![]() |
Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > thincc | Structured version Visualization version GIF version |
Description: A thin category is a category. (Contributed by Zhi Wang, 17-Sep-2024.) |
Ref | Expression |
---|---|
thincc | ⊢ (𝐶 ∈ ThinCat → 𝐶 ∈ Cat) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2725 | . . 3 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
2 | eqid 2725 | . . 3 ⊢ (Hom ‘𝐶) = (Hom ‘𝐶) | |
3 | 1, 2 | isthinc 48215 | . 2 ⊢ (𝐶 ∈ ThinCat ↔ (𝐶 ∈ Cat ∧ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)∃*𝑓 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))) |
4 | 3 | simplbi 496 | 1 ⊢ (𝐶 ∈ ThinCat → 𝐶 ∈ Cat) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2098 ∃*wmo 2526 ∀wral 3050 ‘cfv 6549 (class class class)co 7419 Basecbs 17188 Hom chom 17252 Catccat 17652 ThinCatcthinc 48213 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2696 ax-nul 5307 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-mo 2528 df-clab 2703 df-cleq 2717 df-clel 2802 df-ne 2930 df-ral 3051 df-rex 3060 df-rab 3419 df-v 3463 df-sbc 3774 df-dif 3947 df-un 3949 df-ss 3961 df-nul 4323 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-br 5150 df-iota 6501 df-fv 6557 df-ov 7422 df-thinc 48214 |
This theorem is referenced by: thinccd 48219 thincssc 48220 oppcthin 48233 |
Copyright terms: Public domain | W3C validator |