![]() |
Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > thinccd | Structured version Visualization version GIF version |
Description: A thin category is a category (deduction form). (Contributed by Zhi Wang, 24-Sep-2024.) |
Ref | Expression |
---|---|
thinccd.c | ⊢ (𝜑 → 𝐶 ∈ ThinCat) |
Ref | Expression |
---|---|
thinccd | ⊢ (𝜑 → 𝐶 ∈ Cat) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | thinccd.c | . 2 ⊢ (𝜑 → 𝐶 ∈ ThinCat) | |
2 | thincc 48824 | . 2 ⊢ (𝐶 ∈ ThinCat → 𝐶 ∈ Cat) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → 𝐶 ∈ Cat) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 Catccat 17709 ThinCatcthinc 48819 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 ax-nul 5312 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-mo 2538 df-clab 2713 df-cleq 2727 df-clel 2814 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-sbc 3792 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-iota 6516 df-fv 6571 df-ov 7434 df-thinc 48820 |
This theorem is referenced by: thincid 48833 thincmon 48834 thincepi 48835 functhinclem4 48844 functhinc 48845 thincciso 48849 thinccisod 48850 thincsect 48858 thincinv 48860 thinciso 48861 thinccic 48862 |
Copyright terms: Public domain | W3C validator |