| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > thinccd | Structured version Visualization version GIF version | ||
| Description: A thin category is a category (deduction form). (Contributed by Zhi Wang, 24-Sep-2024.) |
| Ref | Expression |
|---|---|
| thinccd.c | ⊢ (𝜑 → 𝐶 ∈ ThinCat) |
| Ref | Expression |
|---|---|
| thinccd | ⊢ (𝜑 → 𝐶 ∈ Cat) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | thinccd.c | . 2 ⊢ (𝜑 → 𝐶 ∈ ThinCat) | |
| 2 | thincc 49547 | . 2 ⊢ (𝐶 ∈ ThinCat → 𝐶 ∈ Cat) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → 𝐶 ∈ Cat) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2113 Catccat 17572 ThinCatcthinc 49542 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-nul 5246 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-mo 2537 df-clab 2712 df-cleq 2725 df-clel 2808 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-sbc 3738 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-iota 6442 df-fv 6494 df-ov 7355 df-thinc 49543 |
| This theorem is referenced by: thincid 49557 thincmon 49558 thincepi 49559 oppcthinco 49564 functhinclem4 49572 functhinc 49573 thincciso 49578 thinccisod 49579 thincsect 49592 thincinv 49594 thinciso 49595 thinccic 49596 termccd 49604 arweutermc 49655 funcsn 49666 |
| Copyright terms: Public domain | W3C validator |