| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > thincc | Structured version Visualization version GIF version | ||
| Description: A thin category is a category. (Contributed by Zhi Wang, 17-Sep-2024.) |
| Ref | Expression |
|---|---|
| thincc | ⊢ (𝐶 ∈ ThinCat → 𝐶 ∈ Cat) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2730 | . . 3 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
| 2 | eqid 2730 | . . 3 ⊢ (Hom ‘𝐶) = (Hom ‘𝐶) | |
| 3 | 1, 2 | isthinc 49412 | . 2 ⊢ (𝐶 ∈ ThinCat ↔ (𝐶 ∈ Cat ∧ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)∃*𝑓 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) |
| 4 | 3 | simplbi 497 | 1 ⊢ (𝐶 ∈ ThinCat → 𝐶 ∈ Cat) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ∃*wmo 2532 ∀wral 3045 ‘cfv 6514 (class class class)co 7390 Basecbs 17186 Hom chom 17238 Catccat 17632 ThinCatcthinc 49410 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-nul 5264 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-mo 2534 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-iota 6467 df-fv 6522 df-ov 7393 df-thinc 49411 |
| This theorem is referenced by: thinccd 49416 thincssc 49417 oppcthin 49431 |
| Copyright terms: Public domain | W3C validator |