Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  thincc Structured version   Visualization version   GIF version

Theorem thincc 48218
Description: A thin category is a category. (Contributed by Zhi Wang, 17-Sep-2024.)
Assertion
Ref Expression
thincc (𝐶 ∈ ThinCat → 𝐶 ∈ Cat)

Proof of Theorem thincc
Dummy variables 𝑓 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2725 . . 3 (Base‘𝐶) = (Base‘𝐶)
2 eqid 2725 . . 3 (Hom ‘𝐶) = (Hom ‘𝐶)
31, 2isthinc 48215 . 2 (𝐶 ∈ ThinCat ↔ (𝐶 ∈ Cat ∧ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)∃*𝑓 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)))
43simplbi 496 1 (𝐶 ∈ ThinCat → 𝐶 ∈ Cat)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2098  ∃*wmo 2526  wral 3050  cfv 6549  (class class class)co 7419  Basecbs 17188  Hom chom 17252  Catccat 17652  ThinCatcthinc 48213
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2696  ax-nul 5307
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-mo 2528  df-clab 2703  df-cleq 2717  df-clel 2802  df-ne 2930  df-ral 3051  df-rex 3060  df-rab 3419  df-v 3463  df-sbc 3774  df-dif 3947  df-un 3949  df-ss 3961  df-nul 4323  df-if 4531  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-br 5150  df-iota 6501  df-fv 6557  df-ov 7422  df-thinc 48214
This theorem is referenced by:  thinccd  48219  thincssc  48220  oppcthin  48233
  Copyright terms: Public domain W3C validator