| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > thinccd | Structured version Visualization version GIF version | ||
| Description: A thin category is a category (deduction form). (Contributed by Zhi Wang, 24-Sep-2024.) |
| Ref | Expression |
|---|---|
| thinccd.c | ⊢ (𝜑 → 𝐶 ∈ ThinCat) |
| Ref | Expression |
|---|---|
| thinccd | ⊢ (𝜑 → 𝐶 ∈ Cat) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | thinccd.c | . 2 ⊢ (𝜑 → 𝐶 ∈ ThinCat) | |
| 2 | thincc 49408 | . 2 ⊢ (𝐶 ∈ ThinCat → 𝐶 ∈ Cat) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → 𝐶 ∈ Cat) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 Catccat 17588 ThinCatcthinc 49403 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-nul 5248 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-mo 2533 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-sbc 3745 df-dif 3908 df-un 3910 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-iota 6442 df-fv 6494 df-ov 7356 df-thinc 49404 |
| This theorem is referenced by: thincid 49418 thincmon 49419 thincepi 49420 oppcthinco 49425 functhinclem4 49433 functhinc 49434 thincciso 49439 thinccisod 49440 thincsect 49453 thincinv 49455 thinciso 49456 thinccic 49457 termccd 49465 arweutermc 49516 funcsn 49527 |
| Copyright terms: Public domain | W3C validator |