Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  thinccd Structured version   Visualization version   GIF version

Theorem thinccd 49548
Description: A thin category is a category (deduction form). (Contributed by Zhi Wang, 24-Sep-2024.)
Hypothesis
Ref Expression
thinccd.c (𝜑𝐶 ∈ ThinCat)
Assertion
Ref Expression
thinccd (𝜑𝐶 ∈ Cat)

Proof of Theorem thinccd
StepHypRef Expression
1 thinccd.c . 2 (𝜑𝐶 ∈ ThinCat)
2 thincc 49547 . 2 (𝐶 ∈ ThinCat → 𝐶 ∈ Cat)
31, 2syl 17 1 (𝜑𝐶 ∈ Cat)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2113  Catccat 17572  ThinCatcthinc 49542
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705  ax-nul 5246
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-mo 2537  df-clab 2712  df-cleq 2725  df-clel 2808  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-sbc 3738  df-dif 3901  df-un 3903  df-ss 3915  df-nul 4283  df-if 4475  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-iota 6442  df-fv 6494  df-ov 7355  df-thinc 49543
This theorem is referenced by:  thincid  49557  thincmon  49558  thincepi  49559  oppcthinco  49564  functhinclem4  49572  functhinc  49573  thincciso  49578  thinccisod  49579  thincsect  49592  thincinv  49594  thinciso  49595  thinccic  49596  termccd  49604  arweutermc  49655  funcsn  49666
  Copyright terms: Public domain W3C validator