| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > thinccd | Structured version Visualization version GIF version | ||
| Description: A thin category is a category (deduction form). (Contributed by Zhi Wang, 24-Sep-2024.) |
| Ref | Expression |
|---|---|
| thinccd.c | ⊢ (𝜑 → 𝐶 ∈ ThinCat) |
| Ref | Expression |
|---|---|
| thinccd | ⊢ (𝜑 → 𝐶 ∈ Cat) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | thinccd.c | . 2 ⊢ (𝜑 → 𝐶 ∈ ThinCat) | |
| 2 | thincc 49453 | . 2 ⊢ (𝐶 ∈ ThinCat → 𝐶 ∈ Cat) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → 𝐶 ∈ Cat) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 Catccat 17567 ThinCatcthinc 49448 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-nul 5244 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-mo 2535 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3742 df-dif 3905 df-un 3907 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-iota 6437 df-fv 6489 df-ov 7349 df-thinc 49449 |
| This theorem is referenced by: thincid 49463 thincmon 49464 thincepi 49465 oppcthinco 49470 functhinclem4 49478 functhinc 49479 thincciso 49484 thinccisod 49485 thincsect 49498 thincinv 49500 thinciso 49501 thinccic 49502 termccd 49510 arweutermc 49561 funcsn 49572 |
| Copyright terms: Public domain | W3C validator |