Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  thinccd Structured version   Visualization version   GIF version

Theorem thinccd 46306
Description: A thin category is a category (deduction form). (Contributed by Zhi Wang, 24-Sep-2024.)
Hypothesis
Ref Expression
thinccd.c (𝜑𝐶 ∈ ThinCat)
Assertion
Ref Expression
thinccd (𝜑𝐶 ∈ Cat)

Proof of Theorem thinccd
StepHypRef Expression
1 thinccd.c . 2 (𝜑𝐶 ∈ ThinCat)
2 thincc 46305 . 2 (𝐶 ∈ ThinCat → 𝐶 ∈ Cat)
31, 2syl 17 1 (𝜑𝐶 ∈ Cat)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2106  Catccat 17373  ThinCatcthinc 46300
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-nul 5230
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-iota 6391  df-fv 6441  df-ov 7278  df-thinc 46301
This theorem is referenced by:  thincid  46314  thincmon  46315  thincepi  46316  functhinclem4  46325  functhinc  46326  thincciso  46330  thincsect  46338  thincinv  46340  thinciso  46341  thinccic  46342
  Copyright terms: Public domain W3C validator