Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  thincssc Structured version   Visualization version   GIF version

Theorem thincssc 48110
Description: A thin category is a category. (Contributed by Zhi Wang, 17-Sep-2024.)
Assertion
Ref Expression
thincssc ThinCat ⊆ Cat

Proof of Theorem thincssc
StepHypRef Expression
1 thincc 48108 . 2 (𝑐 ∈ ThinCat → 𝑐 ∈ Cat)
21ssriv 3986 1 ThinCat ⊆ Cat
Colors of variables: wff setvar class
Syntax hints:  wss 3949  Catccat 17651  ThinCatcthinc 48103
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2699  ax-nul 5310
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-mo 2529  df-clab 2706  df-cleq 2720  df-clel 2806  df-ne 2938  df-ral 3059  df-rex 3068  df-rab 3431  df-v 3475  df-sbc 3779  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4327  df-if 4533  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-br 5153  df-iota 6505  df-fv 6561  df-ov 7429  df-thinc 48104
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator