Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  thinccd Structured version   Visualization version   GIF version

Theorem thinccd 46275
Description: A thin category is a category (deduction form). (Contributed by Zhi Wang, 24-Sep-2024.)
Hypothesis
Ref Expression
thinccd.c (𝜑𝐶 ∈ ThinCat)
Assertion
Ref Expression
thinccd (𝜑𝐶 ∈ Cat)

Proof of Theorem thinccd
StepHypRef Expression
1 thinccd.c . 2 (𝜑𝐶 ∈ ThinCat)
2 thincc 46274 . 2 (𝐶 ∈ ThinCat → 𝐶 ∈ Cat)
31, 2syl 17 1 (𝜑𝐶 ∈ Cat)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2110  Catccat 17371  ThinCatcthinc 46269
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-nul 5234
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-ral 3071  df-rex 3072  df-rab 3075  df-v 3433  df-sbc 3721  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-br 5080  df-iota 6390  df-fv 6440  df-ov 7274  df-thinc 46270
This theorem is referenced by:  thincid  46283  thincmon  46284  thincepi  46285  functhinclem4  46294  functhinc  46295  thincciso  46299  thincsect  46307  thincinv  46309  thinciso  46310  thinccic  46311
  Copyright terms: Public domain W3C validator