Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  thinccd Structured version   Visualization version   GIF version

Theorem thinccd 49409
Description: A thin category is a category (deduction form). (Contributed by Zhi Wang, 24-Sep-2024.)
Hypothesis
Ref Expression
thinccd.c (𝜑𝐶 ∈ ThinCat)
Assertion
Ref Expression
thinccd (𝜑𝐶 ∈ Cat)

Proof of Theorem thinccd
StepHypRef Expression
1 thinccd.c . 2 (𝜑𝐶 ∈ ThinCat)
2 thincc 49408 . 2 (𝐶 ∈ ThinCat → 𝐶 ∈ Cat)
31, 2syl 17 1 (𝜑𝐶 ∈ Cat)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  Catccat 17588  ThinCatcthinc 49403
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-nul 5248
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-mo 2533  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-sbc 3745  df-dif 3908  df-un 3910  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-iota 6442  df-fv 6494  df-ov 7356  df-thinc 49404
This theorem is referenced by:  thincid  49418  thincmon  49419  thincepi  49420  oppcthinco  49425  functhinclem4  49433  functhinc  49434  thincciso  49439  thinccisod  49440  thincsect  49453  thincinv  49455  thinciso  49456  thinccic  49457  termccd  49465  arweutermc  49516  funcsn  49527
  Copyright terms: Public domain W3C validator