Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > thincssc | Structured version Visualization version GIF version |
Description: A thin category is a category. (Contributed by Zhi Wang, 17-Sep-2024.) |
Ref | Expression |
---|---|
thincssc | ⊢ ThinCat ⊆ Cat |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | thincc 46007 | . 2 ⊢ (𝑐 ∈ ThinCat → 𝑐 ∈ Cat) | |
2 | 1 | ssriv 3920 | 1 ⊢ ThinCat ⊆ Cat |
Colors of variables: wff setvar class |
Syntax hints: ⊆ wss 3881 Catccat 17192 ThinCatcthinc 46002 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2159 ax-12 2176 ax-ext 2709 ax-nul 5214 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2072 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3067 df-rex 3068 df-rab 3071 df-v 3423 df-sbc 3710 df-dif 3884 df-un 3886 df-in 3888 df-ss 3898 df-nul 4253 df-if 4455 df-sn 4557 df-pr 4559 df-op 4563 df-uni 4835 df-br 5069 df-iota 6356 df-fv 6406 df-ov 7235 df-thinc 46003 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |