1 ThinCat ⊆ Cat
Colors of variables: wff setvar class
Syntax hints:  wss 3881  Catccat 17192  ThinCatcthinc 46002
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2159  ax-12 2176  ax-ext 2709  ax-nul 5214
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2072  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3067  df-rex 3068  df-rab 3071  df-v 3423  df-sbc 3710  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4253  df-if 4455  df-sn 4557  df-pr 4559  df-op 4563  df-uni 4835  df-br 5069  df-iota 6356  df-fv 6406  df-ov 7235  df-thinc 46003
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator