Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > thinccd | Structured version Visualization version GIF version |
Description: A thin category is a category (deduction form). (Contributed by Zhi Wang, 24-Sep-2024.) |
Ref | Expression |
---|---|
thinccd.c | ⊢ (𝜑 → 𝐶 ∈ ThinCat) |
Ref | Expression |
---|---|
thinccd | ⊢ (𝜑 → 𝐶 ∈ Cat) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | thinccd.c | . 2 ⊢ (𝜑 → 𝐶 ∈ ThinCat) | |
2 | thincc 46274 | . 2 ⊢ (𝐶 ∈ ThinCat → 𝐶 ∈ Cat) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → 𝐶 ∈ Cat) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2110 Catccat 17371 ThinCatcthinc 46269 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-nul 5234 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-ral 3071 df-rex 3072 df-rab 3075 df-v 3433 df-sbc 3721 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-br 5080 df-iota 6390 df-fv 6440 df-ov 7274 df-thinc 46270 |
This theorem is referenced by: thincid 46283 thincmon 46284 thincepi 46285 functhinclem4 46294 functhinc 46295 thincciso 46299 thincsect 46307 thincinv 46309 thinciso 46310 thinccic 46311 |
Copyright terms: Public domain | W3C validator |